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One of the most fruitful ways to study a group is to consider its actions on various
objects, e.g., sets, linear spaces, varieties, algebras, graphs, etc. In particular, the
conjugation action of a group G on itself is a fundamental object of study. The
orbits are the conjugacy classes. If G is an algebraic group, then there is also some
geometric structure that one can study. The action of G on its Lie algebra g is also
quite an important representation.

For the rest of this review fix an algebraically closed field k& of characteristic
p > 0 and a simple linear algebraic group G with Lie algebra g over k.

The orbits of a simple algebraic group G in the two actions described above have
been an object of study since the beginning of Lie theory. Let us consider the case
of conjugacy classes first. Any element g € G has a Jordan decomposition g =
su = us, where s is semisimple and u is unipotent (this generalizes the usual notion
for an invertible matrix). The semisimple classes are relatively well understood:
they are parametrized by the orbits of the Weyl group of G on a maximal torus.
The conjugacy classes with a given semisimple part s correspond to the unipotent
classes in Cg(s)—a nice reductive group (if G is simply connected, then Cg(s) is
in fact a connected reductive group). Thus, the crucial case to study is that of
unipotent classes.

In the case of SL,(k), the unipotent classes are parametrized by partitions of
n. In particular, there are only finitely many unipotent conjugacy classes. The
finiteness of the number of unipotent classes was proved for all reductive groups by
Dynkin and Konstant (see [7]) in characteristic 0, and it was conjectured to hold
in all characteristics by Steinberg [I9]. Richardson [I7] proved an analogous result
when p is good for G (in particular if p > 5). His proof was considerably easier
but did not apply in bad characteristic. It turns out that the description of the
unipotent conjugacy classes in good characteristic is the same as for characteristic
0.

The full result was finally proved by Lusztig [12]. Lusztig’s proof used the
Deligne—Lusztig theory of complex characters of the finite groups of Lie type. The
idea is as follows: it is enough to show that there are only finitely many unipotent
classes when £ is the algebraic closure of the finite field IF,, and thus to show there is
a uniform upper bound on the number of conjugacy classes of p-elements in G(p®),
i.e., a bound independent of p®. Lusztig does this by writing down a family of char-
acters of bounded cardinality of G(p®) which separates unipotent classes, whence
the result. The bound he gets this way is not sharp.

For classical groups (i.e., linear, symplectic and orthogonal groups) in charac-
teristic not 2, it turns out that the conjugacy class of a unipotent element is de-
termined by its Jordan form, and so the issue is only to determine what are the
possible Jordan forms. The answer is that Jordan blocks of odd size come in pairs in
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symplectic group and Jordan blocks of even size come in pairs in orthogonal groups
[21]. The problem is considerably more difficult in characteristic 2— even for invo-
lutions. For example, there are two conjugacy classes of involutions in Sp, (k) for
k of characteristic 2 for elements with two Jordan blocks of size 2. Hesselink [3]
solved the problem for the classical groups in characteristic 2. Lusztig (see [13] and
the references therein) has had a series of papers explaining how the cases of bad
characteristic can be understood.

There is a vast literature on the subject studying various aspects of the problem.
In particular, there are extensive tables for the conjugacy classes of unipotent el-
ements in the exceptional algebraic groups (i.e., Ga, Fy, Eg, E7, and Eg by various
authors). The book under review includes such tables (which are quite useful).

An important invariant is the size of the conjugacy class. Of course, the dimen-
sion of a conjugacy class is just the codimension of its centralizer. The dimensions
of the centralizers have long been studied as well (see [3] for the classical groups
and various papers for the exceptional groups), but not in a completely satisfactory
way. One wants to know the unipotent radical of the centralizer C, its reductive
quotient, and the component group of C.

One of the attractive features of this book are the new results on the struc-
tures of centralizers. In the case of classical groups, the authors use results of
Hesselink [3] to write down representatives for the unipotent classes (which are
complicated in the case of characteristic 2). These representatives are a bit differ-
ent from those described by Hesselink. They compute the centralizers giving more
detailed information about the structure of these groups (including the structure of
the component group). For the exceptional groups, they start by studying Fs. In
particular, they write down a set of representatives of the unipotent classes. They
show these are distinct and compute their centralizers, including the component
groups. By Lang’s theorem, they can see how many . points there are for each of
the conjugacy classes. They then compute the total number of unipotent elements
contained in the classes they have written down—the number they obtain is p?402.
By a result of Steinberg [20] that is the total number of unipotent elements, whence
all classes are represented and in particular there are only finitely many unipotent
classes. They deal with the other exceptional groups by viewing them as subgroups
of Eg and determining which Eg classes intersect the smaller groups and how the
classes break up in the smaller groups.

This approach provides precise, detailed information about unipotent classes in
the finite groups of Lie type. Since most finite simple groups are of Lie type, this
is very important.

The unipotent conjugacy classes and component groups of the centralizers for
the groups of type E were described by Mizuno [15].

Similarly, the book considers the action of G on its Lie algebra g. In good
characteristic there are Springer correspondences between the unipotent variety of
G and the variety of nilpotent elements in g, and so the analysis is essentially the
same. For bad characteristic, this is no longer the case, and it is quite delicate
to find all the orbits and the stabilizers. For Eg (in any characteristic) this was
originally done by Holt and Spaltenstein [4]. See also [6]. As noted above, the
finiteness of the number of orbits in all characteristics is a result of Lusztig; see
[18].

This book is a very useful addition to the literature. It gives an independent
proof of the finiteness of the number of unipotent classes and nilpotent orbits.
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It puts many of the results about unipotent and nilpotent classes in an easily
accessible place. In particular, they produce a large number of very useful tables
summarizing the results both for the algebraic and finite groups. Moreover, the
authors obtain new results about centralizers which are very useful—particularly
when dealing with the finite groups of Lie type. One result that comes out easily
from the description of unipotent classes is that if z and y are unipotent elements in
a simple algebraic group with (z) = (y), then x and y are conjugate (i.e., unipotent
elements are rational). This had originally been proved by Lusztig [14]. Another
consequence is that if G is a simple algebraic group and v € G is a nontrivial
unipotent element, then a double coset C(u)zCq(u) is never dense in G. This has
been used by Prasad [I6] in studying quasi-reductive groups (a more general result
had been obtained independently in [2]). The results and tables in the book have
already been used by several authors.

Of course, there are many aspects of unipotent elements which are not considered
here. The geometry of the nilpotent cone or the unipotent variety is not studied
(see above for some references, and also see Humphreys [5]). There is no discussion
of the natural partial ordering on unipotent classes induced by taking closures
of conjugacy classes. Here the book of Spaltenstein [I8] is the the best source.
There is no mention of the Springer correspondence, relating unipotent classes to
representations of the Weyl group which plays a crucial role in the representation
theory of the finite groups of Lie type. The structure of the unipotent radical
of the centralizer of a unipotent element is not studied in depth (other than the
dimension). For example, there is no mention of the result that an element g € G
has abelian centralizer if and only if it is regular (see [11] for the fact that regular
elements have abelian centralizers, and see Kurtzke [8] and Lawther [9] for the
converse). This is not a criticism—the authors have chosen to address certain
aspects of the subject and do so in a very readable and extremely useful way.

The case of unipotent classes in automorphism groups of simple algebraic groups
is addressed here only for the orthogonal groups. The other cases are dealt with
n [I0]. One still has finiteness results in this case (see [I8] — the result is due to
Lusztig). In fact, there is an easy proof of the finiteness of outer unipotent classes
given the finiteness of inner unipotent classes [1J.
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