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MR1668563 (2000a:57070) 57R17; 32E10, 57R65

Gompf, Robert E.

Handlebody construction of Stein surfaces.

Annals of Mathematics. Second Series 148 (1998), no. 2, 619–693.

In this paper the author studies the topology of 4-dimensional compact Stein
manifolds and their boundaries that are contact 3-manifolds. Such a study of com-
pact Stein manifolds was first undertaken in a more general setting by Y. Eliashberg,
who showed that for n > 2 a smooth almost-complex open 2n-manifold admits a
Stein structure if and only if it is the interior of a (possibly infinite) handlebody
without handles of index ≥ n, and that a similar result holds for n = 2 with some
restriction on attaching 2-handles.

Recall that a contact structure on a closed oriented 3-manifold M is a totally
nonintegrable 2-plane field ξ ⊂ TM , that is, if the plane field is given by the kernel
of a 1-form α then dα∧α is never equal to zero. Hence dα∧α gives an orientation
on M ; if it agrees with the original orientation of M then ξ is called a positive
contact structure (otherwise negative). Also, a knot K ⊂ M is called Legendrian if
all its tangents lie in ξ. Such knots inherit a natural framing from ξ which is called
the Thurston-Bennequin framing. Being Legendrian is not a restriction to a knot
type because all knots can be isotoped to Legendrian knots.

Now, consider the simplest kind of Stein manifold B4 ⊂ C2. Restriction of
the complex lines of C2 to the boundary gives a contact structure on S3 = ∂B4.
Eliashberg’s theorem says that the Stein structure on B4 can be extended across
1-handles to X1 = 1B4∪(1-handles). Furthermore, the Stein structure on X1 can
be extended across 2-handles to X2 = X1∪(2-handles), provided 2-handles are
attached to a Legendrian link with the framing of each component at least one less
than its Thurston-Bennequin framing. Contact 3-manifolds which are boundaries
of such Stein manifolds X2 are called “fillable”. It is known that “fillable” contact
3-manifolds are “tight” contact 3-manifolds in the sense of Eliashberg.

The author surveys these results and by using framed link descriptions of 4-
manifolds he gives many interesting applications. For example, he proves that
there is an uncountable collection of exotic R4’s admitting Stein structures. He
proves that various interesting 4-manifolds admit Stein structures, and that as
a consequence the 3-manifolds which occur as their boundaries have tight contact
structures. For example, he shows that every Seifert fibered space bounds a Stein 4-
manifold after possibly reversing its orientation; some of them could bound a Stein
manifold with both orientations, but he conjectures that only one orientation of
Σ(2, 3, 5) can be a Stein boundary (this conjecture was recently proven by P. Lisca
[Geom. Topol. 2 (1998), 103–116 (electronic); MR1633282 (99f:57038); Turkish
J. Math. 23 (1999), no. 1, 151–159]). The author associates some invariants of
contact 3-manifolds; in particular he gives a complete set of invariants of 2-plane
fields on 3-manifolds. One consequence of this is the following: Let (Mi, ξi) be two
contact 3-manifolds (i = 1, 2) which are boundaries of Stein 4-manifolds obtained
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by attaching 2-handles to B4 along Legendrian knots Ki as above. Suppose that
there is an orientation preserving diffeomorphism ϕ : M1 → M2 such that ϕ∗(ξ1) is
homotopic to ξ2. Then the knots K1 and K2 have the same Thurston-Bennequin
numbers (framings), and up to sign they have the same rotation numbers (the
rotation number of a Legendrian knot K is just the relative first Chern class of the
dual canonical line bundle of C2 restricted to the Seifert surface of K).

To sum up, this is a useful paper which not only puts Eliashberg’s results in a
nice perspective, but also provides many interesting new results.

Selman Akbulut

From MathSciNet, October 2014

MR1909245 (2003g:53164) 53D99; 57R17, 58E99

Eliashberg, Y.; Mishachev, N.

Introduction to the h-principle. (English)

Graduate Studies in Mathematics, 48.
American Mathematical Society , Providence, RI , 2002, xviii+206 pp., $30.00,
ISBN 0-8218-3227-1

The book under review, as the title implies, is an introduction to the h-principle.
Anyone who has spent time trying to mine the beautiful depths of Gromov’s book
[M. L. Gromov, Partial differential relations, Springer, Berlin, 1986; MR0864505
(90a:58201)] or the research literature on the h-principle will certainly welcome this
book.

