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RECENT ADVANCES IN SYMPLECTIC FLEXIBILITY

YAKOV ELIASHBERG

Abstract. Flexible and rigid methods coexisted in symplectic topology from
its inception. While the rigid methods dominated the development of the sub-
ject during the last three decades, the balance has somewhat shifted to the
flexible side in the last three years. In the talk we survey the recent advances
in symplectic flexibility in the work of S. Borman, K. Cieliebak, T. Ekholm,
E. Murphy, I. Smith, and the author.

This survey article is an expanded version of author’s article [27] and his talk at
the Current Events Bulletin at the AMS meeting in Baltimore in January 2014. It
also uses materials from the papers [6, 9, 20, 32] and the book [8].

1. The h-principle

Many problems in mathematics and its applications deal with partial differential
equations, partial differential inequalities or, more generally, with partial differential
relations (see [48] and also [31]), i.e., any conditions imposed on partial derivatives
of an unknown function. A solution of such a partial differential relation R is any
function which satisfies this relation.

With any differential relation one can associate the underlying algebraic relation
by substituting all the derivatives entering the relation with new independent func-
tions. The existence of a solution of the corresponding algebraic relation, called a
formal solution of the original differential relation R, is a necessary condition for
the solvability of R. Though it seems that this necessary condition should be very
far from being sufficient, it was a surprising discovery in the 1950s of geometrically
interesting problems where existence of a formal solution is the only obstruction
for the genuine solvability. Two of the first such non-trivial examples were the C1-
isometric embedding theorem of J. Nash and N. Kuiper [57,68] and the immersion
theory of S. Smale and M. Hirsch [55, 77]. After Gromov’s remarkable series of
papers, beginning with his paper [47] and culminating in his book [48], the area
crystallized as an independent subject, called the h-principle.

Rigid and flexible results coexist in many areas of geometry, but nowhere else do
they come so close to each other, as in symplectic topology, which serves as a rich
source of examples on both sides of the flexible-rigid spectrum. Flexible and rigid
problems and the development of each side toward the other shaped and continue
to shape the subject of symplectic topology from its inception.
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2. Symplectic preliminaries

To set the stage, we recall some basic notions of symplectic and contact geometry.
Symplectic geometry was born as a geometric language of classical mechanics and,
similarly, contact geometry emerged as a natural set-up for geometric optics and
mechanics with non-holonomic constraints.

The cotangent bundle T ∗M of any smooth n-dimensional manifold M carries a
canonical Liouville 1-form λ, usually denoted pdq, which in any local coordinates
(q1, . . . , qn) on M and dual coordinates (p1, . . . , pn) on cotangent fibers can be writ-
ten as λ =

∑n
1 pidqi. The differential ω := dλ =

∑n
1 dpi∧dqi is called the canonical

symplectic structure on the cotangent bundle T ∗M . In the Hamiltonian formalism
of classical mechanics the cotangent bundle T ∗M is viewed as the phase space of a
mechanical system with the configuration space M , where the p-coordinates corre-
spond to momenta. The full energy of the system, expressed through coordinates
and momenta, i.e., viewed as a function H : T ∗M → R on the cotangent bundle (or
a time-dependent family of functions Ht : T

∗M → R if the system is not conser-
vative) is called the Hamiltonian of the system. The dynamics is then defined by
the Hamiltonian equations ż = XHt

(z), z ∈ T ∗M , where the Hamiltonian vector
field XHt

is determined by the equation i(XHt
)ω = −dHt, which in the canonical

(p, q)-coordinates has the form

XHt
=

n∑
1

−∂Ht

∂qi

∂

∂pi
+

∂Ht

∂pi

∂

∂qi
.

The flow of the vector field XHt
preserves ω, i.e., X∗

Ht
ω = ω. The isotopy generated

by the vector field XHt
is called Hamiltonian.

More generally, the Hamiltonian dynamics can be defined on any 2n-dimensional
manifold endowed with a symplectic, i.e., a closed and non-degenerate differential
2-form ω. According to a theorem of Darboux, any such form admits local canoni-
cal coordinates p1, . . . , pn, q1, . . . , qn in which it can be written as ω =

∑n
1 dpi∧dqi.

Diffeomorphisms preserving ω are called symplectomorphisms or, in the mechanical
context, canonical transformations. Symplectomorphisms which can be included
in a time-dependent Hamiltonian flow are called Hamiltonian. When n = 1, a
symplectic form is just an area form, and symplectomorphisms are area-preserving
transformations. In higher dimensions symplectomorphisms are also volume pre-
serving, but the subgroup of symplectomorphisms represents only a small part of
the group of volume-preserving diffeomorphisms.

Contact geometry is an odd-dimensional counterpart of symplectic geometry.
The projectivized cotangent bundle PT ∗M serves as the phase space in geometric
optics, because even in the anisotropic media the speed of light is determined by
the direction of the ray. It can be interpreted as the space of contact elements of
the manifold M , i.e., the space of all tangent hyperplanes to M . The form pdq
does not descend to PT ∗M but its kernel does, and hence the space of contact
elements carries a canonical field of tangent hyperplanes. This field turns out to be
completely non-integrable. It is called a contact structure. More generally, a contact
structure on a (2n+1)-dimensional manifold is a completely non-integrable field of
tangent hyperplanes ξ, where the complete non-integrability can be expressed by
the Frobenius condition α ∧ (dα)∧n �= 0 for a 1-form α (locally) defining ξ by the
Pfaffian equation α = 0. By Darboux’s theorem the contact form α can be locally
always written in the form α = dz +

∑n
1 pidqi in appropriate local coordinates.
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Though at first glance symplectic and contact geometries are quite different, they
are in fact tightly interlinked and it is useful to study them in parallel.

An important property of symplectic and contact structures is the following
stability theorem, which is due to Moser [65] in the symplectic case and to Gray
[44] in the contact one: Given a 1-parametric family of symplectic structures ωt, or
contact structures ξt on a manifold X, which coincide outside of a compact set and
such that in the symplectic case ωt − ω0 belong to the same cohomology class with
compact support, there exists an isotopy ht : X → X with compact support which
starts at the identity h0 = Id and such that h∗

tωt = ω0 or h∗
t ξt = ξt.

Maximal integral (i.e., tangent to ξ) submanifolds of a (2n+1)-dimensional con-
tact manifold (V, ξ) have dimension n and are called Legendrian. Their symplectic
counterparts are n-dimensional submanifolds L of a 2n-dimensional symplectic ma-
nifold (W,ω) which are isotropic for ω, i.e., ω|L = 0. They are called Lagrangian
submanifolds. Here are two important examples of Lagrangian submanifolds: A
diffeomorphism f : W → W of a symplectic manifold (W,ω) is symplectic if and
only if its graph Γf = {(x, f(x)); x ∈ W} ⊂ (W ×W,ω × (−ω)) is Lagrangian. A
1-form θ on a manifold M , viewed as a section of the cotangent bundle T ∗M , is
Lagrangian if and only if it is closed. In particular, if H1(M) = 0, then Lagrangian
sections are graphs of differentials of functions, and hence the intersection points of
a Lagrangian with the 0-section are critical points of the corresponding generating
function. A general Lagrangian submanifold corresponds to a multivalued function,
called the front of the Lagrangian manifold. Given a submanifold N ⊂ M (of
any codimension), the set of all tangent to N hyperplanes in TM is a Legendrian
submanifold of the space of contact elements PT ∗M .

3. Gromov’s alternative and discovery of symplectic rigidity

It was an original idea of Henri Poincaré that Hamiltonian systems should sat-
isfy special qualitative properties. In particular, his study of periodic orbits in the
so-called restricted three-body problem led him to the following statement, now
known as the “last geometric theorem of H. Poincaré”: any area-preserving trans-
formation of an annulus S1 × [0, 1] which rotates the boundary circles in opposite
directions should have at least two fixed points. Poincaré provided many convincing
arguments why the statement should be true [74], but the actual proof was found
by G. D. Birkhoff [5] in 1913, a few months after Poincaré’s death. Birkhoff’s proof
was purely 2-dimensional, and further development of Poincaré’s dream of what is
now called symplectic topology had to wait until the 1960s when V. I. Arnold [3] for-
mulated a number of conjectures formalizing this vision of Poincaré. In particular,
one of Arnold’s conjectures stated that the number of fixed points of a Hamiltonian
diffeomorphism is bounded below by the minimal number of critical points of a
function on the symplectic manifold.

