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TOPOLOGY OF NONARCHIMEDEAN ANALYTIC SPACES

AND RELATIONS TO COMPLEX ALGEBRAIC GEOMETRY

SAM PAYNE

Abstract. This note surveys basic topological properties of nonarchimedean
analytic spaces, in the sense of Berkovich, including the recent tameness results
of Hrushovski and Loeser. We also discuss interactions between the topology
of nonarchimedean analytic spaces and classical algebraic geometry.

Contents

1. Introduction 223
2. Nonarchimedean analytification 226
3. Examples: affine line, algebraic curves, and affine plane 229
4. Tameness of analytifications 233
5. Relations to complex algebraic geometry 236
Acknowledgments 244
About the author 244
References 244

1. Introduction

1.1. Complex algebraic geometry. At its most basic, classical complex alge-
braic geometry studies the common zeros in Cn of a collection of polynomials in
C[x1, . . . , xn]. Such an algebraic set may have interesting topology, but is not
pathological. It can be triangulated and admits a deformation retract onto a finite
simplicial complex. Furthermore, it contains an everywhere dense open subset that
is a complex manifold, and whose complement is an algebraic set of smaller dimen-
sion. Proceeding inductively, every algebraic set in Cn decomposes as a finite union
of complex manifolds, and many of the deepest and most fundamental results in
complex algebraic geometry are proved using holomorphic functions and differential
forms, Hodge theory, and Morse theory on these manifolds.

1.2. Beyond the complex numbers. Modern algebraic geometers are equally
interested in the common zeros inKn of a collection of polynomials inK[x1, . . . , xn],
for fields K other than the complex numbers. For instance, the field of rational
numbers Q is interesting for arithmetic purposes, while the field of formal Laurent
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series C((t)) is used to study deformations of complex varieties. Like C, such fields
have natural norms. For a prime number p, the p-adic norm | |p is given by writing

a nonzero rational number uniquely as par
s , with a an integer, and p, r, and s

relatively prime, and then setting ∣∣∣∣pars
∣∣∣∣
p

= p−a.

The t-adic norm | |t is given similarly, by writing a formal Laurent series uniquely
as ta times a formal power series with nonzero constant term, and then setting∣∣∣ta ∑

ait
i
∣∣∣
t
= e−a.

One can make sense of convergent power series with respect to these norms, and
it is tempting to work naively in this context, with “analytic” functions given
locally by convergent power series. Difficulties arise immediately, however, for
essentially topological reasons, unless the field happens to be C. The pleasant
properties of analytic functions in complex geometry depend essentially on C being
an archimedean field.

1.3. What is an archimedean field? The archimedean axiom says that, for
any x ∈ K∗, there is a positive integer n such that |nx| > 1. An archimedean
field is one in which this axiom holds, such as the real numbers and the complex
numbers. However, there are essentially no other examples. The archimedean
axiom is satisfied only by C, with powers of the usual norm, and restrictions of
these norms to subfields. In particular, the only complete archimedean fields are R
and C.

1.4. A nonarchimedean field is any other complete normed field. We are
not talking about the snake house or a rare collection of exotic creatures. Nonar-
chimedean fields are basically the whole zoo. Examples include the completion Qp

of Q with respect to the p-adic norm, and the field of formal Laurent series C((t)).
Also, every field is complete and, hence, nonarchimedean with respect to the trivial
norm, given by |x| = 1 for x ∈ K∗.

The norm on a nonarchimedean field extends uniquely to its algebraic closure.
The algebraic closure may not be complete,1 but the completion of a normed al-
gebraically closed field is again algebraically closed [BGR84, Proposition 3.4.1.3].
So the completion of the algebraic closure of a nonarchimedean field is both nonar-
chimedean and algebraically closed. A typical example is Cp, the completion of the
algebraic closure of Qp.

1.5. The ultrametric inequality. In a nonarchimedean field, a much stronger
version of the triangle inequality holds. The ultrametric inequality says that

|x+ y| ≤ max{|x|, |y|}, with equality if |x| �= |y|.
This property deserves a few moments of contemplation. It implies that, if y is a
point in the open ball

B(x, r) = {y ∈ K | |y − x| < r},
1This is not difficult to see in examples. For instance, the algebraic closure of C((t)) is the

field of Puiseux series C{{t}} =
⋃

n C((t1/n)). The exponents appearing in a Puiseux series have
denominators bounded above, but these bounds need not be uniform on a Cauchy sequence. For

instance, the sequence xn =
∑n

j=1 t
j+ 1

j is Cauchy, but has no limit in C{{t}}.
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then B(x, r) = B(y, r). In other words, every point in a nonarchimedean ball is a
center of the ball.

Remark 1. Some authors define a nonarchimedean field to be any normed field that
satisfies the ultrametric inequality and does not require that the field be complete
with respect to the norm. Since completeness is essential for analytic geometry, we
maintain this additional hypothesis throughout.

1.6. Nonarchimedean fields are totally disconnected. Because of the ultra-
metric inequality, the open ball B(x, r) in a nonarchimedean field is closed in the
metric topology. Since these sets form a basis for the topology, the field K is totally
disconnected. Doing naive analysis on such a totally disconnected set is unreason-
able. For instance, if f and g are any two polynomials, then the piecewise defined
function

Φ(x) =

{
f(x) if x ∈ B(0, 1),
g(x) otherwise,

is continuous. Even worse, this function Φ is “analytic” in the naive sense that it
is given by a convergent power series in a neighborhood of every point.

1.7. Grothendieck topologies. Let K be a nonarchimedean field. The affine
space Kn is totally disconnected in its metric topology, so a purely naive approach
to analytic geometry over K is doomed to fail. One kludge is to discard the naive
notion of topology.

Let us return for a moment to the space of rational numbers Q, which is totally
disconnected in its metric topology. The interval [0, 1] in Q is totally disconnected
and noncompact. However, this totally disconnected set cannot be decomposed into
a disjoint union of two open segments with rational centers and rational endpoints.
This suggests that [0, 1]∩Q is in some sense connected with respect to finite covers
by rational intervals (even though it does decompose as a disjoint union of two open
sets, each of which is an infinite union of rational intervals). This suggests that one
should restrict to considering finite covers by rational intervals (or at least covers
with a finite refinement) in order to do analysis on Q. An approach like this can
work, once one gives up the idea that an arbitrary union of open sets should be
open. Naive topology involving open sets and covers by open sets is then replaced
by a Grothendieck topology, consisting of a collection of covers satisfying certain
axioms that are satisfied by the usual open covers in topology.

1.8. Rigid analytic geometry. John Tate developed a satisfying and powerful
theory of nonarchimedean analytic geometry, based on sheaves of analytic func-
tions in a Grothendieck topology on Kn, when K is algebraically closed.2 His the-
ory with this Grothendieck topology is called rigid analytic geometry. The name
“rigid” contrasts these spaces from the naive totally disconnected analytic spaces,
which Tate called “wobbly”. The fundamental algebraic object in the theory, the
ring of convergent power series on the unit disc, is called the Tate algebra. Alge-
braic properties of the Tate algebra, including the fact that it is noetherian, play
an essential role in all forms of nonarchimedean analytic geometry, whether one
works in the rigid setting or follows the approach of Berkovich. See [BGR84] for a
comprehensive treatment of the foundations of rigid analytic geometry.

