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ON THE GEOMETRY OF OUTER SPACE

KAREN VOGTMANN

Abstract. Outer space is a space of graphs used to study the group Out(Fn)
of outer automorphisms of a finitely generated free group. We discuss an
emerging metric theory for Outer space and some applications to Out(Fn).

1. Introduction

Outer space was introduced in the early 1980s as a tool for studying the group
Out(Fn) of outer automorphisms of a finitely generated free group [16]. It is a
contractible space on which Out(Fn) acts with finite stabilizers, and it should be
thought of as analogous to a symmetric space with the action of a non-uniform
lattice or to the Teichmüller space of a surface with the action of the mapping class
group of the surface. Outer space also has close connections to many other areas of
mathematics, from Kontsevich’s graph homology theory to modular forms, tropical
geometry, and the mathematics of phylogenetic trees.

Outer space is a parameter space for certain objects equipped with metrics, but
historically the space itself and its quotient by Out(Fn) have been studied mostly
by topological and combinatorial methods. These methods have yielded (and con-
tinue to yield) many new results about Out(Fn), including information about its
finiteness properties, subgroup structure, algorithmic properties, and cohomology.
Striking parallels have emerged between Out(Fn) and both lattices and mapping
class groups, and we would like to understand how far these parallels extend. An
example particularly relevant to geometric group theory is the question of whether
a group which has (approximately) the same geometry as Out(Fn) must be (almost)
isomorphic to Out(Fn); the technical term is whether Out(Fn) is quasi-isometrically
rigid. In the cases of lattices and mapping class groups, quasi-isometric rigidity
and other results were established using the geometry of symmetric spaces and
Teichmüller spaces in essential ways.

Outer space is not a manifold, so some care is required when attempting to
use geometric tools to study it. In the past few years a metric theory of Outer
space has begun to emerge based on a natural non-symmetric metric. The resulting
geometric point of view is yielding new information about Out(Fn) as well as elegant
new proofs and better understanding of older results, and it is strengthening the
analogy between Outer space and the classical theories of symmetric spaces and
Teichmüller spaces.

Many people are now contributing to the geometric theory of Outer space, and
I have provided a cursory guide to some of the literature in the last section. In
this short article I have chosen to sketch primarily the work of Yael Algom-Kfir,

Received by the editors May 31, 2014.
2010 Mathematics Subject Classification. Primary 20F65.

c©2014 American Mathematical Society

27

http://www.ams.org/bull/
http://www.ams.org/bull/
http://www.ams.org/jourcgi/jour-getitem?pii=S0273-0979-2014-01466-1


28 KAREN VOGTMANN

Mladen Bestvina, and Mark Feighn. For the interested reader, a more thorough
introduction to their work can be found in Bestvina’s lecture notes from his Summer
2012 course at the Park City Mathematics Institute [7].

2. Definitions of Outer space

For the most part we will think of Outer space as a space of marked metric
graphs, where the metric on a graph is specified by giving each edge a positive real
length, and the marking identifies the fundamental group of the graph with the free
group Fn. However, there are several equivalent ways to define Outer space, and we
will begin with the one which is quickest to state. This is in terms of actions of Fn

on metric simplicial trees, i.e., contractible one-dimensional simplicial complexes
metrized so that each edge is isometric to an interval of the real line. An action
is called minimal if it has no invariant subtree. Using this concept, we can give a
succinct definition of Outer space, though we will temporarily duck the question of
what topology to put on it.

Definition 2.1. (Unprojectivized) Outer space in rank n is the space of free minimal
actions of Fn by isometries on metric simplicial trees.

Here two actions are considered the same if there is an equivariant isometry
between the trees. The notation cvn has become standard for this space. The
projectivized version is denoted CVn, i.e., in CVn two actions are equivalent if
they differ only by scaling the tree’s metric. Instead of taking equivalence classes,
one can also think of a point in CVn as normalized so that the “volume” of the
quotient graph (i.e., the sum of its edge lengths) is one. In most of the remainder
of this article this is the convention we will adopt.

The action of Out(Fn) on cvn or CVn is also easily described using this defini-
tion. Given a point ρ : Fn → Isom(T ) and an automorphism φ, we get a new point
by composing ρ ◦ φ : Fn → Isom(T ). This induces an action of Out(Fn) since inner
automorphisms give equivariantly isometric actions, i.e., they fix all of cvn. Note
that this is a right action, and acting by a group element does not affect the metric
on the tree.

2.1. Definition in terms of graphs. Here is how to translate the definition of
CVn given above in terms of graphs. The graph corresponding to an action of
Fn on a tree T is the quotient of T by the action. The fact that we are only
considering minimal actions implies that these quotient graphs are compact and
have no univalent or bivalent vertices. If we choose a basis for Fn and a basepoint
for T , then arcs joining the basepoint to its images under the generators of Fn

descend to immersed loops in the quotient graph Γ. Designating these loops as the
images of the petals of a rose Rn gives a map g : Rn → Γ called a marking which
identifies π1(Rn) ≡ Fn with π1(Γ) (see Figure 1). The fact that equivariantly
isometric trees are the same point in CVn can be stated in terms of marked graphs
by defining (g,Γ) and (g′,Γ′) to be equivalent if there is an isometry h : Γ → Γ′

with h ◦ g homotopic to g′. Since we do not want this definition to depend on the
choice of basepoint, we do not require that this homotopy preserve basepoints.