The basic idea of the h-principle is as follows: any differential equation (or
relation) can be interpreted as a subset S of an appropriate jet space and a solution
is simply an appropriate function whose jet lies in S. Gromov’s strategy for solving
differential relations was to first find a section of the jet bundle whose image is in
S and then try to show that there is a function whose jet agrees with this section.
The first part of this program frequently has an algebraic (or sometime geometric)
flavor, while the second part is usually more analytic. A differential equation (or
relation) satisfies an h-principle if the second part of the above strategy follows
automatically (though not necessarily easily) from the first part. Said another way,
an equation (or relation) satisfies an h-principle if its solvability is determined by
some algebraic (or geometric) data associated to the problem.

There are many ways to try to show that a problem satisfies an h-principle; this
book considers two: holonomic approximations and convex integration. Holonomic
approximations are a relatively recent variant of Gromov’s continuous sheaves meth-
ods developed by the authors [in Essays on geometry and related topics, Vol. 1, 2,
271–285, Enseignement Math., Geneva, 2001; MR1929330 (2003k:58006)].

The h-principle has been a useful way to prove, or interpret prior proofs of, results
in topology and geometry. This book describes many of these applications with a
specific emphasis on symplectic and contact geometry and various embedding and
immersion theorems. In addition one can find a good introduction to the literature.

John B. Etnyre

From MathSciNet, October 2014
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MR2286033 (2007k:57053) 57R17; 53D35

Niederkrüger, Klaus

The plastikstufe—a generalization of the overtwisted disk to higher
dimensions.

Algebraic & Geometric Topology 6 (2006), 2473–2508.

In a series of papers in the 1980’s and 1990’s, building on work of Bennequin
and Gromov, Y. M. Eliashberg [Ann. Inst. Fourier (Grenoble) 42 (1992), no. 1-
2, 165–192; MR1162559 (93k:57029)] established a fundamental dichotomy in 3-
dimensional contact geometry. Specifically, he observed that contact structures
were either overtwisted—that is, contained an embedded disk, called an overtwisted
disk, that was tangent to the contact planes along the boundary—or tight—that is,
not overtwisted. Overtwisted contact structures are classified and are determined
by simple algebraic topological data [Y. M. Eliashberg, Invent. Math. 98 (1989),
no. 3, 623–637; MR1022310 (90k:53064)]. On the other hand, tight contact struc-
tures still remain somewhat mysterious: they do not always exist on manifolds,
they are classified only on a few simple families of manifolds and they seem to be
connected with subtle properties of a manifold that supports them. One of the
key differences between tight and overtwisted contact structures is that overtwisted
contact structures cannot be the weak convex boundary of a symplectic manifold
[Y. M. Eliashberg, in Geometry of low-dimensional manifolds, 2 (Durham, 1989),
45–67, Cambridge Univ. Press, Cambridge, 1990; MR1171908 (93g:53060)]. In
other words, the existence of an overtwisted disk is an obstruction for a contact
structure to be symplectically fillable.

The paper under review proposes to generalize the notion of overtwisted disk
to higher dimensions. A similar such generalization was suggested in M. Gromov’s
landmark paper [Invent. Math. 82 (1985), no. 2, 307–347; MR1554036], but has
not been developed. The author suggests the generalization of an overtwisted disk
to a contact structure ξ on a (2n − 1)-dimensional manifold M is plastikstufe.
Plastikstufe is, loosely speaking, a family of overtwisted disks. More rigorously, a
plastikstufe with singular set S is an embedding of S×D2 into M such that S is an
(n− 2)-dimensional manifold, ξ induces a singular foliation on S ×D2, ∂(S ×D2)
is the only closed leaf of the singular foliation, S × {0} is the singular set of the
foliation (which is elliptic) and the other leaves of the foliation are diffeomorphic to
S × (0, 1). Note that in 3 dimensions S must be a point and S ×D2 is just a disk
with singular foliation having a single elliptic point in the center, ∂D2 is tangent
to ξ and the other leaves spiral from the elliptic point to the boundary. Such a
disk is called the standard overtwisted disk. In general one can take the product
structure on S ×D2 so that any point in S crossed with D2 has the same foliation
as the standard overtwisted disk. Thus we may think of a plastikstufe as a family
of overtwisted disks parameterized by S.