2When K is not necessarily algebraically closed, Tate’s theory uses a Grothendieck topol-
ogy on K

n
/Gal(K|K). Experts will note that this is the set of closed points in the scheme

SpecK[x1, . . . , xn].
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1.9. Filling in gaps between points. As mentioned above, one can develop a ver-
sion of analysis on Q by replacing the metric topology with a suitable Grothendieck
topology. Nevertheless, most mathematicians prefer to add in new points that “fill
in the gaps” between the rational numbers and do analysis on the real numbers
instead. Note the fundamental absurdity of this construction. Although Q is dense
in R, it has measure zero. Once we have filled in the gaps, we can more or less
ignore the points in Q when we do analysis. What is added is so much larger than
what we started with.

In the late 1980s and early 1990s, Vladimir Berkovich developed a new version
of analytic geometry over nonarchimedean fields. At the heart of his construction
is a topological space that fills in the gaps between the points of Kn, producing a
path-connected, locally compact Hausdorff space that contains Kn with its metric
topology, and Kn is dense if the norm is nontrivial and K is algebraically closed.3

The underlying algebra and analysis in Berkovich’s theory are essentially the same
as in rigid analytic geometry, but the topological space is different. The subject
of this note is the topology of the spaces appearing in Berkovich’s theory, recent
results on the tameness of these spaces, and relations between topological invariants
of these spaces and more classical notions in complex algebraic geometry. The first
four sections are written for a general audience, while the final section, on relations
to complex algebraic geometry, assumes some familiarity with the cohomology of
algebraic varieties and contains an example illustrating the failure of Lefschetz
theorems with integer coefficients on nonarchimedean analytic spaces.

2. Nonarchimedean analytification

Nonarchimedean analytification is a functor from algebraic varieties (or, more
generally, separated schemes of finite type) over a nonarchimedean field to analytic
spaces in the sense of Berkovich. For simplicity, we focus on the case of an affine
variety. Analytifications of arbitrary varieties are obtained by a natural gluing
procedure from analytifications of affine varieties, which can be described as spaces
of seminorms on coordinate rings.

2.1. Seminorms on coordinate rings. Let K be a nonarchimedean field. Con-
sider polynomials f1, . . . , fr ∈ K[x1, . . . , xn], and let X be the space of solutions
to the corresponding system of equations.4 If x = (x1, . . . , xn) is a point in X(K),
then there is an associated seminorm on the quotient ring

K[X] = K[x1, . . . , xn]/(f1, . . . , fr).

Here, a seminorm on a ring is simply a function | | from K[X] to R≥0 that satisfies
most of the usual axioms of a norm on a field, specifically that

|fg| = |f | · |g|

3If the norm is nontrivial but K is not algebraically closed, then Kn may not be dense. How-
ever, Berkovich’s analytification also contains K

n
/Gal(K|K) with its natural topology induced

by the metric on K, and this subspace is dense.
4In other words, X is the Zariski spectrum SpecK[x1, . . . , xn]/(f1, . . . , fr), a locally ringed

space whose underlying topological space is the set of prime ideals p in this quotient ring, with
the Zariski topology. Yoneda’s Lemma identifies this space with the functor that associates to a
K-algebra S the set of solutions to f1, . . . , fr in Sn. In particular, if L|K is an extension field,
then X(L) is the set of points y ∈ Ln such that fi(y) = 0, for 1 ≤ i ≤ r.
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and

|f + g| ≤ |f |+ |g|.

The seminorm | |x associated to a point x in X(K) is given simply by

|f |x = |f(x)|.

We will only consider seminorms with the additional property that the restriction to
K is the given norm. The given norm on K is nonarchimedean, and it follows that
any seminorm on K[X] extending this norm also satisfies the ultrametric inequality

|f + g| ≤ max{|f |, |g|}, with equality if |f | �= |g|.

The one significant difference between norms on fields and seminorms on rings is
that a seminorm may take the value zero on a nonzero element of the ring.

2.2. Analytification of affine varieties. We now describe the analytification of
the affine variety X over K in terms of seminorms on its coordinate ring.

Definition 2. The analytification Xan is the space of all seminorms on the ring
K[X] that extend the given norm on K.5 6

We write x for a point of Xan, when thinking geometrically, and | |x for the cor-
responding seminorm on K[X]. The topology on Xan is the subspace topology for
the natural inclusion

Xan ⊂ (R≥0)
K[X].

This is the coarsest topology such that, for each f ∈ K[X], the function on Xan

given by x �→ |f |x is continuous.

Theorem 3 ([Ber90]). The topological space Xan is Hausdorff, locally compact,
and locally path connected. The induced topology on the subset X(K) of points
with coordinates in K is the metric topology, and if K is algebraically closed with
nontrivial valuation, then this subset is dense.

In this sense, Xan is a reasonable topological space on which to do analysis that
“fills in the gaps” between the points in the totally disconnected set X(K).

The remainder of Section 2 addresses some of the richer structures on nonar-
chimedean analytic spaces, beyond the underlying topological space. The casual
reader may safely skip ahead to the examples in Section 3.

5A word of caution is in order. The system of polynomials f1, . . . , fr may not have any solutions

defined over K. Nevertheless, if K[X] is nonzero, then Xan is not empty. One way to see this is to

observe that the system f1, . . . , fr has solutions over the algebraic closure K. Since K is complete,
its norm extends uniquely to K, and hence a solution with coordinates in K also determines a
point of Xan. More generally, if L|K is an extension field with a norm that extends the given one
on K, then any solution to f1, . . . , fr with coordinates in L determines a point of Xan.

6An analogous definition over the complex numbers with its archimedean norm recovers classi-
cal complex analytic spaces. If X is an affine variety over C, then the associated complex analytic
space is naturally identified with the space of seminorms on C[X] whose restriction to C is the
usual archimedean norm. The bijection takes a point x ∈ X(C) to the seminorm |f |x = |f(x)|.
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2.3. Structure sheaf and morphisms. As an analytic space, Xan comes with
much more structure than just a topology. It has a sheaf of analytic functions given
locally near each point by limits of rational functions that are regular at that point,
and analytic spaces are objects in a category whose arrows are continuous maps
such that the pullback of an analytic function under an analytic map is analytic.
There are furthermore well-behaved notions of open and closed embeddings, as
well as flat, smooth, proper, finite, and étale morphisms in the category of analytic
spaces. One example of an étale morphism is given by pulling back the structure
sheaf to a topological covering space, so the fundamental group of the underlying
topological space gives essential information regarding the étale homotopy type of
the analytic space. The details may be found in [Ber93]. Here, we are content
simply to study the topological space underlying Xan.

