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The celebrated Sherrington-Kirkpatrick model for a mean field spin glass was
introduced in 1975 in [0]. It is considered a prototype for the statistical mechanics
of complex systems (see, for example, [5]). From the point of view of theoretical
physics, this model is extremely interesting, and thousand of papers have been
dedicated to the study of its subtle properties. Moreover, since its introduction it
has attracted also the interest of mathematicians, due to the arising deep interplay
of probabilistic and analytic aspects. As asserted by Michel Talagrand in [7], this
model provides a “great challenge for mathematicians”.

The description of the model is rather simple. One considers a large number N
of sites, and introduces “configurations” as mappings

c:i€{l,2,...,N} = o; = +1.

Thus, there are 2V possible configurations, which can be visualized as the vertices of
an N-dimensional hypercube. We introduce the “overlap” ¢ among configurations
as follows:

N
oo’ = Z o10,/N.
i

To the configurations we attach a family of Gaussian random variables K : ¢ —
K(o), all centered (i.e., E(K(c)) = 0) and with joint variance given by

E(K(0)K(0") = 454

The typical problems we are interested in are suggested by statistical mechanics,
and thus involve an infinite volume limit N — oo. In particular, one is interested
in proving the existence of the “ground state energy density”

eo = lim (2N)"?min K(o)
N—o00 o
and to giving an explicit expression for the limit in terms of a suitable variational
principle. The exponent —1/2 for N is here chosen in order to get a good large N
behavior.

At first, this might look rather easy. For example, in the simple case, when k(o)
are independent centered unit Gaussian random variables, elementary probability
considerations enable one to verify that the limit eg exists KC-almost surely and is
given by a simple variational principle,

. In2 =z
—eo=mp(m D)
so that —ep = vIn 2.

However, in the case where the joint variance is given in terms of the square of
the overlap, one discovers that even the task of proving the existence of the limit
eo is extremely difficult. Since the introduction of the model, almost four decades
had elapsed before the way of getting the proof was found in [3].
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In order to explain the content of the book under review, we need to introduce
some additional definitions.

For a given parameter 8 > 0, which plays the role of the inverse temperature,
let us define the “partition function” Zy and the “free energy” Fy as the random

variables
Zn(B:K) = Y VRO

o

—BFN(B;K) =InZn(B3;K).
Let us also introduce a (random) discrete probability measure py on the configu-
rations o,

o (1K) = Z3 (B K)ePVF K@),

so that for any function A of the configuration we can define the average

ZA pNO'IC

Notice that these averages are themselves random variables in the probability space
of the variables K.
We introduce also s replicas of the configurations,

a — A
ol,a=1,...,5,t=1,...,N,

and define for them the product measure, so that we have the averages

Z ZA N (e K) - pa(0f;K).

Finally, for a generic function F of the replicated variables of and of K, we
introduce the global averages

(F) = EQ(F),
where we perform the product measure average 2 and then the average E over the
variables IC, called “quenched” average.

We summarize in the next two theorems some main results concerning the infinite
volume limit of the free energy density.

Theorem 1 (Existence). The infinite volume limit of the free energy density exists
KC-almost surely and is connected to the limit for the quenched average in the form

J\}im N='InZyn(B;K) = A(B), K-almost surely,
— 00

N —oc0

A(B) = lim N 'E(lnZx(B;K)) = sgpr*lE(anN(ﬁ;lC)).

The essence of the proof relies on the basic super-additivity,
ElnZy >ElnZyn, + ElnZy,, N = Ny + No,

which was established in [3] through a simple interpolation argument.
The variational principle for A(f) is given in

Theorem 2 (The variational principle).

: 1, (!
a) =it (w2 + 70,060~ 38 [ g ot ).
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where x is the Parist functional order parameter, which can be taken as a
piecewise constant nondecreasing function

x:[0,1] 5 ¢ — z(q) € [0,1],
and f(0,0; 8, x) is the value at ¢ = 0,y = 0 of the function

[ [O> 1] X (—00,+0) 3 (¢,y) — f(%?ﬁﬁax)a

defined as solution of the partial differential equation

1 1
with final value at ¢ =1
f(1,y; B,2) = Incosh(By).