At about the same time Gromov was proving his h-principle type results. He
realized that symplectic problems exhibited some remarkable flexibility. This called
into question whether Arnold’s conjectures could be true in dimension > 2.

Among the remarkable results pointing toward symplectic flexibility which were
proven by Gromov at the end of the 1960s and the beginning of the 1970s were the
following:

• h-principle for symplectic and contact structures on open manifolds: In
any homotopy class of non-degenerate (not necessarily closed) 2-forms on
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an open manifold there is a symplectic form in any prescribed cohomology
class. Moreover, any two such forms are homotopic as symplectic forms.
Similarly, any almost contact structure, i.e., a pair (λ, η) of 1- and 2-forms
on a (2k + 1)-dimensional open manifold which satisfies λ ∧ ηk �= 0, is
homotopic through almost contact structures to a pair (α, dα).

• h-principle for Lagrangian immersions: This asserts that the Lagrangian
regular homotopy classes of Lagrangian immersions L → X are in one-to-
one correspondence with homotopy classes of injective Lagrangian homo-
morphisms TL → TX.

• h-principle for ε-Lagrangian embeddings (i.e., embeddings whose tangent
planes deviate from Lagrangian directions by an angle < ε).

• h-principle for the iso-symplectic and iso-contact embeddings: For instance,
in the symplectic case, if (M,ω) and (N, η) are two symplectic manifolds
such that dimN ≥ dimM+4, then any smooth embedding f : M → N which
pulls back the cohomology class of the form η to the cohomology class of ω
and whose differential df is homotopic to a symplectic bundle isomorphism

can be C0-approximated by an iso-symplectic embedding f̃ : M → N , i.e.

f̃∗η = ω. For iso-symplectic and iso-contact immersions the h-principle
holds even in codimension 2.

Gromov proved the following alternative: either the group of symplectomor-
phisms (resp. contactomorphisms) is C0-closed in the group of all diffeomorphisms
or its C0-closure coincides with the group of volume-preserving (resp. all) diffeo-
morphisms.

One of the corollaries of Gromov’s convex integration method was that there are
no additional lower bounds for the number of fixed points of a volume-preserving
diffeomorphism of a manifold of dimension ≥ 3 (compared to arbitrary diffeomor-
phisms). Clearly, the bound on the number of fixed points is a C0-property, and
hence, if the second part of the alternative were true, this would imply that Hamil-
tonian diffeomorphisms of symplectic manifolds of dimension > 2 have no special
fixed point properties, and hence Poincaré’s theorem and Arnold’s conjectures re-
flected a pure 2-dimensional phenomenon. In fact, it was clear from this alternative,
that all basic problems of symplectic topology are tightly interconnected.

Here are some of such problems, besides Gromov’s alternative:

Problems 3.1. (1) Extension of symplectic and contact structures to the ball
from a neighborhood of the boundary sphere.

(2) 1-parametric version of the previous question: Is it true that two structures
on the ball which coincide near the boundary and which are formally ho-
motopic relative to the boundary are homotopic as genuine structures and
hence isotopic?

(3) Fixed point problems for symplectomorphisms. More generally, Lagrangian
intersection problem: Do Lagrangian manifolds under certain conditions
have more intersection points than is required by topology?

(4) Are there any non-formal obstructions to Legendrian isotopy?

For instance, as was already pointed out above, the resolution of Gromov’s al-
ternative in favor of flexibility would imply that symplectic fixed point Arnold
conjectures are wrong in dimension > 2. Similarly, the “flexible” resolution of both
problems (1) and (2) would imply the “flexible” resolution of Gromov’s alternative,
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as we explain below. Thus, a resolution of Gromov’s alternative became a question
about the existence of symplectic topology as a subject.

At the beginning of the 1980s the alternative was resolved in favor of rigidity
in the series of works [21, 22], [4], [12], and it culminated in Gromov’s paper [46]
in which he introduced his method of (pseudo-)holomorphic curves in symplectic
manifolds, which brought a genuine revolution into this subject.

As we already stated above, the rigid resolution of the symplectic and contact
alternatives implied that Problems 3.1(1) and 3.1(2) cannot simultaneously have
flexible solutions. Indeed, consider, for instance, the contact case. Let (M, ξ)
be a (2n + 1)-dimensional contact manifold, and let f : M → M be isotopic to
the identity diffeomorphism which is somewhere not contact. Let us first note
that according to Gromov’s h-principle for open contact manifolds, the analogs of
Problems 3.1(1) and 3.1(2) do have positive answers for neighborhoods of discs
of positive codimension. Assuming that both questions 3.1(1) and 3.1(2) have
positive answers as well, we consider a small triangulation of M and inductively
modify f by a C0-small isotopy to make it contact on neighborhoods of k-skeleta
of the triangulation, k = 0, . . . , 2n + 1. Suppose that we already constructed a
diffeomorphism fk−1 : M → M preserving ξ on a neighborhood of the (k − 1)-
skeleton Ck−1. Take a neighborhood Gσ ⊃ σ of a k-simplex σ. Consider a contact
structure on Op (∂Gσ ∪ σ) ⊂ Gσ which coincides with ξ on Op ∂Gσ and with
(fk−1)∗ξ on Op σ. Using a positive resolution of Problem 3.1(1), we can then
extend it as a contact structure on Gσ which belongs to the same ξ relative to ∂Gσ

homotopy class of almost contact structures. Hence, assuming a positive resolution
of Problem 3.1(2) together with a Gray–Moser argument then implies existence of

a compactly supported in Gσ diffeomorphism gσ : M → M such that g∗σξ = ξ̃.
Note that one can arrange that supports of gσ and gσ̂ are disjoint if σ ∩ σ̂ = ∅.
Then the composition g of the diffeomorphisms gσ for all k-simplices σ is C0-small
provided that the triangulation and the neighborhoods Gσ have small diameters.
But then the diffeomorphism fk := g◦fk−1 is C

0-close to f and preserves the contact
structure ξ on a neighborhood of the k-skeleton Ck. Continuing by induction, we
construct a contactomorphism f2n+1 which is C0-close to f . But this contradicts
to the C0-closedness of the group of contact diffeomorphisms.

In fact, an argument similar to Gromov’s famous non-squeezing theorem also
implies that there are additional obstructions to the extendability of symplectic
structures; see Section 6.2. This still left open the possibility of a flexible resolution
of Problem 3.1(2) in the symplectic case. The problem remains open today.1 In
the contact case by now both problems are answered; see the discussion in Section
5.7.

After Gromov’s paper, the rigid side of symplectic topology began unravelling
with an exponentially increasing speed. We just mention here the discovery of Floer
homology, Hofer’s metric, Gromov–Witten invariants, Symplectic Field Theory, the
link with the mathematical theory of Mirror Symmetry, as well applications to
lower-dimensional topology such as Taubes’s “Gromov–Witten = Seiberg–Witten”
theorem, the Heegaard Floer homology of Ozsváth and Szabó, and the embedded
contact homology of Hutchings and Taubes.

1Gromov proved that any standard at infinity symplectic structure on R4 is symplectomorphic
to the standard one. Hence, this reduced the isotopy classification of such structures to the
computation of π0 of the group of compactly supported diffeomorphisms of R4.
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Applications of holomorphic curves in Hamiltonian dynamics brought us closer
to the realization of Poincaré’s dream of establishing qualitative properties of me-
chanical systems (e.g., existence and the number of periodic trajectories) without
actually solving the equations of motion. In particular, the Weinstein conjecture,
which asserted the existence of periodic trajectories of Reeb vector fields, was proven
in many cases (see [56, 86]) and in full generality in dimension 3 (see [80]).

4. Flexible milestones after the resolution of Gromov’s alternative

Though in a shadow of successes on the rigid side, the flexible side of symplectic
topology also had over the years a number of success stories. Here are examples of
some interesting developments with a distinctly flexible flavor.

Overtwisted contact structures in dimension 3. It was understood in 1989
(see [23]) that in the world of 3-dimensional contact manifolds there is an important
dichotomy. If a contact manifold contains the so-called overtwisted disc, i.e., an
embedded disc which along its boundary is tangent to the contact structure, then
the contact structure becomes very flexible and abides by a certain h-principle: two
overtwisted contact structures which are homotopic as plane fields are homotopic
as contact structures, and hence in view of Gray’s theorem are isotopic. Non-
overtwisted contact manifolds are called tight, and that is where the rigid methods
of symplectic topology are applicable.