2.4. Projection to the scheme. For those familiar with scheme theory or Zariski
spectra of rings, we explain how Xan relates to SpecK[X], the set of prime ideals
in K[X] with its Zariski topology.

Let x be a point in Xan. The set of functions f ∈ K[X] such that |f |x = 0 is a
prime ideal p. The seminorm | |x factors through a norm on the residue field κp,
the fraction field of the quotient K[X]/p, whose restriction to K is the given one.

Definition 4. For any extension field L|K, let VR(L) be the space of all norms on
L that extend the given norm on K.

The map taking a point in the analytification to the kernel of the corresponding
seminorm gives a natural surjection,

Xan → SpecK[X],

whose fiber over a point p is VR(κp). In particular, the analytification decomposes
as a disjoint union

(1) Xan =
⊔
p∈X

VR(κp).

Note that the topology on the scheme SpecK[X] is never Hausdorff unlessX has di-
mension zero. Its nonclosed points are the nonmaximal prime ideals p ⊂ K[X], and
the closure of p is the irreducible variety SpecK[X]/p. The process of analytifica-
tion produces a Hausdorff space by replacing each nonclosed point p with the space
of norms VR(κp). Each closed point of SpecK[X] is a maximal ideal m ⊂ K[X].
The residue field κm at a maximal ideal is algebraic over K [AM69, Proposition 7.9],
so the norm on K extends uniquely. Therefore, there is a single point of Xan over
each closed point of SpecK[X].

2.5. A quotient description of Xan. The decomposition above shows that each
point of Xan is associated to a point of SpecK[X] together with a norm on its
residue field that extends the given one on K. For some purposes, rather than
keeping track of all of these residue fields, it makes more sense to consider points
defined over arbitrary normed extensions L|K. One can still recover the analytifica-
tion Xan by taking a quotient by an appropriate equivalence relation, as described
below. The Zariski spectrum SpecK[X] has an analogous description, in terms of
natural equivalence classes of points over extension fields of K. The key difference
here is the role played by norms.



TOPOLOGY OF NONARCHIMEDEAN ANALYTIC SPACES 229

A normed extension L|K is a field L together with a norm | | : L → R≥0 that
extends the given norm on K. We consider triples consisting of an extension field of
K, a norm that extends the given one, and a point of X over this normed extension,
and the equivalence relation generated by setting

(L, | |, x) ∼ (L′, | |′, x′)

whenever there is an embedding L ⊂ L′ such that the restriction of | |′ to L is | |
and x is identified with x′ by the induced inclusion X(L) ⊂ X(L′).

Proposition 5. The analytification Xan is the space of equivalence classes of points
of X over normed extensions of K:

Xan = {(L, | |, x)}/ ∼ .

Much of the recent progress in understanding the topology of nonarchimedean an-
alytic spaces has come through logic and model theory, and this description of Xan

in terms of equivalence classes of points over normed extensions is closest in spirit
to the spaces of stably dominated types that appear prominently in this context.
Note, however, that model theorists typically consider seminorms taking values in
ordered groups of arbitrary rank, not only the real numbers.

3. Examples: affine line, algebraic curves, and affine plane

If X has dimension 0, then Xan is equal to X, and both have the discrete
topology. We now consider the first nontrivial cases of analytifications.

3.1. Analytification of the line: trivial norm. The simplest example to con-
sider is the affine line

A1 = SpecK[y],

in the case where the norm on K is trivial. Let x be a point in (A1)an. If |y|x is
greater than 1 and

f = a0 + a1y + · · ·+ ady
d

is a polynomial of degree d, then |f |x = |y|dx. Therefore, | |x is uniquely determined
by |y|x, and the limit, as |y|x goes to 1, is the trivial norm η on the function field
K(y). This gives an embedded copy of [1,∞) in (A1)an.

Now, suppose | |x is not trivial, and |y|x ≤ 1. Then | |x is less than or equal
to 1 on all of K[y], and the set of f such that |f |x < 1 is a nonzero prime ideal.
Each such ideal is generated by a unique irreducible monic polynomial g ∈ K[y].
Given such a g and a real number t < 1, there is a unique seminorm on K[y] such
that |g| = t; it takes ga · h to at, for h relatively prime to g. The limit of these
seminorms as t goes to 1 is again the trivial norm η, and the limit as t goes to 0 is
the closed point corresponding to the maximal ideal mg generated by g. This gives
a rough picture of (A1)an as a sort of tree, as shown in Figure 1, with an infinite
stem consisting of seminorms on K(y) that are greater than 1 on y, and infinitely
many branches that end in leaves corresponding to the irreducible polynomials in
K[y]. Equivalently, the leaves correspond to closed points in the scheme A1 over
K, or elements of K/Gal(K|K).
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Figure 1. The analytification of A1 with respect to the trivial norm.

Some discussion of the topology on this tree is in order. The topology on the subset
where |y| ≤ 1 is not the cone over the discrete set K/Gal(K|K). Rather, it is an
inverse limit of cones over finite subsets of K/Gal(K|K), so any neighborhood of
η contains all but finitely many of the branches. To see this, note that for any
f ∈ K[y], the induced function (A1)an → R ∪∞ taking x to |f |x is 1 on almost all
of the rays, all except those corresponding to irreducible factors of f . Therefore,
the preimage of any neighborhood of 1 in R≥0 contains all but finitely many of the
branches, and these form a basis for the neighborhoods of η.

In this way, not only does VR(K(y)) fill in the gaps to connect the set of closed
points in A1

K with the discrete (metric) topology, it also interpolates between the
metric topology and the cofinite (Zariski) topology in a subtle way.

3.2. Analytification of the line: nontrivial norms. The analytification of A1

in the case of a nontrivial norm is again a tree, but now the set of branch points
is dense. At each branch point, the local topology is like the topology at η in
the analytification of the line with respect to the trivial norm. It is described
beautifully, and in detail, in Section 1 of [Bak08a].

3.3. Analytification of curves. The analytification of an arbitrary smooth curve
X looks locally similar to that of the line. If the norm is trivial, thenXan has finitely
many open branches, corresponding to the points of the smooth projective model
that are not in X, and the rest is an inverse limit of cones over finite subsets of
X(K)/Gal(K|K).

If the norm on K is nontrivial, then Xan is locally homeomorphic to (A1)an but
may have nontrivial global topology, as in Figure 2.

The dual graph of the special fiber of a semistable formal model embeds in Xan

as a strong deformation retract. For instance, an elliptic curve with bad reduction
has a semistable formal model whose special fiber is a loop of copies of P1, and
its analytification deformation retracts onto a circle. Every finite graph occurs in
this way, as the dual graph of the special fiber of a formal model, and hence as a
deformation retraction of an analytic curve.

See [BPR11, Section 5] for further details on the structure theory of nonar-
chimedean analytic curves in the case where K is algebraically closed. The general
case is similar; if K is not algebraically closed, then Xan is the analytification of
the base change to the completion of the algebraic closure, modulo the action of
Gal(K|K).
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Figure 2. The analytification of a smooth curve with respect to
a nontrivial norm.