The main theorem of the paper is that if a contact structure admits a plastik-
stufe then it cannot be symplectically filled by a semi-positive symplectic manifold;
moreover, if the contact manifold is of dimension less than or equal to 5 then it has
no symplectic filling at all. As a corollary to this result the author observes that
many exotic contact structures can be constructed on Euclidean spaces.

The strategy of proof for the main theorem is somewhat similar to Eliashberg and
Gromov’s proof in dimension 3. Specifically, if a contact manifold is symplectically
fillable and contains a plastikstufe then one chooses an almost complex structure



122 SELECTIONS REPRINTED FROM MATHEMATICAL REVIEWS

J compatible with the symplectic structure and studies the moduli space of J-
holomorphic disks with marked point on the boundary and with boundary mapping
to the plastikstufe. A detailed analysis of this moduli space leads to the conclusion
that the homology of the plastikstufe with the singular set removed is trivial in
dimension n − 1. Since this is clearly not the case one cannot have a symplectic
filling of a contact manifold that admits a plastikstufe.

Unfortunately it is not clear at this point if platikstufe will provide the same fun-
damental dichotomy as overtwisted disks did for 3-dimensional contact manifolds,
but they at least provide a place to begin to study fillability properties in higher
dimensions.

John B. Etnyre

From MathSciNet, October 2014

MR3012475 53-02; 32E10, 32Q65, 53C15, 53D05, 58E05

Cieliebak, Kai; Eliashberg, Yakov

From Stein to Weinstein and back. (English)

American Mathematical Society Colloquium Publications, 59.
American Mathematical Society , Providence, RI , 2012, xii+364 pp.,
ISBN 978-0-8218-8533-8

In 1990, Y. M. Eliashberg [Internat. J. Math. 1 (1990), no. 1, 29–46; MR1044658
(91k:32012)] published the startling result that a manifold of even dimension greater
than four admits the structure of a Stein manifold (i.e. a complex manifold that
can be properly and holomorphically embedded into some CN ) if and only if cer-
tain obviously necessary homotopy-theoretic conditions are satisfied. The proof was
based on a combination of Morse-theoretic ideas with several powerful h-principles
emerging from the “soft” side of symplectic geometry, and it thus initiated the
study of Stein manifolds from a symplectic topological perspective. In subsequent
years, work of Eliashberg and M. Gromov [in Several complex variables and complex
geometry, Part 2 (Santa Cruz, CA, 1989), 135–162, Proc. Sympos. Pure Math., 52,
Part 2, Amer. Math. Soc., Providence, RI, 1991; MR1128541 (93f:58073); Ann. of
Math. (2) 136 (1992), no. 1, 123–135; MR1173927 (93g:32037)], A. D. Weinstein
[Hokkaido Math. J. 20 (1991), no. 2, 241–251; MR1114405 (92g:53028)], R. E.
Gompf [Ann. of Math. (2) 148 (1998), no. 2, 619–693; MR1668563 (2000a:57070)]
and others revealed further deep insights into the symplectic nature of Stein mani-
folds: in particular, it became a well-known folk theorem that the essentially com-
plex geometric objects we call “Stein structures” are in some sense equivalent to
certain Morse-theoretic symplectic data called “Weinstein structures”, so that the
two notions can be (and in the symplectic literature often are) used interchange-
ably for most purposes. The impact that these results have had on symplectic
topology over the last 20 years cannot be overstated, though their proofs have until
now seemed largely inaccessible to all but a few experts. Much more recently, the
exciting discovery by E. Murphy [“Loose Legendrian embeddings in high dimen-
sional contact manifolds”, preprint, arXiv:1201.2245] of a flexible class of Legen-
drian submanifolds has brought the subject to maturity, leading in particular to a
dramatically improved understanding of flexibility in Stein manifolds.