An element φ ∈ Out(Fn) acts by changing the marking, i.e., if we represent φ
by a homotopy equivalence f : Rn → Rn, then (g,Γ) · φ = (g ◦ f,Γ).
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Figure 1. A marked graph

Figure 2. Outer space in rank 2

2.2. Simplicial decomposition and topology. The description of CVn in terms
of graphs makes it easy to decompose CVn into a union of open simplices. Figure 2
is a picture of this decomposition for n = 2. The simplex containing (g,Γ) is
formed by assigning all possible positive edge lengths to the edges of Γ, subject to
the condition that the volume must be one. The simplex containing (g′,Γ′) is a face
of the one containing (g,Γ) if (g′,Γ′) can be obtained from (g,Γ) by collapsing some
edges of Γ to points; the face of the simplex is obtained by assigning those edges
length zero. Some faces of each simplex are missing, since you cannot collapse a loop
without changing the rank of the fundamental group. If we formally add all of the
“missing faces”, we obtain a simplicial complex called the simplicial completion of
Outer space. The simplices which are not in CVn are said to be at infinity. In rank
2 all of the vertices are at infinity, as well as two edges of each “barbell” simplex.
(We remark that the term “simplicial completion” is used slightly differently in [1],
though the paper proves that her notion agrees with the one used here.)

There are several natural ways of topologizing CVn, but they are all equivalent
to giving it the quotient topology which arises from its description as the disjoint
union of open simplices modulo the above face relations.

2.3. Definition in terms of sphere systems. Outer space CVn can also be
described using spheres embedded in a doubled handlebody Mn (i.e., Mn is the
connected sum of n copies of S1 × S2). Since π1(Mn) = Fn, any diffeomorphism
of M induces an (outer) automorphism of Fn. Laudenbach [31] showed that the
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kernel of the resulting map from the group π0(Diff(Mn)) of isotopy classes of dif-
feomorphisms to Out(Fn) is a finite 2-group which acts trivially on isotopy classes
of embedded spheres. Thus one may build a simplicial complex with an Out(Fn)-
action whose vertices are isotopy classes of embedded spheres. A set of k such
vertices spans a k-simplex if spheres representing the vertices can be embedded
disjointly into Mn; this is called the sphere complex Sn.

Remark 2.2. In the above definition, if we replace “isotopy classes of spheres em-
bedded in a doubled handlebody Mn” by “isotopy classes of simple closed curves
embedded in a surface S”, we obtain the usual definition of the curve complex C(S)
associated to a surface of genus g > 1.

Hatcher shows that CVn embeds into the the sphere complex Sn as a union of
open simplices, corresponding to sphere systems with simply connected comple-
mentary pieces [27]. The marked graph corresponding to a sphere system is simply
the graph dual to the spheres, with one vertex in each complementary piece and one
edge intersecting each sphere. Barycentric coordinates on the simplex correspond-
ing to the sphere system determine edge-lengths for the graph, and the marking
comes from the embedding of the graph into Mn. The open simplices coincide with
those we described in the last section.

The sphere system model has advantages over other models, including the fact
that different points of CVn are represented by sets of spheres in the same manifold,
giving rise to natural ways of comparing them (e.g., counting the number of inter-
section circles), natural paths between them (called surgery paths), and the natural
way of completing Outer space to a simplicial complex (the sphere complex).

3. The Lipschitz metric on Outer space

Thurston studied a non-symmetric metric on Teichmüller space which measures
the infimum of Lipschitz constants for a homotopy class of homeomorphisms from
one hyperbolic surface to another [40]. He proved basic properties of this metric,
showed that one can measure distance by looking at how much curves are stretched,
described geodesics, and used the metric to give coordinates for Teichmüller space.
Bestvina was perhaps the first to suggest transporting this idea to Outer space, and
a nice account of the basic properties of this metric can be found in his 2012 PCMI
lecture notes [7], where he attributes some of these as unpublished results of his
former student Tad White. Francaviglia and Martino published the first systematic
study of this metric in [17].

3.1. Definition of the metric. Let f : X → X ′ be a map of metric spaces. Recall
that the Lipschitz constant (or, more informally, the maximal stretch) of f is

L(f) = sup
x,y∈X

dX′(f(x), f(y))

dX(x, y)
.

If X is compact, we may replace sup with max in this definition.

Definition 3.1. The Lipschitz distance between two points (g,Γ) and (g′,Γ′) of
CVn is

d((g,Γ), (g′,Γ′)) = inf
f

log(L(f)),

where the infimum is taken over all f : Γ → Γ′ with f ◦ g � g′.
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Figure 3. A difference of markings f

Since Γ and Γ′ are compact, the Arzelà-Ascoli theorem says that the limit of a
minimizing sequence exists, so we may replace inf with min in this definition.

We can decrease the Lipschitz constant of a map f : Γ → Γ′ by tightening to make

the restriction of f to each edge of Γ a linear immersion, i.e., any lift f̃ : Γ̃ → Γ̃′ of

f to universal covers maps edges of Γ̃ linearly to arcs in Γ̃′. Thus for the purposes
of computing the Lipschitz distance between two points of CVn, we need only
consider maps with this property. Such a map f is called a difference of markings
from (g,Γ) to (g′,Γ′) if f ◦ g � g′ (see Figure 3). Note that if two points of Outer
space are in the same open simplex, then there is a difference of markings which is
combinatorially the identity map.

In the rest of this article we will usually omit the marking when denoting a point
of CVn, referring to (g,Γ) simply as Γ unless it is strictly necessary to specify the
marking.

3.2. Calculating the Lipschitz distance. Although the definition of Lipschitz
distance involves taking the infimum over an infinite family of maps, it turns out
that in practice it is very easy to calculate the distance by a finite process using
any map in the family. To explain this we first need a few definitions.

A map f : Γ → Γ′ with minimal Lipschitz constant in its homotopy class is
called an optimal map. Since Γ and Γ′ are compact, optimal maps exist by the
Arzelà-Ascoli theorem. For any optimal map f : Γ → Γ′ the tension subgraph Δ(f)
is the subgraph of Γ spanned by all edges which are stretched by exactly L(f). A
direction at a point x in a graph Γ is a germ of geodesic paths starting at x (so
there are two directions at most points, but the number of directions at a vertex is
equal to the valence of the vertex).

Proposition 3.2 ([7, 17]). Let Γ and Γ′ be two points in CVn, and let f : Γ → Γ′

be an optimal difference of markings with the additional condition that Δ(f) is
minimal, i.e., there is no optimal f ′ homotopic to f such that Δ(f ′) is a proper
subgraph of Δ(f). Then

(1) Δ(f) is a core graph, i.e., it has no univalent vertices.
(2) Δ(f) has no vertex v where all directions at v map to the same direction

at f(v), and
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(3) d(Γ,Γ′) is equal to the supremum, over all loops α immersed in Γ, of

log

(
length(f(α))

length(α)

)
.