The classification of overtwisted contact structures yields similar flexibility re-
sults for Legendrian knots in overtwisted contact 3-manifolds. Namely, Legendrian
knots in the complement of an overtwisted disc (called loose in [28]) also satisfy an
h-principle. The high-dimensional analog of loose knots is discussed in Section 5.1
below.

It was recently discovered that an analog of classification of overtwisted contact
structures holds in all dimensions; see Section 5.7 below.

Donaldson’s almost holomorphic sections. We already mentioned above Gro-
mov’s h-principle for iso-symplectic embeddings in codimension > 2. By applying
holomorphic curve technique, it is not difficult to construct counter-examples to a
similar h-principle in codimension 2. However, Simon Donaldson used his theory of
almost holomorphic sections of complex line bundles over almost Kähler manifolds
to prove the following, among other remarkable results:

Theorem 4.1 ([13]). For any closed 2n-dimensional symplectic manifold (M,ω)
with an integral cohomology class [ω] ∈ H2(M) and a sufficiently large integer k,
there exists a codimension 2 symplectic submanifold Σ ⊂ M which represents the
homology class that is Poincaré dual to kω. Moreover, the complement M \Σ has a
homotopy type of an n-dimensional cell complex (which is the case for complements
of hyperplane sections in complex projective manifolds).

Furthermore, he proved the following symplectic Lefschetz pencil theorem:

Theorem 4.2 ([15]). If (V, ω) is a symplectic manifold with an integral cohomology
class [ω] ∈ H2(M), then for a sufficiently large integer k there exists a topological
Lefshetz pencil in which the fibers are symplectic manifolds representing a homology
class dual to k[ω].
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By definition the topological Lefschetz pencil is equivalent to the complex alge-
braic one near all the singularities.

E. Giroux [41] adapted Donaldson’s theory to the contact case. His theory of
open book decompositions of contact manifolds plays an important role in contact
topology.

Symplectic embeddings of polydiscs. Let us denote by P (r1, . . . , rn) the poly-
disc {|z1| ≤ r1, . . . , |zn| ≤ rn} ⊂ Cn, where we assume r1 ≤ r2 ≤ · · · ≤ rn. If
P (r1, . . . , rn) symplectically embeds into P (R1, . . . , Rn), then the famous Gromov
non-squeezing theorem implies that r1 ≤ R1. We also have the volume constraint
r1 · · · rn ≤ R1 · · ·Rn.

It was a common belief that when n > 2 there should exist further constraints
on the radii besides the Gromov width and volume constraints. However, Larry
Guth proved the following remarkable result on the flexible side, which showed that
room for additional constraints is very limited.

Theorem 4.3 ([49]). There exists a constant C(n) depending on the dimension n
such that if C(n)r1≤R1 and C(n)r1 · · · rn≤R1 · · ·Rn, then a polydisc P (r1, . . . , rn)
symplectically embeds into P (R1, . . . , Rn).

4.1. Existence of Stein complex structure. Stein manifolds are complex ma-
nifolds which admit proper holomorphic embeddings into CN . According to a
theorem of H. Grauert, a Stein manifold can also be characterized as a manifold
which admits an exhausting strictly plurisubharmonic function. Here the word ex-
hausting means proper and bounded below, while a real-valued function φ : V → R

on a complex manifold V is called strictly plurisubharmonic or i-convex if the Her-
mitian form −ddCφ = 2i∂d̄φ, which in local holomorphic coordinates is given by

a matrix
(

∂2φ
∂zi∂zj

)
, is positive definite. For an arbitrary complex manifold with a

complex structure J , we will use the term J-convex, instead of strictly plurisub-
harmonic, to stress the dependence on the complex structure J . Here we denote
by dCφ(X) := dφ(iX) the differential twisted by the operator of multiplication by√
−1. It can easily be seen that critical points of a Morse strictly plurisubharmonic

function on a complex n-dimensional manifold have index ≤ n, and hence the Morse
theory implies that a Stein manifold of complex dimension n has a homotopy type
of a cell complex of real dimension n.

Theorem 4.4 ([24]). Let (V, J) be any manifold of dimension 2n > 4, and let
φ : V → R be an exhausting Morse function without critical points of index > n.

Then there exists an integrable complex structure J̃ on V homotopic to J for which

the function φ is target equivalent to a J̃-convex function. In particular, (V, J̃) is
Stein.

Interestingly, complex dimension 2 belongs to the domain of symplectic rigidity.
An analog of Theorem 4.4 is wrong in this dimension. For instance, S2 × R2 does
not admit any Stein complex structure; see [59].

What is transpired from the proof of Theorem 4.4 is that it is useful to define
a symplectic analog of a Stein manifold. The corresponding notion of Weinstein
manifold, crucial for an understanding of Morse theoretic properties of Stein struc-
tures, was introduced in [30]. It formalized the Stein handlebody construction
from [24] and symplectic handlebody construction from A. Weinstein’s paper [88].
We discuss this notion and related results in Section 5.5 below.
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5. Renaissance of the h-principle in symplectic topology

The last three years witnessed a number of quite unexpected advances on the
flexible side of symplectic topology.

5.1. Loose Legendrian knots. It turns out that in contact manifolds of dimen-
sion > 3 there is a remarkable class of Legendrian embeddings—or as we also refer
to them Legendrian knots, discovered by Emmy Murphy in [67]—which satisfies a
certain form of an h-principle. These knots are called loose, in analogy with loose
knots in overtwisted contact manifolds; see [28]. A remarkable fact about Murphy’s
loose knots is that, in contrast with the 3-dimensional case, they exist in all contact
manifolds of dimension > 3.

Stabilization. The stabilization construction for Legendrian submanifolds, first in-
trodiced in [24] and also described in [8, 67], can be informally defined as follows.
In an appropriate Darboux coordinate system near a point on a Legendrian sub-
manifold Λ, its front projection has a cuspidal edge; see Figure 5.1. Then given
a domain U near a cusp edge on the lower branch of the front, we push it up so
over U the lower branch crosses over the upper one. The Legendrian submanifold
corresponding to the modified front is called the U -stabilization of Λ.

More precisely, in the standard contact

R
2n−1
st =

(
R

2n−1 , ξst = ker

(
dz +

n−1∑
1

pidqi

))
,

where (p1, q1, . . . , pn−1, qn−1, z) are coordinates in R2n−1, consider a diffeomorphic
to Rn−1 Legendrian submanifold

Λcu =

{
(p1, q1, . . . , pn−1, qn−1, z) : q1 =

1

2
p21, q2 = · · · = qn−1 = 0, z = −1

3
p31

}
.

One can check that given any Legendrian (n− 1)-submanifold Λ ⊂ Y in a contact
(2n−1)-manifold Y , any point u ∈ Λ has an arbitrarily small neighborhood Ω ⊂ Y
that admits a contactomorphism

Φ: (Ω,Λ ∩ Ω) → (R2n−1
st ,Λcu), Φ(u) = 0.

The stabilization construction is a local modification of a Legendrian knot in a
neighborhood of a point. It replaces the preimage of Λcu by a preimage of another
Legendrian ΛU

cu, which coincides with Λcu at infinity. We describe this modification
below.

The two branches of the front Γcu of the Legendrian Λcu, i.e., the projection to
the (x1, . . . , xn−1, z)-coordinate subspace, are graphs of the functions ±h, where

h(q) = h(q1, . . . , qn−1) =
2
√
2

3 q
3
2
1 ,

defined on the half-space Rn−1
+ := {q = (q1, . . . , qn−1) : q1 ≥ 0}. Let U be a domain

with smooth boundary contained in the interior of Rn−1
+ , U ⊂ Int (Rn−1

+ ). Pick a

non-negative function φ : Rn+1
+ → R with the following properties:

• φ has compact support in Int (Rn−1
+ );

• the function φ̃(q) := φ(q) − 2h(q) is Morse, U = φ̃−1([0,∞)), and 0 is a

regular value of φ̃.
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Figure 5.1. Stabilization

Consider the front ΓU
cu in Rn−1×R obtained from Γcu by replacing the lower branch

of Γcu, i.e., the graph z = −h(q), by the graph z = φ(q)−h(q). Since φ has compact
support, the front ΓU

cu coincides with Γcu outside a compact set. Consequently, the
Legendrian embedding ΛU

cu : R
n−1 → R

2n−1 defined by the front ΓU
cu coincides with

Λcu outside a compact set.
It turns out that if (and only if) the Euler characteristic of the domain U is

equal to 0, then the Legendrian submanifolds Λcu and ΛU
cu are formally Legendrian

isotopic via a compactly supported Legendrian isotopy (however, they are never
Legendrian isotopic if U �= ∅). We recall that a formal Legendrian isotopy con-
necting Legendrian embeddings f0, f1 : Λ → (Y, ξ) is a pair ft,Φt, t ∈ [0, 1], where
ft is a smooth isotopy and Φt : TΛ → ξ is a family of Lagrangian homomorphisms
connecting φ0 = df0 and Φ1 = df1, and such that the paths of homomorphisms
dft,Φt are homotopic with fixed endpoints as paths of injective homomorphisms
TΛ → TY . We also note that when n = 1, the Euler characteristic χ(U) is always
positive, and hence the stabilization construction never preserves the formal isotopy
class of a 1-dimensional Legendrian knot. This is the main point where the theory
in high dimensions deviates from the 1-dimensional case.

