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The men of Harold stood well together, as their wont was, and
formed sixty and one squares, with a like number of men in every
square thereof, and woe to the hardy Norman who ventured to enter
their redoubts; for a single blow of a Saxon war-hatchet would break
his lance and cut through his coat of mail. . . . When Harold threw
himself into the fray the Saxons were one mighty square of men,
shouting the battle-cries, “Ut!” “Olicrosse!” “Godemitè!”

The little-known account of the battle of Hastings (October 14, 1066) just quoted,
formulates the equation x2 = 61y2+1, to be solved in positive integers x, y. It is an
instance of the Pell equation x2 = d·y2 + 1, where d is a given positive integer; one
excludes values of d that are perfect squares, since for d = e2 the two consecutive
positive integers dy2 = (ey)2 and dy2 + 1 cannot both be squares.

The Pell equation is like a raindrop in which all of number theory is reflected.
Indeed, one of the stated objectives of the book under review is to introduce the
reader to “the delights of algebraic number theory” by means of the Pell equation,
and in its 500 pages the analytic, algorithmic, and applied aspects of the subject
all receive ample attention. In addition, one learns about the rich history of the
equation, which, as Weil’s book [11] illustrates, is not very different from the history
of number theory itself. A second stated objective of the book by Jacobson and
Williams is “to detail the enormous progress” that has in recent decades been made
on developing efficient solution methods for the Pell equation. Such methods are
both practically and theoretically of interest: practically because of their uses in
cryptography, and theoretically because they are manifestations of novel concepts
that are nowadays viewed as belonging to Arakelov theory.

There are three results on the Pell equation that everybody should know. They
concern the existence of a solution, the structure of the set of solutions, and an
algorithm for finding them.

First, for any nonsquare positive integer d, the Pell equation x2 = dy2 + 1
does have a solution in positive integers x, y. Most likely, Fermat (1601–1665)
was already in possession of a proof of this nontrivial fact (cf. [11]), but the first
published proof was given in 1768 by Lagrange (1736–1813) [1]. An admirably brief
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proof, much in the spirit of the nineteenth century, is contained in the very first
chapter of the book under review.

Second, there is the structure of the set of solutions. It is best understood if
one rewrites the equation as (x+ y

√
d)·(x− y

√
d) = 1: the product of a “quadratic

integer” and its conjugate equals 1. This property is preserved under taking powers,
so starting from any solution x1, y1 in positive integers, one obtains, for each
positive integer n, a solution xn, yn by expanding (x1 + y1

√
d)n in the form xn +

yn
√
d. One readily checks x1 < x2 < x3 < · · · and y1 < y2 < y3 < · · · , so a single

solution gives rise to infinitely many. In fact, if one chooses x1, y1 to be the least
positive solution, then one obtains all positive solutions in this manner. These
results are perfectly elementary, and in one form or another they must have been
known long before Lagrange.

Third, one considers algorithms: given d, how does one “efficiently” find the
least positive integers x(d), y(d) satisfying the Pell equation? This has from the
very beginning been the most investigated question in the subject. It is important
to realize that a simple search will in practice not suffice, since it is an experimental
fact, backed up by a fairly solid conjecture, that x(d) and y(d) are usually gigantic.
An example is provided by Archimedes’s Cattle problem, duly treated in the book,
which is equivalent to the Pell equation for d = 410 286423 278424; in this case,
x(d) and y(d) have 103273 and 103265 decimal digits, respectively.

There is a proven upper bound: for all d one has

log y(d) < log x(d) < d1/2(log(4d) + 2),

where d1/2 denotes the positive real square root of d. It is a folklore conjecture,
related to the Cohen–Lenstra heuristics, that this upper bound is typically of the
correct order of magnitude, in the sense that for each ε > 0 asymptotically 100%
of all nonsquares d satisfy log x(d) > log y(d) > d1/2−ε. Providing a proof is the
major open problem in the theory of the Pell equation. It is not even known whether
there is a positive constant c such that infinitely many square-free values of d satisfy
log x(d) > dc.