The book under review provides the first comprehensive account of this story,
including detailed proofs of several important results that have been considered
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“standard” among symplectic topologists for many years but were only fully un-
derstood by a very few people, as well as new results about flexible Stein structures
that have quickly come to be regarded as fundamental in the subject.

In order to summarize the main results, recall first that by H. Grauert’s charac-
terization of Stein manifolds [Ann. of Math. (2) 68 (1958), 460–472; MR0098847
(20 #5299)], a Stein structure on an open manifold V of real dimension 2n can
be defined as an integrable complex structure J such that (V, J) admits a smooth
function φV → R that is exhausting (i.e. proper and bounded below) and plurisub-
harmonic (or J-convex, as it is usually called in this book). Since plurisubharmonic
Morse functions never have critical points of index greater than n, every Stein man-
ifold has the homotopy type of an n-dimensional CW-complex. The original result
of Eliashberg, proved in [op. cit.; MR1044658 (91k:32012)] and stated in this book
as Theorem 1.5, says that for any almost complex manifold (V, J) that has real
dimension 2n > 4 and admits an exhausting Morse function without critical points
of index greater than n, J is homotopic through almost complex structures to a
Stein structure; in fact, after this homotopy one can find an exhausting plurisub-
harmonic Morse function with the same level sets as ϕ. This theorem also has
a variant for compact Stein cobordisms (W,J), where one assumes the J-convex
function ϕ W → R is constant and regular on each boundary component—such
cobordisms are also called Stein domains whenever the negative part of the bound-
ary is empty.

In modern terms, Eliashberg’s existence result for Stein structures can be under-
stood to follow from two results of a more obviously symplectic nature, and these
two results serve as the focal point of the book. A Weinstein structure (ω,X, ϕ) on
an open 2n-dimensional manifold V is defined to consist of a symplectic form ω, to-
gether with an exhausting (generalized) Morse function ϕV → R and a gradient-like
Liouville vector field X. These conditions ensure that level sets of ϕ are naturally
contact type hypersurfaces, so in particular any Weinstein cobordism can also be
regarded as an exact symplectic cobordism between two contact manifolds. Any
Stein structure J with accompanying J-convex function ϕ naturally gives rise to a
Weinstein structure (−d(dϕ ◦ J),∇ϕ, ϕ), whose homotopy class is independent of
ϕ. (Note that for compact cobordisms, this last statement is more or less obvious,
but the notions of Stein and Weinstein homotopy on noncompact open manifolds
are somewhat subtler—this issue is discussed at length in §11.6.)

The two main theorems on existence and homotopy (both of which also have
variants for domains and cobordisms) can now be expressed as follows:

Theorem 13.2 (existence): Suppose V is a manifold of dimension 2n > 4 with
an exhausting Morse function ϕ that has no critical points of index greater than
n, and η is a nondegenerate 2-form on V . Then V admits a Weinstein structure
(ω,X, ϕ) such that ω and η are homotopic through nondegenerate 2-forms.

Theorem 1.1 (“from Weinstein to Stein”): Any Weinstein structure is homotopic
to one that arises from a Stein structure. Moreover, two Stein structures are Stein
homotopic if and only if the induced Weinstein structures are Weinstein homotopic.

Note that while the first of these two theorems is again only valid in higher
dimensions, the second has no such restriction. Theorem 1.1 can be understood
as saying that the natural map from the space of Stein structures to the space of
Weinstein structures induces an isomorphism on π0. The authors conjecture in fact
that this map should be a weak homotopy equivalence—proving this will require a
subtler analysis accounting for singularities that can appear in parametric families
of Morse functions.
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Another important theme in this book is flexibility. It has been understood
since Eliashberg’s work in the 1990s that subcritical Stein structures (i.e. those for
which the J-convex function has no index n critical points) satisfy an h-principle
in dimensions greater than four: two subcritical Stein structures on the same man-
ifold are homotopic if and only if their underlying almost complex structures are
homotopic. This fact is a deep consequence of a more basic h-principle due to
M. Gromov [Partial differential relations, Ergeb. Math. Grenzgeb. (3), 9, Springer,
Berlin, 1986; MR0864505 (90a:58201)] for (subcritical) isotropic embeddings in
contact manifolds, which serve as the attaching spheres for subcritical Weinstein
handles. While no such h-principle holds for isotropic embeddings in the critical
dimension (i.e. Legendrian submanifolds), a major step forward occurred in 2011,
when Murphy [op. cit.] discovered a special class of so-called “loose” Legendrian
embeddings which do satisfy an h-principle. This provides a way to construct a
correspondingly special class of so-called flexible Weinstein structures, defined as
those for which all critical Weinstein handles are attached along Legendrian spheres
that are loose. This leads to:

Theorem 1.8 (flexibility): The Weinstein structure constructed by Theorem 13.2
(see above) may be assumed flexible without loss of generality, and two flexible
Weinstein structures on a manifold of dimension 2n > 4 are Weinstein homotopic
if and only if their symplectic structures are homotopic through nondegenerate
2-forms.

This result also has analogues for Weinstein domains and Weinstein cobordisms.
The situation is more complicated in dimension 2n = 4, though, as discussed in
Chapters 14 and 15, some version of an h-principle does hold for 4-dimensional
Weinstein cobordisms whose concave contact boundary is overtwisted. Since there
is no flexible class of Legendrian knots in tight contact 3-manifolds, a 4-dimensional
Weinstein domain is flexible if and only if it is subcritical, but even in the subcritical
case it is not currently known whether the h-principle holds in general (see the
discussion of Chapter 16 below for more on this).

The impact of these flexibility results during the two years since they were
first publicized in talks by both authors has been pronounced. They have fur-
nished major ingredients for instance in a proof by J. B. Etnyre that every al-
most contact 5-manifold is contact [“Contact structures on 5-manifolds”, preprint,
arXiv:1210.5208], S. Courte’s negative answer to the question of whether a con-
tact manifold is determined by its symplectization [Geom. Topol. 18 (2014), no. 1,
1–15; MR3158770], and a hint of flexibility for higher-dimensional contact man-
ifolds discovered by Murphy et al. [Geom. Topol. 17 (2013), no. 3, 1791–1814;
MR3073936].

Before further outlining the contents, I would like to offer a tip for first-time read-
ers: the authors have produced two shorter expository articles [“Stein structures:
existence and flexibility”, preprint, arXiv:1305.1619; “Flexible Weinstein mani-
folds”, preprint, arXiv:1305.1635] that sketch the main ideas of the proofs in the
book, and it is worth reading through these to get the big picture before delving
into the (often quite intricate) details. The first, based on two lecture series given
by K. Cieliebak in 2012 at the IAS and at a summer school in Budapest, is a very
digestible explanation of the existence theorem and flexibility in the subcritical
case, while the second goes into more detail about loose Legendrians and flexible
Weinstein structures.

Here is a rough outline of the organization of the book.
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After an introductory chapter that states the main results, the book is divided
broadly into five parts, with the first four devoted to the proofs of the results
discussed above. Part 1 is the most complex-analytic, including many basic results
and technical lemmas about J-convex functions on integrable complex manifolds.
Chapter 5 in particular constitutes a brief digression into the theory of several
complex variables. Only a few of the results in this chapter are actually needed in
the rest of the book, but they provide an intriguing glimpse into a world that may
be largely unfamiliar to many symplectic readers, and those who (like this reviewer)
have an interest in symplectic fillings of contact manifolds will find the discussion
of CR structures and holomorphic fillings in §5.10 especially illuminating.

Part 2 is concerned with the proof of Eliashberg’s theorem on the existence
of Stein structures, including a review chapter on basic notions from symplectic
and contact geometry and another chapter on h-principles before proving the main
theorem in Chapter 8. Chapter 7 on h-principles deserves special mention, as
it serves as a valuable complement to the popular monograph of Eliashberg and
N. M. Mishachev [Introduction to the h-principle, Grad. Stud. Math., 48, Amer.
Math. Soc., Providence, RI, 2002; MR1909245 (2003g:53164)], and also includes
a thorough discussion (though not a complete proof) of Murphy’s h-principle for
loose Legendrians.