In the case where K has a countable dense subset, as is the case for Qp, Cp,

and F̂p((t)), the topology of analytic curves over K is locally modeled on that of
the “universal dendrite”, each such curve admits a deformation retract onto a finite
graph. If the graph is planar, then the curve admits an embedding in the euclidean
plane R2, and if the graph is not planar then the curve embeds in R3 [HLP12].

3.4. Toward the analytification of the affine plane. Let us try to form a
mental image of the analytification of the affine plane, using the discussion of curves,
above, and the decomposition (1), in the case where the norm is trivial. For another
approach to visualizing the local topology of (A2)an, with illustrations, see [Jon12,
Section 6.7].

To start, note that (A2)an contains the analytification of any plane curve, and the
complement of the union of these analytic curves is the space VR(K(x1, x2)) of real
norms on the function fieldK(x1, x2) that are trivial onK. Just as the closed points
of a curve X lie at the ends of infinite branches of VR(K(X)), the analytifications
of curves in A2 lie in some sense at infinity, as limits of two-dimensional membranes
in VR(K(x1, x2)). Of course, the situation is somewhat more complicated, since the
analytifications of distinct curves are joined at their points of intersection.

So, imagine a network of analytic curves at infinity, one for each curve in the
plane, glued along leaves of the infinite branches corresponding to their points of
intersection. We now begin to describe how VR(K(x1, x2)) fills in the interior of
this network. Suppose Y and Z are curves in A2 that meet transversely at a point
x. Let f and g be defining equations for Y and Z, respectively. These can be
interpreted as local coordinates on A2 at x, so any function h ∈ K[x1, x2] can be
expanded locally near x as a power series in f and g.

There is then a cone of “monomial norms” in these local coordinates, for which
the norm of a function depends only on the monomials in f and g that appear in its
power series expansion, and these norms are defined as follows. Let v = (v1, v2) be
a point in the cone R2

≥0, and let h be a function whose local power series expansion
near x is

h =
∑

aijf
igj .
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η

xηY

ηZ

Figure 3. The closure of a cone of monomial norms in (A2)an.

Then the norm corresponding to v takes h to

|h|v = max
i,j

{e−iv1−jv2},

where the maximum is taken over pairs (i, j) such that aij �= 0.
The closure of this cone in (A2)an is a copy of (R≥0∪∞)2, joining the trivial norm

η on K(x1, x2) to the trivial norms ηY and ηZ on K(Y ) and K(Z), respectively,
and the point x (see Figure 3).
In the geometry of this cone, the limit of any ray with positive finite slope is x, so
it is perhaps best imagined as a curved membrane stretching an infinite distance
toward x, from the frame formed by the rays joining ηY and ηZ .

Understanding how all of these membranes fit together in (A2)an is challeng-
ing, especially as one must also keep track of the topology in a neighborhood of η.
Moreover, we are still far from a full description of the underlying set of (A2)an. All
of the norms on K(x1, x2) that are monomial in some system of local coordinates
are of the simplest flavor in the sense of pure normed field theory; they satisfy Ab-
hyankar’s inequality7 with equality. There are many norms on K(x1, x2) that are
not monomial in any system of coordinates. For instance, a pair of formal power
series in K�t� define a formal germ of a curve in A2, and there is a seminorm on
K[x1, x2] obtained by pulling functions back to this germ and exponentiating minus
the order of vanishing at t = 0. If these power series are algebraically independent
overK, then the image of this germ is Zariski dense in A2, and Abhyankar’s inequal-
ity is strict. These points are outside of the infinite union of membranes described
above.

Each seminorm corresponding to a point in (A2)an, including those where Ab-
hyankar’s inequality is strict, may be obtained as a limit of monomial seminorms in
various systems of local coordinates (or even as a limit of seminorms correspond-
ing to closed points), and the same is true in higher dimensions and on singular
spaces, but the precise way that all of the pieces fit together becomes more and
more difficult to describe.

7Recall that Abhyankar’s inequality says that transcendence degree of the residue field exten-
sion plus the rank of the group extension given by the images of the norms is less than or equal
to the transcendence degree of the total extension [Abh56].
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4. Tameness of analytifications

Beyond the case of curves, which can be treated more or less by hand, it is not
obvious that analytifications of algebraic varieties are not pathological topological
spaces. In his deep work on skeletons of formal models [Ber99,Ber04], Berkovich
proved that analytifications of smooth varieties are locally contractible and have
the homotopy type of a finite simplicial complex, provided that the norm is non-
trivial. However, the corresponding statements for singular varieties in positive
and mixed characteristic, and for varieties over trivially normed fields, have so far
eluded proof by such methods. For instance, while it has been known for some
time that the analytification of a smooth variety over a trivially normed field is
contractible, the only known proof that they are locally contractible is quite recent
and passes through model theory and spaces of stably dominated types. This local
contractibility is just one of the fundamental consequences of the tameness theorem
of Hrushovski and Loeser [HL12].

4.1. Analytic domains. We now move toward describing the local structure of
analytic spaces. In algebraic geometry, affine open subvarieties are the basic build-
ing blocks. An arbitrary algebraic variety is constructed by gluing its affine open
subvarieties along open immersions, and each affine variety is determined by its
ring of global regular functions. Affinoid analytic domains play a similar role as
basic building blocks in nonarchimedean analytic geometry. An arbitrary nonar-
chimedean analytic variety is constructed by gluing its affinoid analytic domains
along immersions, and each affinoid domain is determined by its coordinate ring of
global analytic functions.8

We are particularly interested in analytifications of algebraic varieties and now
describe the affinoid domains in these spaces. Let X be an affine variety. A typical
affinoid domain in Xan can be realized by choosing a closed embedding ι : X ↪→ An

and intersecting with the unit ball. More precisely, if

ι∗ : K[y1, . . . , yn] → K[X]

is the corresponding surjection of K-algebras, then the subset

U = {x ∈ Xan | |ι∗(yi)|x ≤ 1, for 1 ≤ i ≤ n}

is an affinoid analytic domain. As the terminology suggests, the affinoid analytic
domain U inherits the structure of a nonarchimedean analytic space from its inclu-
sion in Xan.

The role of more general, not necessarily affine, open subvarieties in algebraic
geometry is played by compact analytic domains in nonarchimedean analytic ge-
ometry. The compact analytic domains are exactly the finite unions of affinoid
analytic domains. Every point in an analytic space has a basis of neighborhoods
consisting of compact analytic domains, so understanding the topology of compact
analytic domains is essential to understanding the local topology of analytic spaces.