Given the conjectured typical size of x(d), it is not reasonable to ask for a
polynomial-time algorithm that given d computes x(d). Nevertheless, there does
exist a fairly quick method for calculating x(d), y(d) from d, and it has, in dif-
ferent guises, been frequently discovered throughout history. In its currently most
fashionable formulation, it makes use of continued fractions. The existence of this
method is the third fact about the Pell equation that should be common knowledge.
The algorithm can be made to run in time no more than log x(d) multiplied by a
constant power of 1 + log d; in other words, computing the numbers x(d) and y(d)
can be done almost as quickly as writing them down.

To describe the fundamental idea, we can hardly do better than quote the par-
ticularly lucid explanation that Euler (1706–1783) provides in his famous Algebra
(1770) [3]. It uses no more than the traditional Euclidean algorithm. Euler’s attri-
bution of the method to John Pell (1611–1685), who has apparently nothing to do
with the equation, has given rise to much heated debate, but the name has stuck.
Here is how Euler deals with the case d = 7, in the oldest English translation of his
textbook [4, Part II, Chapter VII, Article 102]:

Let us proceed farther, and let a = 7, and 7nn + 1 = mm; we
see that m > 2n; let us therefore make m = 2n + p, and we shall
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have 7nn + 1 = 4nn + 4np + pp, or 3nn = 4np + pp − 1; which

gives n = 2p+
√
7pp−3
3 . At present, since n > 4

3p, and, consequently,
greater than p, let us make n = p+ q, and we shall have p+ 3q =√
7pp− 3; then, squaring both sides, pp+ 6pq + 9qq = 7pp− 3, so

that 6pp = 6pq + 9qq + 3, or 2pp = 2pq + 3qq + 1, whence we get

p = q+
√
7qq+2
2 . Now, we have here p > 3q

2 ; and, consequently, p > q;

so that making p = q + r, we shall have q + 2r =
√
7qq + 2; the

squares of which are qq+4qr+4rr = 7qq+2; then 6qq = 4qr+4rr−2,

or 3qq = 2qr+2rr− 1; and, lastly, q = r+
√
7rr−3
3 . Since now q > r,

let us suppose q = r + s, and we shall have 2r + 3s =
√
7rr − 3;

then 4rr + 12rs + 9ss = 7rr − 3, or 3rr = 12rs + 9ss + 3, or
rr = 4rs + 3ss + 1, and r = 2s +

√
7ss+ 1. Now, this formula is

like the first; so that making s = 0, we shall obtain r = 1, q = 1,
p = 2 and n = 3, or m = 8.

Euler treats seven values of d in this manner and, not surprisingly, he finds a
solution in each case. However, his claim [3, Part II, Chapter VII, Article 104] that
the method always leads to a solution, is, other than he apparently thought, not
backed up by a proof. It will surely find a solution if one exists; but this is also
the case for the negative Pell equation x2 − dy2 = −1, which already for d = 3 is
unsolvable in integers.

Can one directly prove that the method explained by Euler does lead to a solu-
tion? Weil [11, Chapter II, §XIII] remarked that the sequence of equations

3nn = 4np+ pp− 1

2pp = 2pq + 3qq + 1

3qq = 2qr + 2rr − 1

rr = 4rs+ 3ss+ 1

that Euler derived from mm = 7nn+1 displays a symmetry that can hardly escape
notice, and he used it to construct a solvability proof that, as he plausibly argued,
may have been the one that Fermat had in mind. In 1944, Hofmann [5] presented
a completely different reconstruction of Fermat’s proof, but since it is based on
several erroneous theorems, it cannot be taken seriously.

We sketch an alternative argument that uses Euler’s chain of equations to prove
that Pell’s equation has a positive solution. Instead of x2 = dy2 + 1, one considers
more general equations of the type ax2 = 2bxy + cy2 ± 1, where a, b, c ∈ Z satisfy
a > 0, b ≥ 0, c > 0, and where b2+ac equals our given nonsquare positive integer d;
we also require 2b > a− c or, equivalently, that the positive zero of at2 − 2bt− c is
greater than 1. Writing k for the integer part of that zero, we see that the procedure
explained by Euler is equivalent to putting x = kx∗ + y∗, y = x∗, which transforms
the given equation into an equation a∗x∗2 = 2b∗x∗y∗ + c∗y∗2 ∓ 1, where a∗, b∗,
c∗ ∈ Z are certain expressions in a, b, c, k that satisfy the same conditions as a,
b, c.