Parts 3 and 4 are devoted mainly to the results involving Weinstein structures.
Since these results are based to a large extent on ideas originating in Morse-Smale
theory, Part 3 provides some preparatory Morse-theoretic results, including (for
illustrative purposes) a sketch of the proof of the h-cobordism theorem, and gener-
alizations of these results for J-convex functions. Part 4 then focuses on Weinstein
structures, including in Chapter 11 the main definitions of fundamental notions
such as Weinstein (and Stein) homotopies on noncompact manifolds, and flexible
Weinstein structures. The proofs of the main results on existence of Weinstein
structures and the “Weinstein implies Stein” theorem are spread throughout Chap-
ters 12 through 15, using a number of Morse-theoretic lemmas that are Weinstein
analogues of results proved for J-convex functions in earlier chapters. Chapter 14
also proves the h-principle for flexible Weinstein structures, and uses it to give a
detailed proof of Cieliebak’s famous theorem that “subcritical Weinstein manifolds
are split” (originally proved in the 2002 preprint [“Subcritical Stein manifolds are
split”, preprint, arXiv:math/0204351], which was never published).

The fifth and final part of the book consists of two chapters on topics that are
somewhat distinct from the main results in the introduction, but no less important.
Chapter 16 discusses Stein surfaces, which are specifically excluded from the main
existence and flexibility theorems in the book (most of these require 2n > 4), but
exhibit a wealth of rigidity phenomena that can be proved using pseudoholomorphic
curves. The most important of these is probably the following, whose proof was
originally sketched in [Y. M. Eliashberg, in Geometry of low-dimensional manifolds,
2 (Durham, 1989), 45–67, London Math. Soc. Lecture Note Ser., 151, Cambridge
Univ. Press, Cambridge, 1990; MR1171908 (93g:53060)]:

Theorem 16.6: Every Stein filling of S3 is deformation equivalent to the standard
Stein structure on the unit ball.

The book gives an almost but not completely self-contained proof of this theorem;
it relies on a technical result about filling by holomorphic disks whose proof is
only sketched, but readers comfortable with holomorphic curves will be able to
fill in the missing details with a little help from standard references such as [D.
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McDuff and D. A. Salamon, J-holomorphic curves and symplectic topology, second
edition, Amer. Math. Soc. Colloq. Publ., 52, Amer. Math. Soc., Providence, RI,
2012; MR2954391] (a more complete proof of closely related results has also been
published by H. Geiges and K. Zehmisch [J. Topol. Anal. 2 (2010), no. 4, 543–579;
MR2748217 (2012d:53270)]). It is worth pointing out the relationship between this
result and flexibility: if the h-principle were known for subcritical Stein surfaces,
one could conclude from the above that all Stein structures on the 4-ball are Stein
homotopic, a stronger condition than Stein deformation equivalence. One can show
in fact that Theorem 16.6 implies this if and only if the group of orientation-
preserving diffeomorphisms of the 4-ball is connected—the latter, unfortunately,
is a notoriously difficult open question in differential topology. Similarly, another
argument based on filling by holomorphic disks shows (Theorem 16.7) that any
Stein filling of a contact connected sum of two 3-manifolds can be decomposed into
a Stein 1-handle attached to Stein fillings of those two manifolds. This is used to
show that Stein structures on fillings of subcritically fillable contact 3-manifolds
are unique up to deformation equivalence—again, not enough is known about the
diffeomorphism groups of these 4-manifolds to turn this into a proper flexibility
result. The last section of Chapter 16 proves corresponding results about uniqueness
(up to homotopy) of finite type Stein structures on open 4-manifolds, including
the nonexistence of such structures on S2 × R2, which provides a counterexample
to the n = 2 case of Eliashberg’s existence theorem. The proofs are to a large
extent minor variations on the earlier proofs for compact Stein domains, but an
additional ingredient is needed to gain control over the topology of level sets near
infinity, and the ingredient used here is G. Perelman’s solution to the geometrization
conjecture [“Finite extinction time for the solutions to the Ricci flow on certain
three-manifolds”, preprint, arXiv:math/0307245]. It would be interesting to know
whether these proofs can still be carried out without relying on such deep results.