Now, given a Legendrian (n − 1)-submanifold Λ of a contact (2n − 1)-manifold
Y and contactomorphism

Φ: (Ω,Λ ∩ Ω) → (R2n−1
st ,Λcu),

Ω ⊂ Y is a neighborhood of a point of u ∈ Λ, and we replace Ω∩Λ with Φ−1(ΛU
cu).

The resulting Legendrian embedding ΛU which coincides with Λ outside of Ω is
called the U-stabilization of Λ in Ω.

5.2. Murphy’s theorem. A Legendrian embedding Λ → Y of a connected mani-
fold Λ is called loose if it is isotopic to the stabilization of another Legendrian knot.
We point out that looseness depends on the ambient manifold. A loose Legendrian
embedding Λ into a contact manifold Y need not be loose in a smaller neighborhood
Y ′, Λ ⊂ Y ′ ⊂ Y .

The above construction shows that a Legendrian submanifold Λ ⊂ Y can be
made loose by stabilizing it in an arbitrarily small neighborhood of a point and
even without changing its formal Legendrian isotopy class.
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It was known since the early days of the h-principle that formally isotopic Leg-
endrian knots become isotopic after sufficiently many stabilizations. In dimension
3 the corresponding proof was carried out in [50]. Moreover, it was shown by
J. Etnyre and K. Honda in [34] that no a priori given number of stabilizations of
1-dimensional Legendrian knots is sufficient.

It was an unexpected discovery of E. Murphy that in dimension > 1 one sta-
bilization is always enough. Namely, she proved the following h-principle for loose
Legendrian knots in contact manifolds of dimension 2n− 1 > 3:

Theorem 5.1 ([67]). Any two loose Legendrian embeddings which coincide out-
side a compact set and which can be connected by a formal compactly supported
Legendrian isotopy can be connected by a genuine compactly supported Legendrian
isotopy.

5.3. Lagrangian caps. Murphy’s discovery was followed by a number of other
results, which seemed to be out of reach before that. In particular, it turned out
that Lagrangian embeddings with loose Legendrian boundaries also satisfy an h-
principle.

The story begins with the following question: Let B be the round ball in the
standard symplectic R2n. Is there an embedded Lagrangian disc Δ ⊂ R2n\IntB with
∂Δ ⊂ ∂B such that ∂Δ is a Legendrian submanifold and Δ transversely intersects
∂B along its boundary?

If n = 2, then such a Lagrangian disc does not exist: its existence contradicts the
so-called slice Bennequin inequality; see [75]. Until recently no such examples were
known in higher dimensions either. Surprisingly, it turns out that when n > 2, then
Lagrangian discs with loose Legendrian boundaries satisfy an h-principle, which, in
particular, implies that they exist in abundance:

Theorem 5.2 ([32]). Let L be a smooth manifold of dimension n > 2 with non-
empty boundary such that its complexified tangent bundle TL ⊗ C is trivial. Then
there exists an exact Lagrangian embedding f : (L, ∂L) → (R2n \ IntB, ∂B) with
f(∂L) ⊂ ∂B such that f(∂L) ⊂ ∂B is a Legendrian submanifold and f is transverse
to ∂B along its boundary ∂L.

Note that the triviality of the bundle TL ⊗ C is a necessary (and, according
to Gromov’s h-principle for Lagrangian immersions [48], sufficient) condition for
existence of any Lagrangian immersion L → Cn.

Given a symplectic manifold (X,ω), we say that L ⊂ M is a Lagrangian sub-
manifold with an isolated conical point if it is a Lagrangian submanifold away from
a point p ∈ L, and there exists a symplectic embedding f : Bε → X such that
f(0) = p and f−1(L) ⊂ Bε is a Lagrangian cone. Here Bε is the ball of radius ε
in the standard symplectic R2n. Note that this cone is automatically a cone over a
Legendrian sphere in the sphere ∂Bε endowed with the standard contact structure
given by the restriction to ∂Bε of the Liouville form λst = 1

2

∑n
1 (pidqi − qidpi).

For instance, Givental’s Lagrangian Whitney umbrella (see [43]) can be viewed as
a Lagrangian cone over the simplest stabilization of the trivial Legendrian knot.

As a special case of Theorem 5.2 (when ∂L is a sphere) one has

Corollary 5.3 ([32]). Let L be an n-dimensional, n > 2, closed manifold such
that the complexified tangent bundle T ∗(L \ p) ⊗ C is trivial. Then L admits an
exact Lagrangian embedding into R2n with exactly one conical point. In particular,
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an n-sphere admits a Lagrangian embedding to R2n with one conical point for each
n > 2.

5.4. Lagrangian non-intersections. The conical singularity with appropriate
loose Legendrian asymptotics in Corollary 5.3 can be resolved into an immer-
sion with one self-intersection point. This leads to surprising constructions of
Lagrangian immersions with a minimal number of self-intersection points, which
at first glance are going against popular Arnold type Lagrangian intersection con-
jectures. In particular,

Theorem 5.4 ([20]). Let L be an n-dimensional closed manifold with trivial bundle
TL⊗ C. We denote by s(L) the minimal number of double points of a Lagrangian
immersion of L into the standard symplectic R2n. Then the following hold:

(1) If n is odd or if L is non-orientable, then s(L) ∈ {1, 2}.
(2) If n = 3, then s(L) = 1.
(3) If n is even and L is orientable, then for χ(L) < 0, s(L, σ) = 1

2 |χ(L)|, and
for χ(L) ≥ 0, either s(L) = 1

2χ(L) or s(L) = 1
2χ(L) + 2.

The case n = 2 is due to D. Sauvaget [78]. It is interesting to compare Theo-
rem 5.4 with the results of [17, 19] which show that if n is even, then the standard
n-sphere is the only homotopy n-sphere that admits a self-transverse Lagrangian
immersion into Euclidean space with only one double point. This means, in partic-
ular, that when dim(L) is even and χ(L) > 0, then s(L) is generally not determined
by the homotopy type of L. The following result constrains the homotopy type of
a manifold for which this phenomenon may occur.

Theorem 5.5 ([20]). Let L be an even dimensional spin manifold with χ(L) > 0.
If s(L) = 1

2χ(L), then π1(L) = 1 and H2k+1(L) = 0 for all k. In particular
if dimL > 4, then L has the homotopy type of a CW-complex with χ(L) even-
dimensional cells and no odd-dimensional cells.

It is interesting to note that even for the standard odd-dimensional sphere S2k+1

the construction in Theorem 5.4 provides an immersion with a single double point of
Maslov index 1, which is different from the standard Whitney Lagrangian immersion
S2k+1 → R

4k+2, where the intersection point has index 2k+1. Using Polterovich’s
surgery [82] we then get

Corollary 5.6. There exists a Lagrangian embedding S1×S2k → R
4k+2
st for which

the generator of the first homology of positive action has non-positive Maslov index
2− 2k. In particular, there exists a Lagrangian embedding S1×S2 → R6

st with zero
Maslov class.

The problem of possible values of Maslov class for Lagrangian embeddings of
S1×Sn−1 → R2n was first discussed by Polterovich in [81,82], who also constructed
for an even n a Lagranigian embedding S1×Sn−1 → R

2n with Maslov classes n−1,
in addition to the standard Lagrangian embedding with Maslov class 2, which one
gets by resolving the double point of the standard Whitney Lagrangian immersion
Sn → R2n. For an odd n the only previously known Lagrangian embedding was
the standard embedding with Maslov class 2. We also note that Fukaya, Oh, Ohta,
and Ono proved (see [51]) that the only possible Maslov class values for Lagranigian
embeddings S1 × Sn−1 → R2n for n odd are 2 and 2− 2n.
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5.5. Flexible Stein and Weinstein manifolds.