We could now continue to formalize Euler’s argument, and show that a positive
integer solution (x, y) of our equation corresponds to a smaller and still nonnegative
solution (x∗, y∗) of the next; thus, the equation one starts from has a positive integer
solution if and only if one eventually runs into an equation that has the trivial
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solution (1, 0). But why this actually happens if one starts from the equation
x2 = dy2 + 1 remains unclear.

Instead, we do not wait for the trivial solution (1, 0) to appear, but start from it,
noting that it does solve the Pell equation x2 = dy2 +1, which we use as the initial
equation in Euler’s reduction process. It gives rise to the solution (x∗, y∗) = (0, 1)
of the next equation, next to (x∗∗, y∗∗) with x∗∗y∗∗ < 0, and in general one will have
0 = x∗y∗ > x∗∗y∗∗ > x∗∗∗y∗∗∗ > · · · . Each time we pass from one equation to the
next, the ∗-operation is a bijection between their sets of solutions, so that any two
equations in the chain thus constructed have equally many solutions. Since there
are only finitely many triples of nonnegative integers a, b, c satisfying b2 + ac = d,
at least one equation occurs infinitely often in this chain, and the process produces
infinitely many integer solutions to that equation. Then the initial equation x2 =
dy2+1 has infinitely many integer solutions as well, and passing to absolute values
we also find infinitely many solutions that are positive.

Whether the argument just given, in its reliance on negative numbers and infini-
ties, is likely to have occurred to Fermat, we leave to the reader to decide.

To sketch later developments, we consider the set of equations ax2 = 2bxy +
cy2 ± 1 that satisfy gcd(a, 2b, c) = 1 in addition to the conditions listed above. For
each d, this set of equations is finite, and it is mapped to itself by Euler’s reduction
operation. Iterating the operation on a given equation, one ultimately runs into a
cycle, and we shall write Cd for the set of distinct cycles obtained in this way. Gauss
(1777–1855) proved in 1801 that Cd has a natural abelian group structure, derived
from composition of quadratic forms; the neutral element of Cd is the cycle that the
Pell equation x2 = dy2+1 eventually runs into. (Gauss’s formulation is not the same
as ours, but the difference need not bother the reader.) Composition of quadratic
forms is a mysterious operation, which, as Dirichlet (1805–1859) pointed out, is

best understood through the arithmetic of the quadratic ring Z[
√
d] = {x + y

√
d :

x, y ∈ Z}. Dirichlet showed that Cd may be identified with a suitably defined

ideal class group of Z[
√
d], composition of quadratic forms then taking the form of

multiplication of ideals.
The book under review owes its existence to an observation of Daniel Shanks

(1917–1996) from 1972 [10]. He restricted composition to the cycle that corresponds
to the neutral element of Cd, and he observed phenomena reminiscent of the group
operation in a circle group. Since this is happening “inside” the unit element of Cd,
he used the word infrastructure for his discovery. It was soon realized that Shanks
had indeed run into a group that is closely related to the class group [6]. Later, the
same group arose in the context of Arakelov theory, which is a branch of arithmetic
algebraic geometry that emerged a few years after Shanks’s work. Nowadays, the
group is often referred to as the Arakelov class group.

To explain what the Arakelov class group is, we digress for a moment from the
Pell equation. By a lattice in the field C of complex numbers we mean a noncyclic
additive subgroup L of C that is discrete in the usual topology on C; equivalently;
it is a subset of the form Zz1 + Zz2, where z1, z2 ∈ C are linearly independent
over the field R of real numbers. Two lattices L and M in C are called similar
if for some z in the multiplicative group C∗ of nonzero complex numbers one has
L = z·M . Intuitively, one may say that two lattices are similar if and only if they
“look the same”, modulo zooming in or zooming out or turning one’s head left or
right; but a mirror is not allowed. Here zooming in or out corresponds to taking
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z ∈ R>0, and turning one’s head to taking z in the circle group T, which is the
largest compact subgroup of C∗; note that C∗ is the direct product of its subgroups
R>0 and T. We shall consider lattices in C only up to similarity.