8Affine varieties and affinoid domains also share important cohomological and sheaf theoretic
properties. Each coherent sheaf on an affinoid domain is associated to a finitely generated module
over its coordinate ring and has vanishing higher cohomology [BGR84, 8.2.1 and 9.4.3]. For the
corresponding properties of affine varieties, see [Har77, II.5.1 and III.3.5].
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4.2. Skeletons of formal models. Assume the norm on K is nontrivial. Then
any compact analytic domain U ⊂ X has formal models, which means that it can
be realized as the “analytic generic fiber” of a formal scheme. Roughly speaking, a
formal model of U is given by a compatible system of local coordinates on X such
that the points in U are exactly those whose local coordinates are in the valuation
ring R ⊂ K. In these local coordinates, one can then mod out by the maximal
ideal m ⊂ R to get the special fiber of the formal model, which is a scheme over
the residue field k = R/m.

Example 6. Fix an affine embedding X ⊂ SpecK[x1, . . . , xn]. Then we can “clear
denominators” in the coordinate ring K[x1, . . . , xn]/IX to get a finitely presented
R-algebra

A = R[x1, . . . , xn]/(IX ∩R[x1, . . . , xn]).

The scheme SpecA is an integral model of X. Its generic fiber is X and its special
fiber is SpecA⊗R k. For any nonzero � ∈ m, the �-adic completion of this integral

model is a formal model Spf Â with analytic generic fiber

U = {(x1, . . . , xn) ∈ Xan | |xi| ≤ 1 for 1 ≤ i ≤ n}.
The special fiber of Spf Â is the same as the special fiber of SpecA.

Remark 7. Just as one can clear denominators on coordinate rings to get formal
models of compact analytic domains, one can also clear denominators on morphisms
to get morphisms between such formal models. Raynaud famously proved that the
category of quasi-compact and quasi-separated rigid analytic spaces is naturally
identified with a localization of the category of quasi-compact formal schemes, in
which admissible formal blowups (modifications of formal schemes that affect only
the special fiber) are inverted. See also [Ray74, BL93a, BL93b, BLR95a, BLR95b]
for further details on formal schemes and their relation to analytic geometry.

If a compact analytic domain U has a formal model with an especially nice
special fiber,9 then its topology is controlled by the combinatorics of the special
fiber.

Definition 8. A formal model is strictly semistable if its special fiber is a reduced
union of smooth varieties meeting transversally.

The dual complex of the special fiber of a strictly semistable formal model of U is
a regular Δ-complex with one vertex for each irreducible component, one edge for
each irreducible component of a pairwise intersection, one 2-face for each irreducible
component of a triple intersection, and so on. It has a canonical realization as a
closed subset of U . Roughly speaking, the dual complex consists of seminorms that
are monomial in the local coordinates defining the model.

Theorem 9 (Berkovich). If a compact analytic domain has a strictly semistable
formal model, then it admits a strong deformation retract onto the dual complex
of its special fiber. In particular, it has the homotopy type of a finite simplicial
complex.

9In residue characteristic zero, formal models with nice special fibers are constructed using
the semistable reduction theorem [KKMSD73], a version of resolution of singularities for a one-
parameter family of varieties. Berkovich also proved local contractibility of smooth analytic spaces
over nontrivially valued fields with positive residue characteristic using formal models with nice
special fibers [Ber99], which he constructed via de Jong’s theorem on alterations [dJ96].
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Berkovich constructed skeletons and deformation retractions much more generally,
for analytic spaces with polystable formal models, and he used these skeletons to
prove tameness results, including local contractibility, provided that such formal
models exist, as is the case in residue characteristic zero [Ber99,Ber04]. See also
[Nic11, Section 3 and Proposition 4.4] and [MN12, Section 3] for an accessible
treatment of the semistable case. Other recent work of Nicaise and Xu shows that
similar results hold for algebraic formal models whose special fibers have normal
crossings but are not necessarily reduced [NX13].

Remark 10. This discussion of skeletons of formal models assumes that the norm
is nontrivial. See [Thu07] for a closely related construction of skeletons and defor-
mation retractions associated to toroidal embeddings in the case where the norm
is trivial.

4.3. Semialgebraic sets and tameness. As mentioned above, Berkovich proved
that skeletons of sufficiently nice formal models control the topology of analytic
spaces when the norm is nontrivial and such formal models exist, as is the case
when the residue field has characteristic zero. The recent work of Hrushovski and
Loeser proves similar tameness results with no hypothesis on the normed field, by
very different methods. To state their tameness theorem, it is most helpful to
talk about subsets of analytifications that are more general than compact analytic
domains.

Definition 11. LetX be an affine algebraic variety overK. A semialgebraic subset
U ⊂ Xan is a finite boolean combination of subsets of the form

{x ∈ Xan | |f |x �� |g|λx},
with f, g ∈ K[X], λ ∈ R, and ��∈ {≤,≥, <,>}.

A semialgebraic set is definable if the conditions defining the subset can be chosen
such that some power of λ is in |K|.

By construction, every point in Xan has a basis of neighborhoods that are semi-
algebraic sets, and if the norm is nontrivial, then these sets can be chosen to be
definable. The Gerritzen-Grauert theorem on locally closed immersions of affinoid
varieties [BGR84, Theorem 7.3.5.1] guarantees that affinoid domains and, more
generally, compact analytic domains in Xan are semialgebraic subsets.

We now state a basic version of the main result from [HL12].

Theorem 12. Let U ⊂ Xan be a semialgebraic subset. Then there is a finite
simplicial complex Δ ⊂ U of dimension less than or equal to dim(X) and a strong
deformation retraction U × [0, 1] → Δ.

Since Δ is locally contractible and the topology on Xan has a semialgebraic basis,
it follows that Xan is locally contractible. The homotopy type of the complex Δ
is a fundamental invariant of a semialgebraic space U , and many applications to
complex geometry involve understanding the cohomology and fundamental groups
of these complexes.

The approach of Hrushovski and Loeser does not involve the construction of nice
models or toroidal compactifications. It thereby avoids resolution of singularities
and is insensitive to the residue characteristic. As mentioned above, the proof
involves a detailed study of spaces of stably dominated types, a notion coming
from model theory [HHM08]. The case of curves is treated by hand, and the
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general case is a subtle induction on dimension, which involves birationally fibering
an n-dimensional variety by curves over a base of dimension n − 1. In particular,
the proof of the tameness theorem for a single variety in dimension n requires a
tameness statement for families of varieties in lower dimensions. See the Bourbaki
notes of Ducros [Duc13] for an excellent introduction to this work, and the original
paper [HL12] for further details.

4.4. Limits of skeletons. The finite simplicial complexes constructed in [HL12],
which live inside semialgebraic sets as strong deformation retracts, are also called
skeletons. Hrushovski and Loeser prove much more than the existence of a single
skeleton. Each semialgebraic set U of positive dimension contains infinitely many
skeletons Δi, with natural projections between them, and the semialgebraic set is
recovered as the limit of this inverse system

lim←−Δi = U.

Furthermore, each of these projections has a natural section, and the union lim−→Δi

is the subset of U consisting of points corresponding to Abhyankar seminorms.
Similar constructions involving limits of skeletons of formal models were consid-

ered earlier by Berkovich and in [KT02, KS06]. See [BPR11, Corollary 5.56 and
Theorem 5.57] for an explicit treatment of such limits for curves.