This proposition implies that we can measure the distance using any map ho-
motopic to f by measuring the shortest loop homotopic to f(α) for each immersed
loop α. This simplifies things considerably but still seems to involve looking at
infinitely many loops. We observe, however, that the supremum in statement (3)
must actually be realized on some loop which crosses each edge at most twice,
since if a maximally stretched loop crosses an edge twice in the same direction it
has a subloop with the same stretch. With a little more thought one can see that
the supremum must be realized on either an embedded loop or an immersed loop
which travels once around an embedded figure-eight or an embedded barbell (see
Figure 4). Such loops are called candidate loops, and we see that we need only con-
sider these (finitely many) candidate loops and their images to find the supremum.
We collect these observations in the following corollary.

Corollary 3.3. The distance d(Γ,Γ′) can be computed from any difference of mark-
ings f : Γ → Γ′ by measuring the length of each candidate loop α in Γ and the length
of the shortest loop in the homotopy class of f(α).

3.3. Peculiarities of the Lipschitz distance. It is not difficult to show that the
Lipschitz distance obeys two of the axioms for a metric. The triangle inequality
follows because Lipschitz constants submultiply i.e., L(g ◦ f) ≤ L(g)L(f). The fact
that d(Γ,Γ′) = 0 if and only if Γ = Γ′ follows because a surjective map between
two volume 1 graphs which stretches nothing must be an isometry.

This distance function fails dramatically to be symmetric, however. A simple
example is given in Figure 5, which shows two 2-petaled roses ρ1 and ρ2 in the
same simplex of CV2. The first one, ρ1, has edge lengths {1/2, 1/2}, and ρ2 has
edge-lengths {ε, 1 − ε} for some small ε. The combinatorial identity map ρ1 → ρ2
shrinks one edge and at most doubles the other, showing d(ρ1, ρ2) < log(2), while
any map homotopic to the combinatorial identity in the opposite direction stretches
the loop of length ε by at least 1/2ε, so d(ρ2, ρ1) ≥ − log(2ε). So this distance is not
only asymmetric, there is no bound to the difference between d(x, y) and d(y, x).
Note that the first rose is at the barycenter of its simplex, while the second is close
to a missing face. This is symptomatic of the following general phenomenon:

You can get to the edge of Outer space very fast, but it will take
you a long, long time to get back.

Figure 4. Candidate loops
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Figure 5. Asymmetry of the Lipschitz distance

4. Using the Lipschitz metric to classify elements of Out(Fn)

The Lipschitz distance is invariant under the action of Out(Fn) since the dis-
tance depends only on the difference of markings, i.e., Out(Fn) acts on CVn by
isometries. In symmetric spaces, such as real hyperbolic space, isometries can be
divided into three classes: those which are elliptic (which fix a point in the space),
hyperbolic (translate a geodesic and act with North-South dynamics on the bound-
ary of the space), and parabolic (neither of the above, but always fix a point on
the boundary). Isometries of Teichmüller space exhibit the same three behaviors,
and Bers used this fact to give a new proof of Thurston’s classification of ele-
ments of the mapping class group [4]. In particular, hyperbolic mapping classes
are pseudo-Anosov, meaning they stretch the metric on the surface in one direction
and shrink it in a complementary direction at all but finitely many points. This
behavior had been codified by Thurston using a pair of complementary train tracks
for a pseudo-Anosov homeomorphism, which gives a powerful tool for working with
these mapping classes.

One property of pseudo-Anosov mapping classes is that they are irreducible, i.e.,
no proper subsurface is preserved. An outer automorphism of Fn is similarly called
irreducible if no proper free factor of Fn is preserved (i.e., sent to a conjugate of
itself . . . remember we are talking about outer automorphisms). If φ is irreducible
and all of its powers are irreducible, it is called an iwip (irreducible with irreducible
powers), or a fully irreducible automorphism.

For fully reducible automorphisms Bestvina and Handel proved the existence
of combinatorial structures on graphs, which they called train tracks by analogy
with Thurston’s train tracks for surfaces [13]. We will describe these structures and
their relation to the given fully irreducible automorphism in the next section. The
proof that train tracks exist was combinatorial and quite intricate. Bestvina was
motivated to revisit the Lipschitz metric when he realized it could be used to give
a conceptual geometric proof of the existence of these train tracks along the lines
of Bers’ proof in [6]. Here is a very rough sketch of the proof.

4.1. The basic trichotomy. We first divide elements φ of Out(Fn) into classes
by looking at the smallest distance they can move points in CVn. Specifically, let
D = infΓ∈CVn

d(Γ,Γφ). Then φ is

• elliptic if D = 0 and is realized,
• hyperbolic if D > 0 and is realized,
• parabolic if D is not realized.

Elliptic elements are the easiest to understand, since φ is elliptic if and only if it
fixes a point Γ ∈ CVn, in which case an optimal difference of markings from Γ to
Γφ = Γ is an isometry and so has finite order.
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Figure 6. Gates at v with a legal turn (left) and an illegal turn (right)

If φ is parabolic, consider any sequence of optimal maps fk : Γk → Γk with
d(Γk,Γkφ) converging to inf d(Γ,Γφ). Using a compactness argument Bestvina
shows that all but finitely many of these Γk have a core subgraph whose edges are
very small compared to the other edges. Since edges cannot get stretched by more
than λ = eD by an optimal map, for k large the small subgraph must be invariant
under any difference of markings, so determines a proper free factor of Fn which
is invariant (up to conjugacy) under some power of φ. We conclude that parabolic
elements are reducible, so if φ is fully irreducible, it must be hyperbolic.