Chapter 17 discusses exotic Stein structures, such as the discoveries by M.
McLean [Geom. Topol. 13 (2009), no. 4, 1877–1944; MR2497314 (2011d:53224)],
M. Abouzaid and P. Seidel [“Altering symplectic manifolds by homologous recom-
bination”, preprint, arXiv:1007.3281] and others of infinitely many Stein structures
on Cn for n ≥ 3 that are not deformation equivalent to the standard one. Com-
bining this with their flexibility results and the symplectic homology computations
of F. Bourgeois, T. Ekholm and Eliashberg [Geom. Topol. 16 (2012), no. 1, 301–
389; MR2916289], the authors conclude their exposition with a brief proof of the
following beautiful result:

Theorem 17.2: Suppose V is a manifold of dimension 2n > 4 that admits a finite
type Stein structure J . Then V admits infinitely many finite type Stein structures
such that all are homotopic to J through almost complex structures, but no two of
them are Stein deformation equivalent to each other.

The book concludes with three appendices, of which the first two review material
from algebraic topology, and the third provides biographical notes on several of the
mathematicians who have played major roles in the study of Stein manifolds. Unlike
Chapters 2 through 17, Appendix C can easily be read just before going to sleep
for the night, and I highly recommend it.

Chris M. Wendl

From MathSciNet, October 2014
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MR3158770 53D10; 53D05

Courte, Sylvain

Contact manifolds with symplectomorphic symplectizations.

Geometry & Topology 18 (2014), no. 1, 1–15.

Given a contact manifold (M, ξ), consider the one-dimensional subbundle of the
cotangent bundle of M formed by all non-zero cotangent vectors that vanish on
ξ and induce the right coorientation. The total space SξM of this principal R ∗

+ -
bundle is diffeomorphic to R×M and is called the symplectization of (M, ξ). Let
λξ be the 1-form on SξM induced by the canonical 1-form on T ∗M . Then ωξ = dλξ

is a symplectic form on SξM and the Liouville vector field Xξ (i.e., the vector field
defined by the relation ιXξ

ωξ = λξ) is the infinitesimal generator of the R ∗
+ -action.

The paper under review partially answers the following important and longstand-
ing open question. Given two contact manifolds (M, ξ) and (M ′, ξ′) for which SξM
and Sξ′M ′ are symplectomorphic, are (M, ξ) and (M ′, ξ′) necessarily contactomor-
phic? The main result of the paper under review shows that this is not the case, not
even if we assume that SξM and Sξ′M ′ are exact symplectomorphic, i.e., that there
is a diffeomorphism Ψ : SξM → Sξ′M ′ such that Ψ∗λξ′ −λξ is exact (note, however,
that if we have Ψ∗λξ′ = λξ then (M, ξ) and (M ′, ξ′) are easily seen to be contacto-
morphic). More precisely, Courte shows that there exist contact manifolds (M, ξ)
and (M ′, ξ′) of dimension greater than or equal to 5 such that SξM and Sξ′M ′ are
exact symplectomorphic but M and M ′ are not even diffeomorphic. On the other
hand, it remains an open question whether there can be two non-contactomorphic
contact structures ξ and ξ′ on the same manifold M such that SξM and Sξ′M ′

are (exact) symplectomorphic. This question is particularly difficult to answer be-
cause most known contact invariants (for example those coming from SFT) cannot
distinguish contact manifolds that have exact symplectomorphic symplectization.

The problem just described can be seen as a symplectic analogue of the fol-
lowing question from differential topology. Can we have two closed orientable
non-diffeomorphic manifolds M and M ′ such that R × M and R × M ′ are dif-
feomorphic? The answer to this question is yes. Indeed, on the one hand, whenever
M and M ′ have dimension greater than or equal to 5 and are h-cobordant, R×M
and R×M ′ are diffeomorphic. On the other hand, we do have h-cobordant mani-
folds that are not diffeomorphic (for example Milnor showed that this is the case for
M = L(7, 1)×S2n and M ′ = L(7, 2)×S2n). The fact that R×M and R×M ′ are dif-
feomorphic if M and M ′ are h-cobordant closed orientable manifolds of dimension
greater than or equal to 5 can be seen as follows. Let (W ;M,M ′) be an h-cobordism
between M and M ′. As a consequence of the s-cobordism theorem there is an in-
verse h-cobordism (W ′;M ′,M), i.e., an h-cobordism such that the compositions
W 	W ′ and W ′ 	W are diffeomorphic to [0, 1]×M and [0, 1]×M ′, respectively.
Consider now the infinite sum V = · · ·	W	W ′	W	W ′	· · · . Since we can see this
sum both as V =