5.5.1. Stein and Weinstein manifolds. Weinstein manifolds, which we define below,
are symplectic counterparts of Stein complex manifolds. Their symplectic tpoplogy
is another playground where the theory of loose Legendrian knots yields interesting
applications.

Definition. A Weinstein structure on an open manifold V is a triple (ω,X, φ),
where

• ω is a symplectic form on V ;
• φ : V → R is an exhausting Morse (or generalized Morse, i.e., having either
non-degenerate or birth-death critical points) function;

• X is a complete vector field which is Liouville for ω (i.e., LXω = ω) and
gradient-like for the function φ.

The quadruple (V, ω,X, φ) is then called a Weinstein manifold, and the function φ
is called a Lyapunov function for the Liouville field X.

We note that though any Weinstein structure (ω,X, φ) can be perturbed to make
the function φ Morse, in 1-parameter families of Weinstein structures birth-death
points are generically unavoidable.

We will also consider Weinstein cobordism structures. Let W be a compact ma-
nifold with boundary ∂W = ∂+W�∂−W . A Morse (or generalized Morse) function
φ : W → R is called defining if ∂±W are regular level sets of φ with φ|∂−W = minφ
and φ|∂+W = maxφ. The notion of a Weinstein cobordism (W,ω,X, φ) differs from
that of a Weinstein manifold only in replacing the condition that φ is exhausting
by the requirement that φ is a defining function, and by replacing the complete-
ness condition of X by the requirement that X is inward transverse to ∂−W and
outward transverse to ∂+W . A Weinstein cobordism with ∂−W = ∅ is called a
Weinstein domain.

In the complex geometric context, let us recall that a J-convex (see Section
4.1) function φ : V → R on a complex manifold (V, J) serves as a potential of a
Kähler metric HJ,φ(X,Y ) := gJ,φ(X,Y ) − iωJ,φ(X,Y ), where ωJ,φ = −ddCφ and
gJ,φ(X,Y ) = ωJ,φ(X, JY ). The gradient XJ,φ := ∇J,φφ of the function φ with
respect to the metric gJ,φ is a Liouville field for ωJ,φ, i.e., LXJ,φ

ωJ,φ = ωJ,φ. If
(V, J) is Stein, then for any exhausting J-convex function φ : V → R the vector
field XJ,φ can be made complete by composing φ with any function h : R → R with
positive first and second derivatives; see [8]. Assuming that this was already done,
we associate with a Stein complex manifold (V, J) together with an exhausting J-
convex (generalized) Morse function φ : V → R a Weinstein structure W(V, J, φ) =
(V, ωφ,J , XJ,φ, φ).

By a Stein cobordism structure on a cobordism W , we understand a pair (J, φ)
where J is an integrable complex structure on W and φ : W → R a defining J-
convex function. A Stein cobordism with empty ∂−W is called a Stein domain.
As in the manifold case, any Stein cobordism structure (J, φ) on W determines a
Weinstein cobordism structure W(J, φ) = (W,ωJ,φ, XJ,φ, φ).

The following result is an upgrade of Theorem 4.4.
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Theorem 5.7 ([8]). (1) Let W = (V, ω,X, φ) be a Weinstein structure. Then
there exists

- an integrable complex structure J on V for which φ is J-convex and
- a homotopy of Weinstein structures Wt = (ωt, Xt, φ) connecting W0 =
W and W1 = W(V, J, φ).

(2) Let V be a manifold of dimension 2n �= 4, let φ : V → R be an exhausting
Morse function without critical points of index > n, and let η be a non-
degenerate 2-form. Then there exists a Weinstein structure (ω,X, φ) on V
such that ω and η are homotopic as non-degenerate forms.

A similar result holds in the cobordism case.

5.5.2. Flexibility. Each Weinstein manifold or cobordism can be cut along regular
level sets of its Lyapunov function φ into Weinstein cobordisms that are elementary
in the sense that there are no trajectories of the Liouville vector field connecting
different critical points of φ. An elementary 2n-dimensional Weinstein cobordism
(W,ω,X, φ), n > 2, is called flexible if the attaching spheres of all index n handles
form in ∂−W a loose Legendrian link, i.e., each of its components is loose in the
complements of the others. A Weinstein cobordism or manifold structure (ω,X, φ)
is called flexible if it can be decomposed into elementary flexible cobordisms.

A 2n-dimensional Weinstein structure (ω,X, φ), n ≥ 2, is called subcritical if
all critical points of the function φ have index < n. Any subcritical Weinstein
structure in dimension 2n > 4 is by definition flexible.

Remark 5.8. The property of a Weinstein structure being subcritical is not pre-
served under Weinstein homotopies because one can always create a pair of critical
points of index n and n − 1. It is an open problem whether or not flexibility is
preserved under Weinstein homotopies.

The following results are proven in [8] using in a crucial way the theory of loose
Legendrian knots.

Theorem 5.9. (1) Let W = (V, ω,X, φ) be a flexible Weinstein manifold of
dimension 2n > 4. Then there exists a flexible Weinstein homotopy W =
(V, ωt, Xt, φt), t ∈ [0, 1], with W0 = W, which is fixed outside a compact set
and such that the Morse function φ1 has minimal number of critical points
allowed by the Morse theory. If φ has finitely many critical points, then the
homotopy can be made fixed at infinity.

(2) Let W0 = (ω0, X0, φ0) and W1 = (ω1, X1, φ1) be two flexible Weinstein
structures on a manifold V of dimension 2n. Suppose that ω0 and ω1 are
homotopic as non-degenerate (not necessarily closed) 2-forms. Then W0

and W1 can be connected by a homotopy Wt = (ωt, Xt, φt), t ∈ [0, 1], of
flexible Weinstein structures.

An analog of Theorem 5.9 also holds for Weinstein cobordisms. Combined with
Theorem 5.7, we also get an analog of Theorem 5.9 in the Stein case. We will
formulate it here only for Stein cobordisms.

Theorem 5.10 ([8]). (1) Let W = (W,J, φ) be a flexible Stein cobordism of
dimension 2n > 4. Then there exists a homotopy of defining J-convex
functions φt : W → R, t ∈ [0, 1], with φ0 = φ, such that the Morse function
φ1 has minimal number of critical points allowed by the Morse theory.
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(2) Any two flexible Stein cobordism structures (W,J0) and (W,J1) which are
homotopic as almost complex structures are homotopic as flexible Stein
structures.

In particular, we have the following Stein/Weinstein version of the h-cobordism
theorem.

Corollary 5.11 (Weinstein and Stein h-cobordism theorem). Any flexible Wein-
stein structure on a product cobordism W = Y × [0, 1] of dimension 2n > 4 is
homotopic to a Weinstein structure (W,ω,X, φ), where φ : W → [0, 1] is a defin-
ing function without critical points. Similarly, any flexible Stein cobordism (W,J)
which is diffeomorphic to Y × [0, 1] admits a defining J-convex function without
critical points. �

We note that the rigid methods allowed Seidel–Smith and McLean to show that
without the flexibility assumption the above claim is wrong; see [63, 83].

5.5.3. Symplectomorphisms of flexible Weinstein manifolds. Theorem 5.9 has the
following consequence for symplectomorphisms of flexible Weinstein manifolds.

Corollary 5.12. Let W = (V, ω,X, φ) be a flexible Weinstein manifold of dimen-
sion 2n > 4, and let f : V → V be a diffeomorphism such that f∗ω is homotopic
to ω through non-degenerate 2-forms. Then there exists a diffeotopy ft : V → V ,
t ∈ [0, 1], such that f0 = f , and f1 is an exact symplectomorphism of (V, ω).

Remark 5.13. Even if W is of finite type, i.e., φ has finitely many critical points,
and f = id outside a compact set, the diffeotopy ft provided by Theorem 5.12 will
be in general not equal to the identity outside a compact set.

5.5.4. Equidimensional symplectic embeddings of flexible Weinstein manifolds. The
following result about equidimensional symplectic embeddings of flexible Weinstein
domains is proven in [32] as an application of Lagrangian caps technique.