The key to understanding hyperbolic isometries is to find a point Γ in CVn which
is moved a minimal distance and for which there is a particularly nice difference of
markings map from Γ to Γφ. Here “particularly nice” means f : Γ → Γ is an optimal
map, the tension subgraph Δ = Δ(f) is mapped into itself, and the restriction of
f to Δ is an extremely efficient type of map called a train track map. To explain
what this means, we introduce a little terminology (see Figure 6).

• A train track structure on a graph Γ is an equivalence relation on the di-
rections at each vertex.

• Equivalence classes of directions at a vertex v are called gates.
• A pair of directions at a vertex is called a turn.
• A turn is illegal if the directions are equivalent, i.e., belong to the same
gate, and legal otherwise.

• A path in Γ is legal if it does not take any illegal turns.

A map f : Δ → Δ is a train track map if there is a train track structure on Δ
with the following properties:

• there are at least two gates at every vertex of Δ,
• the image of each edge of Δ is a legal path, and
• the image of each legal turn in Δ is a legal turn.

If φ is a hyperbolic automorphism, there is a very elegant proof that such a
“particularly nice” difference of markings exists, which we sketch in section 4.1.1
below. The tension graph Δ may well be a proper subgraph of Γ, in which case
some power of φ is reducible. But if φ is fully irreducible, Δ must be all of Γ and,
after adjusting f slightly to make vertices go to vertices, we have the following
theorem, originally proved by Bestvina and Handel.

Theorem 4.1 ([13]). Let φ ∈ Out(Fn) be fully irreducible. Then there is a graph
Γ and train track map f : Γ → Γ taking vertices to vertices and inducing φ on
π1(Γ) ∼= Fn.
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Figure 7. Folding an illegal turn

This theorem is the basis of a great deal of subsequent work on Out(Fn). It might
be considered the “Golden Spike” uniting Thurston’s theory of train tracks for sur-
face automorphisms [39] with Stallings’ theory of folding maps for automorphisms
of free groups [37].

4.1.1. Hyperbolic automorphisms and train tracks. Let φ be a hyperbolic automor-
phism, and let Γ be a point in CVn realizing infΓ∈CVn

d(Γ,Γφ) = D > 0. Choose
an optimal difference of markings f : Γ → Γ, i.e., a difference of markings with
stretch factor λ = eD > 1. By Proposition 3.2 we may assume the tension sub-
graph Δ = Δ(f) is a core graph with at least two gates at every vertex. We define
the complexity of such an f in terms of Δ, namely

c(f) = (rank of Δ,−number of components of Δ).

Since Δ has no univalent vertices, removing an edge from Δ either reduces rank or
increases the number of connected components, so decreases complexity.

Take an f as above with minimal possible complexity. We want to prove that
the restriction of f to Δ is a train track map. We have to show that f takes Δ to
Δ, maps each edge to a legal path, and takes legal turns to legal turns.

Step 1. Suppose f(Δ) 
⊂ Δ. Perturb Γ by uniformly expanding Δ while shrinking
the complement Γ −Δ. Do this a very small amount, so that no edges are added
to Δ. Any edge of Δ which was mapped into Δ is still stretched by λ. But an
edge of Δ whose image wanders outside of Δ will now be stretched by less than λ,
so it will disappear from Δ, contradicting minimality of c(f). Note that Δ cannot
disappear completely under our deformation: some edge must still be stretched by
λ since λ is minimal for maps in the homotopy class of f . Thus f(Δ) ⊂ Δ.

Step 2. This step involves the notion of folding an illegal turn. If {d1, d2} is a turn,
folding by ε means identifying initial segments in the directions d1 and d2 of length
ε, so that the “V” formed by d1 and d2 becomes a “Y” with a very short stem (see
Figure 7). If {d1, d2} is illegal, then the directions f(d1) and f(d2) agree, so that f
induces a map on the folded graph if ε is small enough. We call the induced map
an ε-fold of f .

Suppose there is an edge e such that f(e) makes an illegal turn. Fold that turn
slightly, but not enough to add edges to Δ. In the folded map, the image of e
is homotopic to a shorter path so e “drops out of Δ” (actually, c(f) decreases),
contradicting minimality.

Step 3. Suppose there is a legal turn {d1, d2} that gets mapped to an illegal turn
{f(d1), f(d2)}. Fold {f(d1), f(d2)} slightly (without adding edges to Δ). Then
{d1, d2} becomes illegal and we do not have to worry about where it gets mapped.
But we do have to worry about the fact that formerly legal turns may have become
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illegal, and we may have decreased the number of gates at other vertices of Δ,
possibly down to a single gate at some vertex v. If we have done that, though,
we could fix it with a homotopy of f which moves the image of v slightly into the
image of its adjacent edges. This makes Δ smaller (decreases the complexity of f),
again contradicting minimality.

And that’s it.

The best ways to get from A to B are those that involve minimal
tension.

5. Geodesics in the Lipschitz metric

Although the Lipschitz metric is not symmetric, one could obtain a genuine
metric by simply symmetrizing it. Francaviglia and Martino [17] studied basic
properties of both the Lipschitz metric and its symmetized version, and found that
the unsymmetrized version has a number of advantages over the symmetrized one.
Perhaps the greatest of these is that CVn is geodesically complete in the unsym-
metrized version, but is not in the symmetrized one. In fact we can exhibit and
analyze specific geodesics between any two points, and understanding the behavior
of these geodesics is the key to many applications of the metric.

5.1. Recognizing geodesics. A path γ(t) is a geodesic if and only if the triangle
inequality is an equality for any three points along the path, i.e., for any t0 ≤ t1 ≤ t2,

d(γ(t0), γ(t1)) + d(γ(t1), γ(t2)) = d(γ(t0), γ(t2)).

In terms of the Lipschitz distance this translates to: If Γt is a path in CVn such
that the “same” loop is maximally stretched from each point on the path to any
point further along, then Γt is a geodesic. Here loops are the same if they represent
the same conjugacy class of Fn.