4.5. Limits of tropicalizations. The topological space Xan can also be realized
as a limit of finite polyhedral complexes using tropical geometry [Pay09, FGP12].
In this approach, the polyhedral complexes are tropicalizations of algebraic em-
beddings of X in toric varieties, with projections induced by toric morphisms that
commute with the embeddings. The construction of this inverse system is essen-
tially elementary, at least in the quasi-projective case, but it does not lead to a
proof of tameness. It is not even known whether there exists a single tropicaliza-
tion such that the projection from Xan is a homotopy equivalence, and the relation
between these tropical inverse systems and the skeletons of Hrushovski and Loeser
remains unclear.

5. Relations to complex algebraic geometry

The link between algebraic and analytic geometry over nonarchimedean fields
is as close as the link between complex algebraic and complex analytic geome-
try. Coherent algebraic sheaves have coherent analytifications, analytifications of
étale algebraic morphisms are étale, and there are comparison theorems for 
-adic
étale cohomology [Ber90, Ber93]. It is not at all surprising, then, that nonar-
chimedean analytic techniques are powerful for studying algebraic varieties over
nonarchimedean fields.

However, nonarchimedean analytic techniques are also powerful for studying al-
gebraic varieties over the complex numbers. One reason is simple: nonarchimedean
fields such as Cp and the completion of C{{t}} are isomorphic to C as abstract fields.
The isomorphism is not explicit or geometric, but elimination of quantifiers for alge-
braically closed fields implies that any two uncountable algebraically closed fields of
the same cardinality and characteristic are isomorphic [Mar02, Proposition 2.2.5].
In particular, whenever one can use nonarchimedean analytic techniques to produce
a variety over Cp with a certain collection of algebraic properties, it follows that
there exists a variety over C with the same collection of properties.
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Perhaps more surprisingly, one can also get significant mileage by studying ana-
lytifications of open and singular complex varieties with respect to the trivial norm
and their semialgebraic subsets. See the discussion of Milnor fibers and analytic
links below.

5.1. Tropical linear series. Many applications of nonarchimedean analytic spaces
in complex geometry involve less information than the full structure sheaf but
more than the mere topological space. Tropical geometry resides firmly in this
intermediate realm. For instance, if X is a curve, then VR(K(X)), the complement
in Xan of the set of closed points of X, inherits a natural metric. Through the
tropical Riemann-Roch theorem [BN07,GK08,MZ08], Baker’s specialization lemma
and its generalizations [Bak08b,AB12,AC13], the nonarchimedean Poincaré-Lelong
formula [Thu05,BPR11], and the theory of harmonic morphisms of metric graphs
[BN09, ABBR13], this metric is a powerful tool in the study of linear series on
algebraic curves. It has been used to characterize dual graphs of special fibers of
regular semistable models of curves of a given gonality [Cap12] to compute the
gonality of curves that are generic with respect to their Newton polygon [CC12], to
characterize the Newton polygons of Brill-Noether general curves in toric surfaces
[Smi14], to bound the gonality of Drinfeld modular curves [CKK12], and to give
new proofs of the Brill-Noether and Gieseker-Petri theorems [CDPR12,JP14].

In the remaining sections, we survey some of the applications of nonarchimedean
analytic geometry to classical complex varieties that involve only the topology of
analytifications.

5.2. Singular cohomology. Let X be an algebraic variety over the complex num-
bers, and let X(C) be the associated complex analytic space. Recall that Deligne
defined a canonical mixed Hodge structure on the rational cohomology H∗(X,Q),
and one part of this structure is the weight filtration

W0H
k(X(C),Q) ⊂ · · · ⊂ W2kH

k(X(C),Q) = Hk(X(C),Q),

which is strictly functorial for algebraic morphisms. This means that if f : X ′ → X
is a morphism, then

f∗(Hk(X(C),Q)) ∩WjH
k(X ′(C),Q) = f∗(WjH

k(X(C),Q)).

IfX is smooth and compact, thenWk−1H
k(X,Q)=0 andWkH

k(X,Q)=Hk(X,Q).
In other words, Hk(X(C),Q) is of pure weight k. In the general case, where X may
be singular and noncompact, the graded pieces of Hk of weight less than k encode
information on the singularities of X, while the pieces of weight greater than k
encode information about the link of the boundary in a compactification. This is
perhaps best illustrated by an example.
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Figure 4. A nodal curve with three punctures.

Example 13. Consider a curve X of geometric genus 1, with three punctures and

a single node x, as shown in Figure 4. Its normalization X̃ is obtained by resolving
the node. The homology H1(X(C),Q) is generated by a loop through the node,
two loops around the doughnut on the left, and two loops around punctures. In
the corresponding dual basis for H1(X(C),Q), the class dual to the loop through
the node generates W0H

1(X(C),Q).
We now consider the nonarchimedean analytification of X with respect to the

trivial norm on C. As in the examples from Section 3, the analytification of the

normalization X̃ of X is an infinite tree, with three unbounded branches corre-
sponding to the punctures. The remaining branches end in leaves, corresponding

to the closed points of X̃ and, in Xan, two of these closed points are identified at
the node x. The analytification is therefore as shown in Figure 5.

Note that the identification of two closed points in X̃ creates an extra loop in
both X(C) and Xan and that, on X(C), the new class in H1 has weight zero.

Figure 5. The analytification of a nodal curve with three punctures.
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Theorem 14 ([Ber00]). Let X be a complex algebraic variety, and let Xan be
its analytification with respect to the trivial norm on C. Then there is a natural
isomorphism

H∗(Xan,Q) ∼= W0H
∗(X(C),Q).

A similar result holds for varieties defined over a local field, such as Qp. In
these cases, Hk(Xan,Q�) is canonically identified with the weight zero piece of the
monodromy filtration on Hk

ét(X,Q�).
Singular cohomology of skeletons and their relations to weight filtrations have

also appeared in the tropical geometry literature, for instance in [Hac08, HK12,
KS12a]. The key fact is that tropicalizations are skeletons in the case where all ini-
tial degenerations are smooth and irreducible, and there are natural parametrizing
complexes for tropicalizations that are skeletons more generally, in the schön case,
where all initial degenerations are smooth, but possibly reducible. See [Gub13] for
details on the relation between tropicalizations, initial degenerations, and formal
models.

5.3. Beyond rational cohomology. There is far more information in the topol-
ogy of Xan than just its rational cohomology. For instance, a totally degenerate
Enriques surface has no 
-adic rational cohomology of weight zero in degree above
zero, but its analytification is not contractible. It has the homotopy type of RP2.
In this case, the fundamental group of Xan agrees with the étale fundamental group
of X. The nature of the relationship between the fundamental group and higher
homotopy groups of an analytification and the algebraic invariants of the variety
is not known in general. Subtleties appear already when one examines torsion in
the cohomology of analytifications. For instance, the naive generalization of the
Lefschetz hyperplane theorem does not hold for cohomology of nonarchimedean
analytic spaces, as explained in the next section.