Theorem 5.14 ([32]). Let (W,ω,X, φ) be a flexible Weinstein domain with Liou-
ville form λ. Let Λ be any other Liouville form on W such that the symplectic forms
ω and Ω := dΛ are homotopic as non-degenerate (not necessarily closed) 2-forms.
Then there exists an isotopy ht : W ↪→ W such that h0 = Id and h∗

1Λ = ελ + dH
for some small ε > 0 and some smooth function H : W → R. In particular, h1

defines a symplectic embedding (W, εω) ↪→ (W,Ω).

Corollary 5.15 ([32]). Let (W,ω,Z, φ) be a flexible Weinstein domain, and let
(X,Ω) be any symplectic manifold of the same dimension. Then any smooth em-
bedding f0 : W ↪→ X, such that the form f∗

0Ω is exact and the differential df :
TW → TX is homotopic to a symplectic homomorphism, is isotopic to a symplec-
tic embedding f1 : (W, εω) ↪→ (X,Ω) for some small ε > 0. Moreover, if Ω = dΛ,
then the embedding f1 can be chosen in such a way that the 1-form f∗

1Λ − iZω
is exact. If, moreover, the Liouville vector field dual to Λ is complete, then the
embedding f1 exists for an arbitrarily large constant ε. �

5.6. Topology of polynomially and rationally convex domains. We finish
this section by discussing the implications of the above flexibility results for a prob-
lem of a high-dimensional complex analysis concerning the topology of polynomially
and rationally convex domains.
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Polynomial, rational, and holomorphic convexity. Recall the following complex an-
alytic notions of convexity for domains in Cn. For a compact set K ⊂ Cn, one
defines its polynomial hull as

K̂P := {z ∈ C
n
∣∣∣ |P (z)| ≤ max

u∈K
|P (u)| for all complex polynomials P on C

n},

and its rational hull as

K̂R := {z ∈ C
n
∣∣∣ |R(z)| ≤ max

u∈K
|R(u)| for all rational functions R =

P

Q
, Q|K �= 0}.

Given an open set U ⊃ K, the holomorphic hull of K in U is defined as

K̂U
H := {z ∈ U

∣∣∣ |f(z)| ≤ max
u∈K

|f(u)| for all holomorphic functions f on U}.

A compact set K ⊂ Cn is called rationally (resp. polynomially) convex if K̂R =

K (resp. K̂P = K). An open set U ⊂ Cn is called holomorphically convex if

K̂U
H is compact for all compact sets K ⊂ U . A compact set K ⊂ Cn is called

holomorphically convex if it is the intersection of its holomorphically convex open
neighborhoods. We have

polynomially convex =⇒ rationally convex =⇒ holomorphically convex.

According to a theorem of E. Levi [58], any holomorphically convex domain
W ⊂ Cn has weakly i-convex (= pseudo-convex) boundary ∂W . The converse
statement that the interior of any domain in Cn with weakly i-convex boundary
is holomorphically convex is known as the Levi problem. It was resolved in an
increasingly more general context in the series of papers begining from K. Oka’s
paper [73] to the paper [16] of F. Docquier and H. Grauert.

We call a domain W ⊂ Cn i-convex if its boundary is i-convex. Note that
any weakly i-convex domain in C

n can be C∞-approximated by a slightly smaller
i-convex one.

Topology of polynomially and rationally convex domains. Any i-convex domain
W ⊂ C

n admits a defining i-convex function, so in particular it admits a defin-
ing Morse function without critical points of index > n (see, e.g., [8]). It follows
that any holomorphically, rationally, or polynomially convex domain has the same
property. We already stated above, see Theorem 4.4, that for n ≥ 3, any domain
in C

n with such a Morse function is smoothly isotopic to an i-convex one.
It turns out, in the spirit of Theorem 4.4, that for n ≥ 3 there are no additional

constraints on the topology of rationally convex domains.

Theorem 5.16 ([9]). A compact domain W ⊂ Cn, n ≥ 3, is smoothly isotopic to a
rationally convex domain if and only if it admits a defining Morse function without
critical points of index > n.

The next result gives necessary and sufficient constraints on the topology of
polynomially convex domains.

Theorem 5.17 ([9]). A compact domain W ⊂ Cn, n ≥ 3, is smoothly isotopic
to a polynomially convex domain if and only if it satisfies the following topological
condition:

(T) W admits a defining Morse function without critical points of index > n,
and Hn(W ;G) = 0 for every abelian group G.
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The “only if” part is well known; see [2] and also [35]. Note that, in view of the
universal coefficient theorem, condition (T) is equivalent to the condition

(T’) W admits a defining Morse function without critical points of index > n,
Hn(W ) = 0, and Hn−1(W ) has no torsion.

Further analysis of condition (T) yields

Proposition 5.18 ([9]). (a) If W is simply connected, then condition (T) is equiv-
alent to the existence of a defining Morse function without critical points of index
≥ n.

(b) For any n ≥ 3 there exists a (non-simply connected) domain W satisfying
condition (T) with πn(W,∂W ) �= 0. In particular, W does not admit a defining
function without critical points of index ≥ n.

Theorems 5.16 and 5.17 are consequences of the following more precise result for
flexible Stein domains:

Theorem 5.19 ([9]). Let (W,J) be a flexible Stein domain of complex dimension
n ≥ 3, and let f : W ↪→ Cn be a smooth embedding such that f∗i is homotopic
to J through almost complex structures. Then (W,J) is deformation equivalent to
a rationally convex domain in C

n. More precisely, f is smoothly isotopic to an
embedding g : W ↪→ Cn such that g(W ) ⊂ Cn is rationally convex, and g∗i is Stein
homotopic to J . If in addition Hn(W ;G) = 0 for every abelian group G, then g(W )
can be made polynomially convex.

We note that the proofs of all the above results concerning polynomial and ra-
tional convexity are based, in addition to the theory of flexible Weinstein manifolds
and analytic techniques from the book [8], on the following complex analytic char-
acterization of the polynomial and rational convexity.

The following classical criterion for polynomial convexity goes back to K. Oka’s
paper [73] (see also [79, Theorem 1.3.8]).

Criterion 5.20. An i-convex domain W ⊂ Cn is polynomially convex if and only
if there exists an exhausting i-convex function φ : Cn → R such that W = {φ ≤ 0}.

To formulate a criterion for rational convexity, consider the following condition
on a J-convex domain W in a complex manifold (X, J):

(R) There exists a J-convex function φ : W → R such that W = {φ ≤ 0}, and
the form −ddCφ on W extends to a Kähler form ω on the whole X.

The following criterion for rational convexity was proved by S. Nemirovski [69]
as a corollary of a result of J. Duval and N. Sibony [18, Theorem 1.1].

Criterion 5.21. An i-convex domain W ⊂ C
n is rationally convex if and only if

it satisfies condition (R).

The situation in complex dimension 2 is more complicated. The following theo-
rem of S. Nemirovski and K. Siegel gives necessary and sufficient conditions for a
disc bundle over a (not necessarily orientable) surface to be realizable as a rationally
convex domain in C2. Recall that a 2-disc bundle over a non-orientable surface with
the orientable total space has a well-defined integer valued Euler number e; see [89].
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Let D(χ, e) denote the orientable D2-bundle over an orientable surface of Euler

characteristic χ, with Euler number e. Let D̃(χ, e) denote the non-orientable bundle
over a non-orientable surface of Euler characteristic χ, with Euler number e.

Theorem 5.22 ([70]). The following manifolds can be realized as rationally convex
domains in C2:

• D(χ, 0) for χ �= 2;

• D̃(χ, e) for (χ, e) �= (1,−2) and e ∈ {2χ−4, 2χ+4, . . . ,−2χ−4+4[χ/4+1]}.
Moreover, these are the only possibilities.

5.7. Classification of overtwisted contact structures in all dimensions. It
was recently discovered that there exists a high-dimensional analog of overtwisted
contact structures (see Section 4) and that the extension h-principle and the cor-
responding classification result holds in all dimensions, not only in dimension 3.

Let us recall that a formal homotopy counterpart of a contact structure is an
almost contact structure. This is a defined up to a scalar factor pair (λ, ω), where
λ is non-vanishing 1-form on M , possibly with local coefficients in a non-trivial 1-
bundle, and ω is a non-degenerate 2-form on the hyperplane field ξ = {α = 0} with
coefficients in the same local system. In the coorientable case, i.e., when TM/ξ is
trivial, the existence of almost contact structure is equivalent to the existence of
a stable almost complex structure on M , i.e., a complex structure on the bundle
TM ⊕ ε1, where ε1 is the trivial line bundle over M .