5.2. Example: straight line in a simplex. Suppose Γ and Γ′ are points in CVn

which are in the same simplex, i.e., they differ only by the lengths of the graph’s
edges. Then we can define a path between them by simply scaling all edge lengths
linearly. Lengths of edges are stretched (or shrunk) at a constant rate all along this
path, so the same loop is maximally stretched all along the path. Therefore, by the
criterion stated in the last subsection, the path is a geodesic.

5.3. Example: folding line. Let f : Γ → Γ′ be an optimal difference of markings
with the additional property that the tension subgraph is all of Γ. Then there is
a special class of geodesics from Γ to Γ′ called folding lines. We have already seen
tiny folds in the proof of the classification of automorphisms when we identified
initial segments in the directions of an illegal turn.

The map f induces a train track structure on Γ which puts directions at v into
the same gate if they map to the same direction at f(v) ∈ Γ′. (Note that this does
not mean that f is a train track map!) If f is not an isometry, there must be at
least one illegal turn, and as before we can identify initial segments in the directions
of this illegal turn to get an induced “folded” map. The folded map is still optimal,
and the tension subgraph is still the entire domain, so unless the folded map is
an isometry, we may continue the path by folding some more. If we do this long
enough, we will eventually arrive at Γ′. We think of this as a continuous process
and call this a folding line from Γ to Γ′. Figure 8 illustrates the graphs along a
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Figure 9. Folding line

folding line from a rank 2 rose to its image under the automorphism sending a to
ab and fixing b, where a and b are the generators of F2 represented by the simple
loops in the starting graph.

If the tension subgraph is not all of Γ, we may need to change the edge lengths of
Γ (expanding the edges in Δ and contracting the others) to make f into an optimal
map with Δ = Γ. Since this only moves us within a simplex, we may accomplish
this by traveling along a straight line, as in Example 5.2. The composition of this
straight line with a folding line as above is a geodesic in CVn, and we will abuse
terminology by calling this a folding line as well. Figure 9 illustrates this with the
folding line of Figure 8.

5.4. So many roads. There are many geodesics between two given points. If the
points are in the same simplex, we do not have to take the straight line between
them, as long as we keep the same loop maximally stretched while traveling. If the
two points are related by an optimal difference of markings whose tension subgraph
is the entire graph, we can start by folding at any one of the illegal turns to get
a folding line. To get a more canonical geodesic between two points, we could
take the straight line until the tension subgraph is the whole graph, then take the
“greedy” folding line which folds all illegal turns simultaneously at the same rate.
But that still does not give unique paths, because there can be different optimal
maps between two points.

5.5. Asymmetry of geodesics. Since there are so many geodesics between points,
one might hope that there is some path which is a geodesic in both directions.
Coulbois and Wiest demolished this hope by a simple example in rank 2 (see [17]).
Figure 10 shows two marked theta graphs Γ1 and Γ2, contained in adjacent triangles
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Figure 10. Asymmetry of geodesics

of CV2. The edges of Γ1 have lengths 1/3, 1/6, and 1/2 from left to right, and the
edges of Γ2 have lengths 1/6, 1/3, and 1/2. Any geodesic from Γ1 to Γ2 must
contain a rose R in the common face of the triangles, with edge lengths 
 and 1− 

for some 
. Since this is a geodesic, we must have d(G1, R)+d(R,G2) = d(G1, G2).
Calculating these distances (using candidate loops) subject to this constraint shows
that 
 must be equal to 5/8. Calculating in the other direction gives 
 = 3/8, i.e.,
no geodesic from Γ1 to Γ2 is equal to any geodesic from Γ2 to Γ1.

There are many ways to travel from here to there, and the way back
might avoid them all.

5.6. Geodesics in the thick part. Traversing a geodesic from x to y backwards
gives a path which needn’t be a geodesic, and in fact may be arbitrarily far from
any geodesic from y to x. However, this cannot happen if the geodesic stays away
from the “thin part” of CVn. A marked graph Γ is said to be in the ε-thin part if
some embedded loop in Γ has length at most ε. Not surprisingly, the complement of
the ε-thin part is called the ε-thick part. In a paper which analyzes the asymmetry
of the Lipschitz metric quite precisely, Algom-Kfir and Bestvina prove the following
statement.

Theorem 5.1 ([3]). If a geodesic γ from x to y stays in the ε-thick part of CVn, then
the same path traversed backwards is a quasi-geodesic, i.e., has a parametrization
which distorts arc length by a uniformly bounded amount, where the bound depends
only on ε.

6. Hyperbolicity

Gromov introduced a notion of negative curvature for metric spaces which is now
known as Gromov hyperbolicity, or simply hyperbolicity. Hyperbolicity is a coarse
invariant, meaning that a metric space which is “close” to a hyperbolic metric space
must also be hyperbolic. The technically correct notion here is quasi-isometry.
Metric spaces X and Y are quasi-isometric if there is a map f : X → Y which
distorts distances by a bounded amount and is coarsely surjective, i.e., every point
of Y is within bounded distance of some f(x). If a metric space is quasi-isometric
to a hyperbolic space, then it is itself hyperbolic.

Gromov pointed out that the Cayley graph of a group with respect to any finite
generating set can be regarded as a metric space and showed that Cayley graphs
associated to different generating sets are quasi-isometric so that hyperbolicity of



ON THE GEOMETRY OF OUTER SPACE 39

the Cayley graph is a group invariant of finitely generated groups. He went on to
show that hyperbolicity implies many strong algebraic properties of a group, so it
is a very useful thing to establish.

By the Swartz-Milnor lemma one can show that a group is hyperbolic by finding
any proper and cocompact action on a hyperbolic metric space, so it is tempting to
check the (proper) action of Out(Fn) on CVn for these properties. We immediately
come up short however, because Outer space with the Lipschitz metric is not hyper-
bolic and the action of Out(Fn) is not cocompact. The fact that the action is not
cocompact is easily fixed: replace CVn by its simplicial closure CVn. In addition
to cocompactness we have (amazingly) gained hyperbolicity, by a deep theorem of
Handel and Mosher:

Theorem 6.1 ([22]). The simplicial closure CVn of Outer space is hyperbolic.