5.4. Lefschetz hyperplane theorems. Suppose D is a hyperplane section of a
smooth projective algebraic variety over K. The 
-adic Lefschetz theorem [Del80,
Section 4.1.6] says that the natural restriction maps

Hi
ét(X,Z�) → Hi

ét(D,Z�)

are isomorphisms for i < dimD and are injective for i = dimD. By tensoring
with Q� and applying the weight zero comparison theorems, the compatibility of
restrictions with weight filtrations, and the universal coefficients theorem in singular
cohomology, it follows that the natural maps

Hi(Xan,Q) → Hi(Dan,Q)

are also isomorphisms for i < dimD and injective for i = dimD.
Such Lefschetz theorems also hold in the singular cohomology of complex vari-

eties, and in this classical context they can be extended to integral cohomology and
even homotopy groups. Furthermore, the hyperplane section can be replaced by
an arbitrary ample divisor, i.e., a divisor D such that mD is a hyperplane section
for some positive integer m. The proof is by generalized Morse theory; a smooth
complex variety of dimension n can be obtained from any ample divisor by adding
cells of dimension at least n [Bot59]. Similar phenomena appear sometimes in trop-
ical and nonarchimedean analytic geometry. See, for instance, [AB14] for Lefschetz
hyperplane theorems on locally matroidal tropical varieties.
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Example 15. The analytification of the Jacobian of a totally degenerate curve
of genus g has a skeleton which is a real torus of dimension g. This skeleton is
naturally identified with the tropical Jacobian of the skeleton of the curve [BR13].
Furthermore, the image of the analytification of the theta divisor is the tropical
theta divisor, and the tropical Jacobian is obtained from this tropical theta divisor
by attaching a single cell of dimension g [MZ08]. This suggests that Lefschetz
theorems may hold for the inclusion of the analytic theta divisor in the analytic
Jacobian for integral cohomology and homotopy groups, though it seems to be
unknown, in general, whether the projection from the analytification of the theta
divisor to the tropical theta divisor is a homotopy equivalence.

However, it is not true that the inclusion of the analytification of an ample divisor
in a variety of dimension n induces isomorphisms on integral cohomology groups in
degrees up to n− 2, as the following example shows.

Example 16. Let E be an elliptic curve over the complex numbers, with a 2-
torsion point q. Let E[2] be the 2-torsion subgroup, which we view as a divisor of
degree 4 on E. The abelian 3-fold X = E×E×E has an ample divisor with simple
normal crossings D = p∗1(E[2])∪p∗2(E[2])∪p∗3(E[2]). The dual complex Δ(D) has 12
vertices, 48 edges, and 64 2-faces; it is simply connected and homotopy equivalent
to a wedge sum of 27 spheres. Note that (q, q, q) acts on X by a fixed point free
involution that preserves D, and the induced action on Δ(D) is also fixed point
free. The quotient (X ′, D′) is again an abelian 3-fold with an ample divisor with
simple normal crossings, and Δ(D) → Δ(D′) is a universal cover. In particular,

H1(Δ(D′),Z) ∼= π1(Δ(D′)) ∼= Z/2Z.

Let K be the completion of the algebraic closure of C((t)). We claim that there is
a smooth ample divisor H in X ′

K , linearly equivalent to D′, whose analytification
is homotopy equivalent to Δ(D′). To prove the claim, we first show that D′ is
basepoint free. Note that D′ is the pullback of a divisor D′′ on E/q × E/q × E/q,
and D′′ is the union of the three pullbacks of a divisor of degree 2 on the elliptic
curve E/q. Any divisor of degree 2 on an elliptic curve is basepoint free. It follows
thatD′′ andD′ are basepoint free, since basepoint freeness is preserved by pullbacks
and unions. The total space of a general pencil containing D′ is smooth, by the
Bertini theorems, and completing this pencil produces a divisor H in XK with a
semistable model whose special fiber is D′. In particular, H is a smooth divisor in
XK , equivalent to D′, with skeleton Δ(D′), as required.

The analytification of XK is contractible, because X is smooth and defined
over the subfield C on which the t-adic norm is trivial. However, H1(H

an,Z) and
π1(H

an) are isomorphic to Z/2Z. Thus, even though both X and H are smooth,
and H is ample in X, the natural maps

H1(Xan
K ,Z) → H1(Han,Z) and π1(H

an) → π1(X
an
K )

are not isomorphisms.

5.5. Specialization from analytic points to closed algebraic subsets. Many
semialgebraic subsets of analytifications that are of interest for complex algebraic
geometry are defined in terms of analytic points that are near closed algebraic
subsets. The notion of specialization captures the rough idea of a point of Xan

being close to a point, or more generally a Zariski closed subset of X.
Let x ∈ Xan be a point, and let Z ⊂ X be a Zariski closed subset.
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Definition 17. We say that x specializes into Z if it is represented by a point
x ∈ X(K) for a valued extension K|C with valuation ring R such that the inclusion
ιx : SpecK → X extends to a morphism

ι̃ : Spec (R) → X,

which maps the closed point of SpecR into Z.

If X ⊂ Cn is affine, then the set of points specializing into Z is defined by the
conditions |xi| ≤ 1 for 1 ≤ i ≤ n and |f | < 1 for f ∈ IZ . Given that the coordinate
functions xi have norm less than or equal to 1, it suffices to check that |fj | < 1
for some finite generating set {fj} of IZ , so the set of points specializing into Z is
semialgebraic.

Example 18. If x is a closed point of A1, then the set of points in the analytification
of A1 specializing to x is the open ray in Figure 1 pointing from the central vertex
toward x, together with x itself.

Example 19. If x is the closed point of A2 shown in Figure 3, then the entire open
cone of monomial valuations specializes into x. The open rays pointing from η to
ηX and ηX′ specialize into X and X ′, respectively, but not into x.

Example 20. If x is the node in Figure 5, then both open rays pointing from the
central vertex toward x specialize to x, as does x itself.

5.6. The analytic Milnor fiber. One prime example of a semialgebraic construc-
tion in nonarchimedean analytic geometry analogous to a topological construction
in complex geometry is the analytic Milnor fiber of Nicaise and Sebag. Although
their construction works more generally, we consider for simplicity the Milnor fiber
of a single point in a hypersurface and choose coordinates so that this point is the
origin 0 ∈ An.

Let X ⊂ Cn be the vanishing locus of a polynomial f , and assume that X
contains 0. Recall that the classical Milnor fiber of (X, 0) is the intersection of the
locus of points x ∈ Cn such that f(x) has fixed argument with a euclidean sphere
of radius ε � 1 centered at 0. See [Mil68] for further details.

We now define the nonarchimedean analytic Milnor fiber. Note that the polyno-
mial f defines a morphism fan from the analytification of An to the analytification
of A1 = SpecC[y]. Fix some 0 < ε < 1, and let z be the unique point of (A1)an

such that |y|z = ε.