We already mentioned above that in 1969 M. Gromov [45] proved a parametric
h-principle for contact structures on an open manifold M : any almost contact
structure is homotopic to a genuine one, and two contact structures are homotopic
if they are homotopic as almost contact structures.

For 3-dimensional closed manifolds J. Martinet [61] and R. Lutz [60] proved the
non-parametric existence h-principle for 3-manifolds. Then D. Bennequin [4] dis-
covered a first contact rigidity result: the 1-parametric h-principle fails for contact
structures on S3. As was already mentioned in Section 4, building on Bennequin’s
work, in [23] the author introduced a dichotomy of 3-dimensional contact manifolds
into tight and overtwisted and established a parametric h-principle for overtwisted
contact structures.

A lot of progress was achieved in the last three decades in the direction of con-
tact rigidity. Tight contact structures were also classified on several classes of 3–
manifolds; see e.g. [26,42,53,54]. V. Colin, E. Giroux, and K. Honda in [11] proved
that any atoroidal contact 3-manifold admits at most finitely many non-isotopic
tight contact structures. Symplectic Field Theory provided powerful invariants for
distinguishing contact structures on manifolds of all dimensions; see [29], [85], [63],
et al.

The flexible side also had a number of success stories. In particular, the existence
h-principle for a closed 5-manifold was gradually established, beginning from the
work of H. Geiges [36,37] and H. Geiges and C.B. Thomas, [39,40] and followed by
the work of R. Casals, D. M. Pancholi, and F. Presas [10] and J. Etnyre [33]. For
manifolds of dimension > 5 the results were more scarce. The work [24] implied
existence of contact structures on all closed (2n+1)-dimensional, n > 1, manifolds
which bound manifolds of homotopy type of (n + 1)-dimensional cell complexes.
F. Bourgeois [7] proved, using work of E. Giroux [41], that for any closed contact
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Figure 5.2. An overtwisted disk with its characteristic foliation

manifold M and any surface Σ with genus at least one, the product M × Σ ad-
mits a contact structure. This positively answered a long-standing problem about
existence of contact structures on tori of dimension 2n+ 1 > 5.

The following recently proved results significantly advanced the flexible side of
the contact story in higher dimensions.

Theorem 5.23 ([6]). Let M be a (2n+1)-manifold, and let A ⊂ M be a closed set.
Suppose that M and M \A are connected. Let ξ be an almost contact structure on
M which is genuine on OpA ⊂ M . Then ξ is homotopic relative to A to a genuine
contact structure. In particular, any almost contact structure on a closed manifold
is homotopic to a genuine contact structure.

It turned out that the overtwisting phenomenon can be generalized to higher
dimensions as well. Without giving a precise definition, we will just say here that a
contact manifold (M, ξ) is called overtwisted if it admits a contact embedding of a
piecewise smooth 2n-disc Dot with a certain model germ ζot of a contact structure;
see Figure 5.2.

Theorem 5.24 ([6]). On any closed manifold M any almost contact structure is
homotopic to an overtwisted contact structure which is unique up to isotopy.

To formulate a more precise result consider a (2n+1)-dimensional manifold M , a
closed subset A, and an almost contact structure ξ0 on M that is a genuine contact
structure on A, and define Contot(M ;A, ξ0) to be the space of contact structures on
M that are overtwisted on M \A and that coincide with ξ0 on OpA. The notation
cont(M ;A, ξ0) stands for the corresponding formal object, i.e., the space of almost
contact structures that agree with ξ0 on Op A. We denote by j the inclusion
map j : Contot(M ;A, ξ0) → cont(M ;A, ξ0). We denote by Contot(M ;A, ξ0, φ) and
contot(M ;A, ξ0, φ) the subspaces of Contot(M ;A, ξ0) and cont(M ;A, ξ0) of contact
and almost contact structures for which a fixed embedding φ : Dot → M \ A is a
contact embedding (Dot, ζot) → (M, ξ).

Theorem 5.25 ([6]). If M \ A is connected, then the inclusion map induces an
isomorphism

j∗ : π0(Contot(M ;A, ξ0)) → π0(cont(M ;A, ξ0)),
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and moreover the map

j : Contot(M ;A, ξ0, φ) → contot(M ;A, ξ0, φ)

is a (weak) homotopy equivalence.

As an application of Theorem 5.24 we provide an explicit classification of over-
twisted contact structures on spheres S2n+1. Note that almost contact structures on
the sphere S2n+1 are classified by the homotopy group π2n+1(SO(2n+2)/U(n+1)).
Hence, Theorem 5.24 implies that the elements of this group also enumerate isotopy
classes of overtwisted contact structures on S2n+1.

The following lemma computes this group.

Lemma 5.26 (Bruno Harris, [52]).

π2n+1(SO(2n+ 2)/U(n+ 1)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z/n!Z, n = 4k;

Z, n = 4k + 1;

Z/n!
2 Z, n = 4k + 2;

Z⊕ Z/2Z, n = 4k + 3.

In particular, on spheres S8k+1, k > 0, there are exactly (4k)! different over-

twisted contact structures, on spheres S8k+5, k ≥ 0, there are (4k+2)!
2 different

overtwisted contact structures, while on all other spheres there are infinitely many.
For instance, there is a unique overtwisted contact structure on S5.

It is interesting to note that S5 has infinitely many tight, i.e., non-overtwisted
contact structures. Besides the standard contact structure, these are examples given
by Brieskorn spheres (see [85]). The full classification of tight contact structures
on any manifold of dimension > 3 is an open problem.

We note that there were many proposals for defining the overtwisting phenom-
enon in dimension greater than three. The overtwistedness in the above sense is
stronger than any other possible notions. Namely, any exotic phenomenon, e.g., a
plastikstufe [71], can be found in any overtwisted contact manifold. Indeed, sup-
pose we are given some exotic model (A, ζ) which is compact contact manifold
with boundary which formally embeds into (M, ξot). Given any smooth embedding
A ↪→ M , there is an almost contact structure on M which is equal to ζ on A and
homotopic to ξot through almost contact structures. Theorem 5.23 implies this
almost contact structure can be homotoped relative to A to a contact structure ξ
on M . Theorem 5.25 and Gray’s theorem [44] implies that ζ is isotopic to ξot.

In particular, the known results about contact manifolds with a plastikstufe apply
to overtwisted manifolds as well:

• overtwisted contact manifolds are not symplectically fillable [71];
• the Weinstein conjecture holds for any contact form defining an overtwisted
contact structure on a closed manifold [1];

• any Legendrian submanifold whose complement is overtwisted is loose. Con-
versely, any loose Legendrian in an overtwisted ambient manifold has an
overtwisted complement [66].

We also point out the following corollary concerning iso-contact embeddings into
an overtwisited contact manifold

• Let (N, ζ) and (M, ξ) be two contact manifolds, so that (M, ξ) is overtwisted
and either N is open or dimN < dimM . Let Φ : TN → TM be an iso-
contact bundle homomorphism (i.e., Φ∗ζ ⊂ ξ respects the linear conformal
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symplectic structure) covering an embedding f : N → M such that df,Φ :
TN → TM are homotopic as injective bundle homomorphisms. Then f is

isotopic to an iso-contact embedding f̃ : (N, ζ) → (M, ξ).

6. Next steps of symplectic flexibility

6.1. Holomorphic curves or nothing dichotomy. Since Gromov’s seminal pa-
per [46] holomorphic curve technique, sometimes applied in a very subtle and unex-
pected way, brought tremendous progress on the side of symplectic rigidity. In fact,
all other methods and techniques, such as generating functions, Floer homological
techniques etc., are different variations on the theme of holomorphic curves. The
multiple attempts to introduce genuinely different methods so far did not bring to
life anything promising.

Hence, I propose the “holomorphic curves or nothing” principle: If one cannot
disprove a flexible h-principle type conjecture using holomorphic curve techniques
and its derivatives, then it should be true. In fact, this principle guided the authors
in the work [6] because there was no feasible way to use holomorphic curves in
overtwisted contact manifods to establish any rigidity results.

Here are a few very optimistic conjectures implied by the above principle.

6.2. Symplectic structures on closed manifolds. Let us recall Problem 3.1(1):
When does a germ of a symplectic or contact structure along the boundary of an
n-ball B extend to B? In the contact case Theorem 5.25 provides a flexible answer
to this question.