Here the metric on CVn which makes it into a hyperbolic metric space is not an
extension of the Lipschitz metric, but rather the metric obtained by regarding each
simplex as a regular Euclidean simplex with edges of length 1.

Remark 6.2. CVn is also known as the free splitting complex, since vertices can
be re-interpreted as actions on trees with one edge-orbit and trivial edge stabilizer
and by Bass-Serre theory such an action corresponds to a splitting of Fn as a free
product or HNN extension. As we remarked in Section 2.3, CVn is also the same
as the sphere complex Sn.

We now have a cocompact action of Out(Fn) on a hyperbolic metric space, but
Out(Fn) is not a hyperbolic group. One algebraic consequence of hyperbolicity is
that a hyperbolic group cannot contain free abelian subgroups of rank 2, and it
is easy to find large abelian subgroups in Out(Fn). The problem here is that the
action of Out(Fn) on CVn is not proper, in fact it is easy to see that the stabilizer
of every simplex at infinity is infinite.

This mirrors the situation for the Teichmüller space of a surface S with its ac-
tion by the mapping class group Mod(S) of isotopy classes of diffeomorphisms of
S. There is no hyperbolic metric on Teichmüller space which is Mod(S)-invariant,
but there is a related hyperbolic complex whose simplices are “on the boundary at
infinity” of Teichmüller space called the curve complex C(S). Mod(S) acts by isome-
tries on C(S); this action is not proper, but one can nevertheless use hyperbolicity
of the curve complex to establish properties of the mapping class group. The key
to these applications lies in the fact, due to Masur and Minsky, that distances in
(the non-hyperbolic group) Mod(S) can be approximately measured by adding up
distances in all (hyperbolic!) curve complexes associated to all subsurfaces of S
[32, 33].

Masur and Minsky used the Teichmüller metric on Teichmüller space in an es-
sential way in all of their work, and most of the current work on the geometry of
Outer space is inspired by attempts to adapt their methods to the context of Outer
space and the Lipschitz metric. In the next sections we will describe some of this
work.

7. Contracting axes for iwips

Although Teichmüller space is not hyperbolic, geodesics in certain directions
behave like geodesics in a hyperbolic space. Think of a geodesic in the hyperbolic



40 KAREN VOGTMANN

plane and a ball of any radius disjoint from the geodesic: the closest-point projection
of the ball onto the geodesic has uniformly bounded diameter. (This is in marked
contrast with the behavior of balls and geodesics in the Euclidean plane!) A geodesic
with this property in any metric space is called a contracting geodesic, and all
geodesics in a hyperbolic space are contracting. Minsky showed that in Teichmüller
space with the Teichmüller metric, the axis of any pseudo-Anosov mapping class is
also a contracting geodesic [34].

Recall that for Out(Fn) an iwip (or fully irreducible automorphism) is in some
ways analogous to a pseudo-Anosov mapping class, and that iwips have train track
representatives (Theorem 4.1). A train-track representative for an iwip φ can be
thought of as a difference of markings from a point Γ of CVn to its image Γφ. Since
a train track representative is an optimal map, there is a folding line from Γ to
Γφ, whose image under φ is a folding line from Γφ to Γφ2. For such a Γ and φ
the concatenation of these two folding lines is itself a folding line, so by iterating
this procedure, we obtain a bi-infinite (forward) geodesic connecting the images of
Γ under all powers of φ. We call this geodesic an axis for φ.

Algom-Kfir extended the Teichmüller analogy by proving that the axis of an iwip
in CVn is coarsely contracting in the Lipschitz metric. More precisely, she defined
a coarse projection from all of Outer space onto the axis and proved that the
image of a ball sufficiently far away from the axis has uniformly bounded diameter
[1]. Making sense of this takes a great deal of care and requires developing coarse
versions of many techniques. Problems include the fact that the axis of an iwip
is not unique (train tracks themselves are not unique), distances in one direction
do not agree with distances in the other, the projection of a point in CVn is most
naturally a bounded set instead of a single point, etc. But hyperbolicity is only a
coarse notion anyway, and Algom-Kfir’s theorem implies that many of the geometric
benefits hyperbolicity confers are still available in the direction of an iwip. For
example quasi-geodesics with endpoints on the axis of an iwip stay within bounded
distance of that axis, geodesics in CVn diverge at least quadratically fast, and the
asymptotic cone of CVn contains many cut-points.

8. Using the Lipschitz metric to prove hyperbolicity

of the free factor complex (Bestvina and Feighn)

A foundational result in all of Masur and Minsky’s work is the fact that the
curve complex is hyperbolic. For Out(Fn) there are actually several reasonable
candidates for an analog of the curve complex. We have already mentioned the
simplicial closure CVn but another natural choice is the complex of conjugacy
classes of free factors FFn. A vertex of FFn is a free factor of Fn, i.e., a subgroup
A generated by part of a basis for Fn. The conjugacy classes of free factors A and
B are connected by an edge if some conjugate of A is a subgroup of B. A set of
conjugacy classes form the vertices of a simplex if and only if every pair in the set
is connected by an edge.

Bestvina and Feighn proved that FFn is hyperbolic by adapting Masur and
Minsky’s methods to Outer space with the Lipschitz metric [10]. This was followed
quite soon by Handel and Mosher’s proof that CVn is hyperbolic, by much more
combinatorial methods [22]. (Later Kapovich and Rafi showed that in fact hyper-
bolicity of FFn can be derived from hyperbolicity of CVn [30].) In their work on
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subfactor projections Bestvina and Feighn needed stronger results than were avail-
able from Handel and Mosher’s proof, so they showed that the Lipschitz metric
and folding lines could be used to streamline the Handel-Mosher proof and, in the
process, find more quasi-geodesics [11]. In the next few paragraphs I will attempt
to give some of the ideas involved in their proof for FFn.