Definition 21. The analytic Milnor fiber of (X, 0) is the subset in the analytifica-
tion of An over C((t)) consisting of points x that specialize to 0 such that fan(x) = z.

The condition that x specializes to 0 exactly means that x lies in the open unit
polydisc

D = {(x1, . . . , xn) | |xi| < 1 for 1 ≤ i ≤ n}.
The analytic Milnor fiber is semialgebraic and definable over the normed extension
C((t))|C in which |t| = ε; after base change to C((t)), it is just the closed analytic
subvariety of D defined by f = t. Therefore, its base change to the algebraic
closure of C((t)) carries an action of the absolute Galois group, which induces an
action on its 
-adic étale cohomology. Nicaise and Sebag show that the 
-adic étale
cohomology of the analytic Milnor fiber, with the action of the procyclic generator
of this Galois group, is canonically identified with the 
-adic singular cohomology
of the classical Milnor fiber, with its monodromy action [NS07].
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There are multiple advantages to the approach of Nicaise and Sebag. First, their
definition makes sense in much greater generality, for varieties over an arbitrary field
with the trivial norm, such as Fp, where one does not have the complex topology
to work with. Furthermore, over C, their construction puts the Milnor fiber and its
monodromy action in a context (semialgebraic sets of smooth rigid varieties) where
motivic integration makes sense [LS03]. See also [HL11], which recasts the resulting
interpretation of the motivic zeta function in the framework of Hrushovski and
Kazhdan [HK06]. All of this work opens up possibilities for a conceptual approach
to the monodromy conjectures of Igusa [Igu75] and of Denef and Loeser [DL98].

5.7. The analytic link of a singularity. Another such construction is the an-
alytic link of a point x ∈ X(C). The classical link of x is a topological space
Link(X(C), x) obtained by embedding an affine neighborhood of x in Cn and in-
tersecting with a small sphere centered at x. It can be given a piecewise linear
structure, by triangulating X(C) with x as a vertex and taking the link of this ver-
tex in the resulting simplicial complex, and this triangulated space is well defined
up to piecewise linear homeomorphism. Fundamental groups of links have been
particularly prominent in recent research activity; see the survey article [Kol13].

Definition 22. The analytic link Link(Xan, x) is the semialgebraic set in Xan � x
consisting of points x′ that specialize to x.

Roughly speaking, this means that the points of the analytic link are those close
to x, but not x itself. The analytic link of an arbitrary closed algebraic subset
is defined similarly, and behaves like a deleted tubular neighborhood in classical
complex geometry.

Advantages of the analytic link include the fact that its construction is canonical,
not depending on any choice of local embedding or triangulation, and that it carries
the additional structure of an analytic space. As for the Milnor fibers discussed
above, comparison theorems should give canonical isomorphisms10

H∗
ét(Link(X

an, x),Q�) � H∗(Link(X(C), x),Q�).

The weight zero piece of the étale cohomology of the link corresponds to the
singular cohomology of the underlying topological space, as in [Ber00, Nic11], so
cohomological properties of singularities induce cohomological conditions on the
topology of Link(Xan, x). For instance, if (X, x) is an isolated rational singularity,
then Link(Xan, x) has the rational homology of a point, and if (X, x) is an isolated
Cohen-Macaulay singularity of dimension n, then Link(Xan, x) has the rational
homology of a wedge sum of spheres of dimension n − 1. These conditions can
also be interpreted in terms of a log resolution; the dual complex of the exceptional
divisor in a log resolution has the same homotopy type as the analytic link [Thu07].

Examples show that analytic links of rational singularities are not necessarily
simply connected and may have torsion in their singular homology. See [Pay13, Ex-
ample 8.1] and [KK11]. However there are stronger natural conditions on singular-
ities that do imply contractibility of the analytic link. For instance, toric singulari-
ties and finite quotient singularities have contractible analytic links [Ste06,KS12b].

De Fernex, Kollár, and Xu recently proved the strongest results in this direction,
showing that analytic links are contractible for isolated log terminal singularities.

10The analogous comparison theorem for Milnor fibers was proved by Nicaise and Sebag [NS07],
but to the best of our knowledge no such comparison for links has appeared in the literature.
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Log terminal singularities are a subset of rational singularities that contain all toric
and finite quotient singularities and appear naturally in birational geometry. The
proof in [dFKX13] involves the study of dual complexes of exceptional divisors
not only for log resolutions, but for divisorial log terminal partial resolutions, and
running a carefully chosen minimal model program, while keeping track of how
these dual complexes transform at each step.

5.8. The analytic link at infinity. Analytic links of singularities are a special
case of analytic links at infinity. Again, we consider the analytification of a variety
X over the complex numbers with respect to the trivial norm but now, instead of
studying the singularity at a point x, we examine the failure of X to be compact.

Definition 23. The link at infinity Link∞(Xan) is the semialgebraic subset of Xan

consisting of points that do not specialize to any point of X.

The link at infinity consists of points defined over valued extensions K|C that are
not defined over the valuation ring R ⊂ K. If X is affine, then x ∈ Link∞(Xan) if
and only if |f |x > 1 for some polynomial f ∈ C[X]. By the triangle inequality, it is
enough to consider f in some finite generating set, such as the coordinate functions
for some embedding X ⊂ Cn.

Example 24. Suppose X is compact. Then Link∞(Xan) is empty and, for any
point x ∈ X, the space Link(Xan, x) coincides with Link∞(X � x).

Example 25. Suppose X is the nodal curve with three punctures discussed in
Example 13. Then Link∞(Xan) consists of the three open rays in Figure 5 pointing
at the three punctures.

Remark 26. The link at infinity is also characterized as the link of the boundary
in any compactification of X. In other words, if X is a compactification of X with
boundary ∂X = X �X, the Link∞(Xan) is the set of points of Xan that specialize
to a point in ∂X.

The link at infinity is related to compactifications in much the same way that the
link of an isolated singularity is related to resolutions. Suppose X is smooth and
X is a smooth compactification whose boundary

∂X = X �X

is a divisor with simple normal crossings. Then Thuillier’s constructions gives
a canonical homotopy equivalence from Link∞(X) to the dual complex Δ(∂X)
[Thu07]. One can then use excision exact sequences and Poincaré duality to identify
the rational cohomology of Link∞(Xan) with the top graded piece of the weight
filtration on the cohomology of X(C),

Hi(Link∞(Xan),Q) ∼= GrW2 dimXH2 dimX−i(X(C),Q).

Such constructions with dual complexes of boundary divisors in smooth compacti-
fications are surveyed in [Pay13], but the main ideas were introduced and studied
much earlier by Danilov [Dan75]. This framework can be extended to toroidal
compactifications of smooth Deligne-Mumford stacks, and this generalization has
been applied to compute top weight cohomology groups for many moduli spaces of
stable curves with marked points, including M1,n for all n, using an interpretation
of the dual complex of the boundary of the Deligne-Mumford compactification as
a moduli space for stable tropical curves [ACP12,CGP14].
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