⊙
j∈Z

(W 	W ′) ∼= R×M and as V =
⊙

j∈Z
(W ′ 	W ) ∼= R×M ′

(Mazur trick), we have that R×M and R×M ′ must be diffeomorphic.
By generalizing the above argument to the symplectic setting, Courte proves

that if (M, ξ) is a closed contact manifold of dimension greater than or equal to 5
then for any h-cobordism (W ;M,M ′) there is a contact structure ξ′ on M ′ such
that SξM and Sξ′M ′ are exact symplectomorphic (and thus by taking M and M ′ to
be h-cobordant but not diffeomorphic we obtain examples of non-contactomorphic
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contact manifolds with exact symplectomorphic symplectizations). The generaliza-
tion of the above differential topological argument to the symplectic world is made
possible by the flexibility properties of certain Weinstein cobordisms, which were
discovered and described by Y. M. Eliashberg [in Gauge theory and symplectic ge-
ometry (Montreal, PQ, 1995), 49–67, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.,
488, Kluwer Acad. Publ., Dordrecht, 1997; MR1461569 (98g:58055)], E. Murphy
[“Loose Legendrian embeddings in high dimensional contact manifolds”, preprint,
arXiv:1201.2245] and K. Cieliebak and Eliashberg [From Stein to Weinstein and
back, Amer. Math. Soc. Colloq. Publ., 59, Amer. Math. Soc., Providence, RI, 2012;
MR3012475].

Recall that a Weinstein cobordism from a contact manifold (M, ξ) to (M ′, ξ′) is a
cobordism (W ;M,M ′) together with a Morse pair (X,ϕ) and a symplectic form ω
on W such that LXω = ω. We also ask that ξ = ker(i∗λ) and ξ′ = ker(i′∗λ) where
λ = ιXω and i and i′ are the inclusions of M and M ′ into W . If (W,ω,X, ϕ) is a
Weinstein cobordism of dimension 2n then all critical points of ϕ have index smaller
than or equal to n. Weinstein cobordisms such that all critical points have index
strictly smaller than n are called subcritical and, as discussed by Eliashberg [op.
cit.], have remarkable flexibility properties. A larger class of Weinstein cobordisms
with flexibility properties was more recently described by Cieliebak and Eliashberg
[op. cit.] using the notion of loose Legendrians introduced by Murphy [op. cit.]. We
say that a Weinstein cobordism is flexible if it is the composition of finitely many
elementary cobordisms (i.e., the Liouville vector field has no trajectories joining
critical points) such that the attaching spheres of all critical handles are loose
Legendrians. Using flexibility results from Cieliebak and Eliashberg for this class
of Weinstein cobordisms, Courte is able to prove the following. Let (M, ξ) be a
closed contact manifold of dimension greater than or equal to 5 and let (W ;M,M ′)
be an h-cobordism. Then there exists a flexible Weinstein structure (ω,X, ϕ) on W
which induces the given contact structure ξ onM . Let ξ′ be the contact structure on
M ′ induced by the Weinstein structure (ω,X, ϕ). Consider the inverse h-cobordism
(W ′;M ′,M). Again, there is a flexible Weinstein structure (ω′, X ′, ϕ′) on W ′ which
induces the contact structure ξ′ on M ′. After some work and again using flexibility
results from Cieliebak and Eliashberg, Courte proves that the contact structure on
M induced by (ω′, X ′, ϕ′) can be assumed to be the initial ξ, and that the Mazur
trick can be adapted to this situation (by translating the Weinstein cobordisms W
and W ′ in an appropriate way) in order to prove that SξM and Sξ′M ′ are exact
symplectomorphic.

Starting from this result, Courte also discusses the unexpected fact that the
contact manifold at infinity of a Weinstein manifold (V, ω,X, ϕ) does depend on
the choice of the Liouville vector field X. More precisely, Courte describes how one
can find a Weinstein homotopy (ω,Xs, ϕs) on V , with fixed symplectic form, during
which the topology of the contact manifold at infinity changes. Finally, Courte also
describes a similar result for contact manifolds at infinity of Stein manifolds.

Sheila Sandon
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