The proof depends on a criterion developed by Brian Bowditch for proving that
a space X is hyperbolic [14]. Bowditch shows that it is sufficient to find a constant
C and a family of paths in X satisfying the following conditions:

(1) Any two points x, y ∈ X are coarsely joined by one of the paths, i.e., there
is a path in the family with one endpoint within C of x and the other within
C of y.

(2) Paths in the family which begin at nearby points and end at nearby points
stay within Hausdorff distance C of one another.

(3) Paths in the family from x to y are within Hausdorff distance C of paths
in the family from y to x.

(4) The paths satisfy the “thin triangles” condition, i.e., for any three points
x, y, and z, a path in the family from x to z is in the C-neighborhood of
the union of any paths in the family from x to y and y to z.

So to use Bowditch’s criterion, we need to find a family of paths in FFn. We
already have a family of preferred paths in CVn, namely folding lines. And it is
easy to define a projection from CVn to FFn: for any marked graph Γ = (g,Γ),
consider the proper free factors of Fn determined by subgraphs Γ′ of Γ (i.e., proper
free factors of the form g−1

∗ (π1(Γ
′)) < π1(Rn) ∼= Fn); we can define a projection

π : CVn → FFn by taking any one (or all) of them. The projection π is coarsely
well defined since the free factors determined by any two subgraphs are within
distance 4 in the free factor complex; furthermore π is coarsely Lipschitz. Given
any folding line γ = {Γt} the vertices π(Γt) of FFn change at discrete times, and
we can connect the dots to form a path π(γ) in FFn. Paths constructed in this
way will be our preferred paths in FFn.

To see that any two free factors are coarsely connected by a preferred path, find
points in CVn such that the first free factor is realized as a subgraph of the first
marked graph and the second as a subgraph of the second. Connect these points
by a folding line and project this line to the free factor complex.

To check the next two conditions of Bowditch’s criterion, Bestvina and Feighn
define a projection in the other direction, from FFn onto a fixed folding line γ.
Morally, the idea is to project a free factor A to the interval of γ in which A is
“smallest” and show that interval has uniformly bounded size.

One way of measuring the size of a free factor A in a marked graph Γ is to lift
Γ to the unprojectivized Outer space of A and measure the volume of the lift. To
define this lift, think of a point in CVn as an action of Fn on a metric tree. The
subgroup A < Fn also acts on this tree, so there is a minimal subtree (consisting of
the axes of all elements of A) which is a point in the unprojectivized Outer space
for A. The volume of the lift is then the volume of the quotient of this minimal
subtree by the action of A. An equivalent way to describe this quotient is as the
core of the cover of Γ corresponding to the subgroup A < Fn = π1(Γ).

Unfortunately minimizing volume in this naive way does not result in projections
of uniformly bounded size, and it is not so easy to define a projection from FFn

to the folding line γ with the desired properties. The definition that Bestvina and
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Feighn come up with does begin by lifting each marked graph Γt in γ to a point in
the Outer space of A, as we have described. But instead of measuring volume they
measure the lengths of legal and illegal paths in the lifts.

Recall that a folding line γ is constructed using an optimal map from its starting
point Γ0 to its endpoint ΓL (after adjusting the edge-lengths of Γ0), and that the
induced map from any point Γt along the path to ΓL is still optimal. Each of these
optimal maps determines a train track structure on its domain Γt, where directions
at a vertex are in the same gate if they are mapped to the same direction in ΓL.
Since the turns of the A-lift of Γt cover turns in Γt, we can pull back the train-track
structure on Γt to define a train track structure on its A-lift, and hence define the
notions of legal and illegal paths in this lift. Bestvina and Feighn show that in the
forward direction along γ these A-lifts have longer and longer immersed legal paths,
whereas in the backward direction legal paths tend to develop illegal segments. Left
and right projections of A to γ can now be defined by specifying the times at which
the lifts develop long immersed legal paths or at which they have long immersed
paths containing only very short legal segments. These left and right projections
are then shown have bounded distance in the Lipschitz metric.

Let 
γ : FFn → γ be the left projection just defined, so we now have the following
diagram of maps.

CVn FFn

γ π(γ)

π

⊂

π


γ ⊂

The composition π ◦ 
γ is a coarse Lipschitz retraction from all of FFn to π(γ). In
particular, the restriction of this retraction to π(γ) is Lipschitz, so π(γ) is an un-
parametrized quasi-geodesic and our collection of paths {π(γ)} satisfies conditions
(2) and (3) of Bowditch’s hyperbolicity criterion.

To complete the proof that FFn is hyperbolic, it remains to establish the thin
triangles condition. This is again done by analyzing legal and illegal paths in the
graphs Γt which occur along folding lines.

The proof that all of this actually works is a technical tour-de-force
relying on an intimate understanding of the evolution of legal sys-
tems in folding lines.

9. Subfactor projections (Bestvina and Feighn)

A second critical element of Masur-Minsky’s theory relating the geometry of
curve complexes to that of Teichmüller space is the notion of subsurface projections.
For a subsurface A, the subsurface projection πA is a map from the curve complex
of S to the curve complex of A. It is defined by intersecting curves in S with A,
then closing up these intersections if necessary using arcs in ∂A to form simple
closed curves in A. If B is another subsurface, then πA(B) denotes πA applied to
the boundary curves of B.

Recall that there is a natural projection from the Teichmüller space of S to
the curve complex C(S) which picks out a shortest curve. As one travels along a
Teichmüller geodesic, one may not be progressing at all in C(S) (e.g., if a single curve
α remains shortest along the entire geodesic), but there has to be some subsurface
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A such that progress is being made in C(A). Masur and Minsky prove that in
fact distance in Teichmüller space can be approximately measured by adding up
distances in all possible subsurface projections. This has myriad applications, one
of which is an application to the dimension of the mapping class group.