The proof relies on the following sum rule, established in [4] through interpolation
arguments

1
N7'E(ln Zn(B;K)) =In2 + £(0,0; B, x) — %52 /0 q z(q) dg + Ry,

holding for any functional order parameter x, where the error term Ry is nonneg-
ative. By taking the limit when N — oo and neglecting the error term, we obtain
the upper bound in the statement of the theorem. It took a dramatic tour de force
to prove that the error term vanishes in the infinite volume limit, provided that
the order parameter is chosen in the optimal way. This fundamental breakthrough
result was due to Michel Talagrand [8].

The strategy developed by Dmitry Panchenko in a series of papers and concisely
and brilliantly expounded in the book under review, amounts to a true revolution in
order to establish the missing lower bound. It has extremely relevant consequences
for the rigorous analysis of complex systems.

Let me mention that the treatment of the model given in theoretical physics (see,
for example, [5]) provides some important properties for the overlap distribution
under the averages ( ) introduced above. It turns out that the overlaps have the
ultrametric property, i.e., the joint distribution for any three overlaps among
replicas ¢12,413,923 has support on the region where the inequality g12 > min(g13,g23)
holds. Moreover, the optimal functional order parameter is 2(q) = P(¢q12 < ¢) and
the joint distribution under { ) of overlaps gu,1 < a < b < s, can be uniquely
described in terms of the single overlap distribution.

Some years ago, a surprising constraint on the overlap distribution was found
by Ghirlanda and Guerra in [2]. Consider the overlap distribution for s replicas
Gaps 1 < a < b < s, then increase the number of replicas to s + 1. It turns
out that, assuming for instance that ¢+ = 1, the distribution of ¢; 541, conditioned
to the values of the overlaps among the first s replicas, is such that ¢; sy takes
exactly either one of the values q13,b = 2,...,s, or is independent from the first
overlaps, with the respective probabilities all equal to s~!. The Ghirlanda-Guerra
identities were proven to be valid for a large class of interactions, with the possible
exclusion of some values for the parameters. They have a very simple physical
interpretation. Namely, if the interaction depends on some additional random term
of the type e4(?X) in the partition function, where x is some external noise, then
in the infinite volume limit the quantity N~!'A(o;x) behaves as a constant under
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(). This is a manifestation of some kind of generalized equivalence of ensembles in
statistical mechanics.

Ultrametricity implies the Ghirlanda-Guerra identities. However, it was not clear
whether the converse statement would also hold. That is why in the paper [2] the
cautious subtitle “Toward Parisi ultrametricity” was used.

Dmitry Panchenko has been able to prove that this is indeed the case: Ghirlanda-
Guerra identities have, as a necessary consequence, ultrametricity. The essential
part of his proof is a very clever exploitation of the Dovbysh-Sudakov representation
for an infinite symmetric, weakly exchangeable, and positive definite random array
R = (Rap)ap>1- Thus, the important property of ultrametricity is rigorously
established for the overlap distribution.

Moreover, some very simple considerations, coming from the so-called cavity
method [B], lead one to conclude that in the infinite volume limit the limiting free
energy density can be expressed, in the notation of Theorem 2, as

I
AG) =2+ £0.0:8.0) = 37 [ a0t dg

for some properly chosen functional order parameter z. With the upper bound
already established, this result implies trivially the lower bound. This establishes
Theorem 2 without going through the complex procedure of [§].

The book under review gives a very clear and useful description of the general
frame of the Sherrington-Kirkpatrick mean field spin glass model. It also describes
the original strategy exploited by the author in order to get control of the infinite
volume limit of the free energy, in the frame of the Parisi variational principle, as
well as some properties of the infinite volume limit of the overlap distribution, such
as ultrametricity. The book is a very valuable addition to the literature in the field,
and can be seen as complementary to other existing works, as for example [IL[7].

I would recommend this book especially to young researchers. They can learn
from it a lot about the scientific results, which could be extended to other important
cases of hard optimization problems. It also provides an insight on developing
original strategies when working with the difficult mathematical problems arising
in studies of complex systems.
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