By the product L·M of two lattices in C we mean the additive subgroup of C
generated by {x·y : x ∈ L, y ∈ M}. Usually, L ·M is not a lattice, and one may
wonder under which conditions it is. To answer this question in the case L = M ,
one defines the multiplier ring RL = {z ∈ C : z·L ⊂ L} of L, which is a discrete
subring of C that depends only on the similarity class of L. It is not hard to show
that either RL = Z, or RL is itself a lattice. It is precisely in the latter case that
L·L is a lattice; such lattices are said to admit complex multiplication, and they are
of interest in the theory of elliptic curves.

The multiplier rings RL that one encounters for lattices L with complex multipli-
cation are imaginary quadratic, in the sense that they are of the form Z+Zα, where
α is a complex zero of a quadratic polynomial with integer coefficients, leading co-
efficient 1, and negative discriminant. Examples are the ring Z[i] = {x + yi : x,
y ∈ Z} of Gaussian integers, and its subring Z[3i]. The class group of such a ring
R is the set of similarity classes of lattices L in C with RL = R. Multiplication of
lattices makes the class group into an abelian group, the neutral element being the
similarity class of R itself and the inverse being obtained by complex conjugation.
A classical theorem, in substance due to Gauss, asserts that this group is finite.
For the ring Z[i] the group is trivial, and for Z[3i] it is of order 2. For imaginary
quadratic orders, the Arakelov class group coincides with the class group.

The situation is different for the real quadratic rings Z[
√
d] that are relevant for

the Pell equation. In order to be able to view such rings as lattices, we replace the
field C by R×R, which is a commutative ring with componentwise ring operations:
addition is vector addition, and multiplication is defined by (r, s)·(t, u) = (rt, su).
We write 1 for the unit element (1, 1), and view R = R·1 as a subring of R ×R.
For a positive integer d that is not a square, we denote the element (d1/2,−d1/2)

of R×R by
√
d; it does satisfy (

√
d)2 = d. We can now view Z[

√
d] = Z·1 +Z·

√
d

as a subring of R×R.
Other than C, the ring R×R has nonzero elements that have no multiplicative

inverse, namely the elements that have exactly one of their coordinates equal to 0.
The rings Z[

√
d] just defined contain none of those “undesirable” elements. Gener-

ally, we may define a lattice in R×R to be a noncyclic discrete additive subgroup
L of R × R such that every nonzero element of L has a multiplicative inverse in
R × R. Thus, our rings Z[

√
d] are lattices in R × R. It is in the definition of

similarity that the greatest difference with the case of lattices in C is to be found:
two lattices L and M in R×R are called similar if there exists z ∈ R>0·{(±1,±1)}
with L = z·M ; here the finite group {(±1,±1)}, which is the maximal compact
subgroup of the group R∗ ×R∗ of invertible elements of R×R, plays the role that
T played earlier. One should note that R>0·{(±1,±1)} is quite a bit smaller than
R∗ ×R∗. In fact, if we write H = {(x, x−1) : x ∈ R>0} = {(et, e−t) : t ∈ R}, then
R∗ ×R∗ is the direct product of its three subgroups R>0, {(±1,±1)}, and H; the
group H is half a hyperbola, and it is isomorphic to the additive group R. The
reason for restricting to z ∈ R>0·{(±1,±1)} is that it enables us, just as for lat-
tices in C, to decide whether two lattices are similar just by “looking” at them. By
contrast, for a large element z ∈ H a typical lattice L will not bear a recognizable
resemblance to z·L.
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Again, let d be a positive integer that is not a square. The Arakelov class
group Ad of Z[

√
d] is defined to be the set of similarity classes of lattices L in

R × R for which the multiplier ring {z ∈ R × R : z·L ⊂ L} equals Z[
√
d]. It is

an abelian group, the multiplication being defined as in the case of lattices in C.
The Arakelov class group Ad of Z[