9.1. Is the asymptotic dimension of Out(Fn) finite? The usual (covering) di-
mension of a metric space is definitely not a quasi-isometry invariant (for example,
all compact metric spaces are quasi-isometric!) Gromov defined a new type of di-
mension called asymptotic dimension which is invariant under quasi-isometry, so
in particular defines an invariant for finitely generated groups. The asymptotic
dimension of any compact set is zero, the asymptotic dimension of Rn is equal to
n and the asymptotic dimension of a tree is equal to one. Even these calculations
are non-trivial, however, and in general it is very difficult to compute asymptotic
dimension or even show that it is finite. Bestvina, Bromberg, and Fujiwara did
manage to show that the mapping class group Mod(S) has finite asymptotic di-
mension [8]. Their strategy was to use curve complexes and subsurface projections
to construct a product of hyperbolic spaces on which each infinite order element
of Mod(S) acts with positive translation length. Bell and Fujiwara had previously
proved that curve complexes have finite asymptotic dimension [5], and this can be
used to show that this product space does as well. This is enough to conclude that
Mod(S) has finite asymptotic dimension.

Bestvina and Feighn have begun to fill in the pieces of this scheme in the case
of Out(Fn) by defining an analog of subsurface projections called subfactor projec-
tions. These project one free factor onto the free factor complex of another one [11].
(Technically, Bestvina and Feighn’s projections land in the free splitting complex
of the second free factor, but this can be followed by projection to the free factor
complex, which is a uniformly Lipschitz map. Very recently, Sam Taylor has stud-
ied a more natural version of subfactor projection which projects one free factor
directly onto the free factor complex of another [38].) These projections satisfy
the conditions necessary for constructing a product of hyperbolic spaces with an
Out(Fn)-action, as in the case of the mapping class group. However, one can only
conclude that exponentially growing automorphisms act with positive translation
length, not that all infinite order ones do. This translates to the fact that these
subfactor projections do not do a complete job of estimating distance in Out(Fn);
adding up the distances in the free factor complexes of all subfactors gives a lower
bound on the distance but not an upper bound. One might say that “not enough”
projections have yet been defined to measure progress along a geodesic in CVn.
This is a situation which will undoubtedly be remedied in the near future.

10. Remarks

Some things can be simplified by regarding CVn as the sphere complex Sn,
including the proof that CVn is hyperbolic [28].

Masur and Minsky’s original theorem that the curve complex of a surface is
hyperbolic now has a vastly simpler proof and the constant of hyperbolicity has been
shown to be independent of the surface by several of groups of people, using new
criteria for hyperbolicity and new combinatorial techniques; these simplifications
may well be adaptable to Out(Fn). In general things are developing very rapidly
in this subject.
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11. Guide to the references

There is quite a large literature by now concerning the geometry of CVn. The
references in this article contain a selection of these papers, which fall roughly into
the following categories.

11.1. Classics and background. Material relevant to this article from mapping
class groups and Teichmüller theory can be found in Thurston’s iconic article on the
geometry of 3-manifolds [39], his preprint on the Lipschitz metric on Teichmüller
space [40], Masur and Minsky’s original articles on the curve complex [32], [33],
Bowditch’s proof that the curve complex is hyperbolic [14], and Bers’ article classi-
fying surface automorphisms [4]. For automorphisms of free groups and Outer space
Stallings’ article on folding [37] and Thurston’s proof of the Bounded Cancellation
Lemma [15] are seminal. In addition there are the Culler and Vogtmann article
introducing Outer space [16], Bestvina and Handel’s proof of the Scott conjecture
which introduces train tracks, and Hatcher’s interpretation of Outer space in terms
of sphere systems [27].

11.2. Basics of the Lipschitz metric on outer space. A good introduction
to the Lipschitz metric can be found in Bestvina’s PCMI notes [7]. For further
details see Algom-Kfir and Bestvina’s article on asymmetry of the Lipschitz metric
[3], Algom-Kfir’s paper on the metric completion of CVn [2], and Francoviglia and
Martino’s original paper on the Lipschitz metric [17].

11.3. Lines in CVn. There are quite a few notions of “good paths” in Outer space.
These include the folding paths described in this article, for which Bestvina’s PCMI
notes [7] are a good introduction. Other paths are the lines of minima studied by
Hammenstadt [18], the axis bundles defined by Handel and Mosher in [20], the
related fold lines defined in their proof that CVn is hyperbolic [20], and surgery
paths in the sphere system model of CVn as first defined by Hatcher in [27] and
further developed for example in Horbez’s paper [29].

11.4. Hyperbolicity of Out(Fn)-complexes. The first Out(Fn) complex shown
to be hyperbolic was the one defined by Bestvina and Feighn in [9]. However,
that complex was not canonically defined (it depended on the choice of an iwip),
and not all iwips had unbounded orbits. Bestvina and Feighn’s proof that the
free factor complex is hyperbolic appeared next [10], followed quickly by Handel
and Mosher’s proof that CVn is hyperbolic [22]. Hilion and Horbez considerably
simplified the Handel-Mosher proof by using the sphere complex description of CVn

[28], and Kapovich and Rafi show that hyperbolicity of CVn implies hyperbolicity of
FFn [30]. In [36] Sabalka and Savchuk show that one must include non-separating
spheres in the sphere complex, otherwise the complex is not hyperbolic.

11.5. Projections and asymptotic dimension. Bestvina, Bromberg, and Fu-
jiwara showed that the mapping class group of a surface has finite asymptotic
dimension [8]. This built on previous work of Bell and Fujiwara proving that the
curve complex has finite asymptotic dimension [5] and of Bestvina and Fujiwara
constructing quasi-morphisms on mapping class groups using subsurface projections
[12]. Efforts to extend these ideas to Outer space include Bestvina and Feighn’s
work on subsurface projections [10], [11], Sam Taylor’s simpler notion of subfactor
projections [38], Sabalka and Savchuk’s submanifold projections [35], and the work
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of Hamenstadt and Hensel on subsurface projections [19] from the point of view of
sphere complexes.

11.6. Related work using more combinatorial methods. Handel and
Mosher’s extensive work on automorphisms of free groups avoids using the Lip-
schitz metric, developing instead more combinatorial methods based on the theory
of train tracks [21]. Their most recent contribution is a series of four substantial
papers which study the subgroup structure of Out(Fn) [23–26].
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