In the symplectic case there is, first of all, an additional volume obstruction.
Namely, given a germ ω of a symplectic structure along a boundary ∂D2n of a ball
D2n, n > 1, we observe that the form ω is exact, ω = dη, and if ω extends as a
symplectic form to D2n, then by Stokes’ theorem∫

∂D2n

η ∧ ωn−1 =

∫
D2n

ωn > 0,

where the left-hand side is independent of the choice of a primitive η. But even
with this modification, an extension h-principle for symplectic structures fails in
all dimensions > 1, as a holomorphic curve argument, similar to Gromov’s proof of
his famous non-squeezing theorem, [46], shows. It seems that this argument never
appeared in print, so we sketch it here. In the standard symplectic space

(R2n, ωst = dp1 ∧ dq1 + · · ·+ dpn ∧ dqn),

consider three parallelepipeds

A := {|pi|, |qi| ≤ 1, i = 1, . . . , n− 1, |qn| ≤ 1, 0 ≤ pn ≤ 1},

B := {|pi|, |qi| ≤ 2, i = 1, . . . , n− 1, |qn| ≤ 2, 0 ≤ pn ≤ 1

4
},

and

C := {|pi|, |qi| ≤ 1, i = 1, . . . , n− 1, |qn| ≤ 1, 0 ≤ pn ≤ 1

8
}.

Note that VolumeA = 22n−1 < VolumeB = 42n−2, while A has a larger Gromov’s
width: w(A) = 2 > w(B) = 1. Hence, Gromov’s non-squeezing theorem implies
that there is no symplectic embedding A → B. The parallelepipeds A,B, and C
share a common boundary piece E := {pn = 0, |pi|, |qi| ≤ 1, i = 1, . . . , n− 1, , 0 ≤
pn ≤ 1}, so that the remaining parts of the boundary of A and B form an immersed
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piecewise smooth (2n − 1)-sphere Σ̃ := (∂A \ IntE) ∪ (∂B \ IntE). Similarly, the
remaining parts of the boundary of C and B form an embedded piecewise smooth
(2n − 1)-sphere Σ := (∂C \ IntE) ∪ (∂B \ IntE) which bounds a ball G. There

exists a smooth immersion h : Op Σ → Op Σ̃ such that h(Σ) = Σ̃. We claim that
the symplectic structure h∗ω on Op Σ does not extend as a symplectic structure
to G while neither homotopic nor volume obstructions exist for such an extension.
Indeed, suppose that such an extension ω̃ does exist. Then one can glue back (A,ω)
to (G, ω̃) using a symplectomorphism h on Op (∂A \ E). The resulting symplectic
manifold

(H, ω̂) := (G, ω̃)∪
h
(A,ω)

contains the parallelepiped (A,ω), while near its boundary ∂H it is symplecto-
morphic to (B,ω). It remains to notice that the proof of Gromov’s non-squeezing
theorem works without any changes for symplectic embeddings into any aspherical
symplectic manifold which is symplectomorphic to a polydisc near its boundary.
Hence, the symplectic structure h∗ω on Op Σ is not extendable to G.

The existence h-principle for symplectic structures on closed manifolds is also
known to be wrong in dimension 4; see [84]. However, in higher dimensions there
are no known obstructions, and even no feasible approaches how such obstruction
could be constructed. Could it be then that this problem in dim > 4 belongs to
the flexible world? In other words,

Conjecture 6.1. On any manifold M of dimension n = 2k > 4 with a cohomology
class η ∈ H2(M) with ηk �= 0 and a non-degenerate 2-form ω0, there exists a sym-
plectic form ω homotopic to ω0 through non-degenerate forms, whose cohomology
class [ω] can be deformed to η keeping its k-th power non-vanishing.

As we already pointed out above, the analogous statement is wrong in dimension
4. However, could it be that it is still virtually true?

Conjecture 6.2. Given any 4-manifold M with a cohomology class η ∈ H2(M ;Z)
with η2 �= 0 and a non-degenerate 2-form ω0, one can find an orientable surface
F ⊂ M which realizes a homology class dual to Nη for a sufficiently large N , and
such that a certain branch cover of M along F admits a symplectic structure for
which the branching locus is symplectic, whose cohomology class is the pullback of
η and which is homotopic to the pullback of the 2-form ω0 through non-degenerate
forms.

6.3. Symplectic caps. Holomorphic curve methods also seem to be helpless for
symplectic manifolds with an overtwisted concave contact boundary. We say that a
compact symplectic manifold (X,ω) has a concave contact boundary (Y, ξ) if near
Y the form ω is exact: ω = dλ, the contact structure ξ is defined by the form
λ|Y , and the Liouville vector field Z which is ω-dual to λ, ι(Z)ω = λ, is inward
transverse to Y = ∂X.

Conjecture 6.3. Symplectic manifolds with a concave overtwisted contact bound-
ary satisfy an h-principle. In particular, suppose we are given

• a compact 2n-dimensional manifold X with boundary Y ;
• a non-degenerate (not necessarily closed) 2-form ω which is exact near Y ;
• an inward transverse to Y Liouville vector field Z for ω|Op Y , i.e., ω =
d(λ := ι(Z)ω) on Op Y , such that the contact structure ξ = {λ|Y = 0} is
overtwisted;
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• a closed 2-form η on X such that η|OpY = ω|Op Y and∫
X

ηn >

∫
Y

λ ∧ (dλ)n−1.

Then there exists a homotopy ωt, t ∈ [0, 1], connecting ω0 = ω and a symplectic
form ω1, such that ωt is non-degenerate on X, and ωt = ω on Op Y for all t ∈ [0, 1].

Conjecture 6.3 would imply the following weaker version of Conjecture 6.1 which
potentially could hold also in dimension 4.

Conjecture 6.4. Under assumptions of Conjecture 6.1, the required symplectic
form ω on X could be constructed with just one singular point, so that near this point
ω is symplectomorphic to the negative part of the symplectization of an overtwisted
contact structure on S2n−1 from the standard almost contact homotopy class.

We note that according to Theorem 5.24 such a contact structure is unique. A
similar h-principle may even hold for symplectic cobordisms with an overtwisted
concave boundary (or even more optimistically, for the symplectic extension prob-
lem). In particular, it seems plausible that there exists a symplectic concordance,
i.e., a symplectic structure on S2n−1× [0, 1], n > 1, between the overtwisted contact
structure on the concave side S2n−1 × 0 and the standard one on the convex one
S2n−1 × 1.

Note that for n = 2, a symplectic cobordism (rather that a concordance) does
exist between an overtwisted contact sphere on the concave side and the standard
contact sphere on the convex one; see, e.g., [34].

6.4. How far could Arnold conjectures go? The most optimistic form of the
Arnold conjecture concerning the lower bound for the number of intersection points
of an exact Lagrangian submanifold L ⊂ T ∗M of a closed manifold M with its 0-
section asserts that the number of intersection points, assuming the transversality
of the intersection, is bounded below by the minimal number Morse(M) of critical
points of a Morse function on M . However, the best lower bound that is known
in the case when L is Lagrangian isotopic to the 0-section is in terms of the stable
Morse number Morsest(M), i.e., the minimal number of critical points of a function
on M × Rq which, outside a compact set, coincides with the pullback of a non-
degenerate quadratic form on R

q. The numbers Morse(M) and Morsest(M) are
known to be different (see, e.g., [14]). It does not seem feasible to the author
that holomorphic curve methods could be used to prove an estimate in terms of
Morse(M). Hence, the “holomorphic curves or nothing” dichotomy suggests that if
Morse(M) > Morsest(M), then there should exist an exact Lagrangian submanifold
L ⊂ T ∗(M), possibly even Hamiltonian isotopic to the 0-section which intersects
M transversely in less than Morse(M) points.
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[71] Klaus Niederkrüger, The plastikstufe—a generalization of the overtwisted disk to higher
dimensions, Algebr. Geom. Topol. 6 (2006), 2473–2508, DOI 10.2140/agt.2006.6.2473.
MR2286033 (2007k:57053)

[72] K. Niederkruger and O. van Koert, Every Contact Manifolds can be given a Nonfillable
Contact Structure, Int. Math. Res. Notices, 2009, 4463–4479.

[73] Kiyoshi Oka, Sur les fonctions analytiques de plusieurs variables. IX. Domaines finis sans
point critique intérieur (French), Jap. J. Math. 23 (1953), 97–155 (1954). MR0071089

(17,82b)
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