√
d] is not finite, but it is compact in a natu-

rally defined topology, in which the similarity classes of two lattices are “close” to
each other if and only if they “look almost the same”. The best way to understand
this, is by considering the group homomorphism R → Ad that sends t to the simila-
rity class of (et, e−t)·Z[

√
d]. Its kernel is regd·Z, where the regulator regd equals

1
2 log(x(d) + y(d)d1/2) or log(x(d) + y(d)d1/2), depending on whether the negative

Pell equation x2−dy2 = −1 does or does not have a solution in integers. The coker-
nel of the map R → Ad is essentially equal to the class group Cd mentioned earlier.
In particular, Ad has a copy of the circle group R/regd·Z as a subgroup of finite
index, so that Ad is indeed in a natural way a compact topological group. Shanks’s
infrastructure is nothing but the group structure in the circle group R/regd·Z,
which in the book under review is referred to as an “infinite cyclic group” (p. 176).
For each equation ax2 = 2bxy + cy2 ± 1 as we saw in the definition of Cd, the set
Z·a+Z·(b−

√
d) is a lattice in R×R with multiplier ring Z[

√
d], so that its simi-

larity class belongs to Ad. There is a sense in which the similarity classes obtained
in this way are to be found “everywhere” in Ad, and they form a convenient vehicle
for doing computations in Ad.

The Arakelov class group can in fact be defined for any ring of algebraic integers
in any algebraic number field. It contains information about both the class group
and the unit group of the ring. Since the 1920s, number theorists have observed
an analogy between algebraic number fields on the one hand and function fields of
curves over finite fields on the other. Seen from this perspective, the Arakelov class
group is the analogue of the group of rational points on the Jacobian of a curve
over a finite field. The Jacobian is an algebraic group, and while no such thing
can be asserted for the Arakelov class group, the latter is in several theoretical and
computational respects far more manageable than the traditional class group and
unit group of a ring of algebraic integers. For a discussion of the Arakelov class
group and its algorithmic merits, we refer the reader to Schoof’s tutorial [9].

The continued fraction method for solving the Pell equation, Euler’s reduction
operation, and Shanks’s infrastructure all admit natural interpretations in terms
of the Arakelov class group. Combining them, one can develop a much faster
method for solving the Pell equation than is possible with the continued fraction
method alone. The resulting technique is explained in considerable detail in the
book by Jacobson and Williams. Given that the entire method effectively operates
in the Arakelov class group, it is somewhat surprising that the authors have chosen
a presentation in which they mention that group only in passing (p. 176), while
admitting that its practical impact is “currently unclear” to them. In general,
their text is computationally and analytically much stronger than conceptually and
algebraically, their novel definition of the notion of a prime ideal (p. 93) providing
a further illustration.

As the authors are justified in emphasizing (p. ix), their book “is not intended
to be used as a textbook”. The early chapters, which treat the history of Pell’s
equation, are especially valuable. Regrettably, the thoroughness of the discourse is
not matched by an adequate listing of original sources: the 28-page bibliography
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invariably replaces the latter by more recent reprints, so that the historically naive
reader may think of the contributions by Euler and Lagrange as belonging to the
nineteenth century. The technical material that forms the core of the book can
be profitably consulted by the many mathematicians who share the authors’ belief
that nothing can match the clarity of a formula when it comes to conveying a
mathematical truth.

Clarity is of course in the eyes of the observer, and there are also mathematicians
who see a difference between the medium and the message. David Mumford [7],
drawing a parallel between art and mathematics, once compared the way of thinking
that Galois (1811–1832) introduced into mathematics with the “light and air” of
the English painter William Turner (1775–1851). It is this “light and air” that
the present-day follower of Galois will vainly look for in the book. One does not
encounter the battle of Hastings either, since, other than Neukirch and Geyer [8,
Kap. I, §7, Aufgabe 3] would have us believe, the chronicle that we quoted is entirely
apocryphal, having been invented by the English puzzle king Henry Dudeney (1857–
1930) [2, nr. 129].
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