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A MATHEMATICAL PDE PERSPECTIVE

ON THE CHAPMAN–ENSKOG EXPANSION

LAURE SAINT-RAYMOND

Abstract. This paper presents in a synthetic way some recent advances on
hydrodynamic limits of the Boltzmann equation. It aims at bringing a new
light to these results by placing them in the more general framework of as-
ymptotic expansions of Chapman–Enskog type, and by discussing especially
the issues of regularity and truncation.

The present article is one of two companion papers on the Chapman–Enskog
expansion for the Boltzmann equation. While the contribution “Hilbert’s 6th Prob-
lem: exact and approximate hydrodynamic manifolds for kinetic equations” in this
issue of the Bulletin of the American Mathematical Society by A. N. Gorban and
I. Karlin [25] aims at extending the Chapman–Enskog method to define a notion
of hydrodynamics without any small parameter (that is even far from thermody-
namic equilibrium), our contribution focuses on the mathematical justification of
the first-order approximations in the fast relaxation limit, and especially on the
questions of truncation and regularity. These questions are indeed crucial issues
in getting rigorous convergence results starting from renormalized solutions to the
Boltzmann equation, which are the only solutions known to exist globally without
any restriction on the size of the initial data.

To point out more precisely the difficulties, let us first recall some basic features of
the Boltzmann equation which describes the evolution of a perfect gas, represented
by its distribution f ≡ f(t, x, v) under the combined effects of free transport and
collisions

(0.1)

∂tf + v · ∇xf = Q(f, f)

Q(f, f)(v) =

∫∫ (
f(v′)f(v′1)︸ ︷︷ ︸

gain

− f(v)f(v1)︸ ︷︷ ︸
loss

)
b(v − v1, ω)dv1dω,

v′ = v + (v − v1) · ωω, v′1 = v1 − (v − v1) · ωω .

The collision operator Q is quadratic since it accounts for only pairwise elastic
interactions. Moreover, it acts only on the v-variable insofar as collisions are as-
sumed to be local both in t and x. This is the reason why the right-hand side—in
general—does not even make sense under the only physical estimates. Formally,
the conservations of mass and energy indeed provide∫∫

f(t, x, v)(1 + |v|2)dvdx =

∫∫
fin(x, v)(1 + |v|2)dvdx,
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whereas the second principle of thermodynamics, also referred to as Boltzmann’s
H-theorem, gives the decay of entropy∫∫

f log f(t, x, v)dxdv +

∫ t

0

∫
D(f)(s, x)dxds =

∫∫
fin log fin(x, v)dxdv,

where the entropy dissipation is the nonnegative functional defined by

(0.2)

D(f) = −
∫

Q(f, f) log fdv

=
1

4

∫∫
(f(v′)f(v′1)− f(v)f(v1)) log

(f(v′)f(v′1)
f(v)f(v1)

)
bdv1dvdω .

In other words, the collision operator involves the product of two functions of x
which are only known to be in some L logL Orlicz space.

To overcome this difficulty, DiPerna and Lions have introduced in [15] a very
weak notion of solution, requiring that f satisfies a family of formally equivalent
kinetic equations, obtained by truncation of large tails.

For the sake of simplicity, we will assume here that the collision cross-section b,
giving the statistical repartition of post-collisional velocities as a function of pre-
collisional velocities and deflection angle ω ∈ S2, has no singularity, which is the
case, for instance, for hard sphere interactions

b(v − v1, ω) = |(v − v1) · ω| .

Definition 0.1. A renormalized solution of the Boltzmann equation (0.1) relative
to the global equilibrium

M(v) =
1

(2π)3/2
exp

(
−1

2
|v|2

)
,

is a function

f ∈ C(R+, L1
loc(Ω×R3)),

which satisfies in the sense of distributions

(0.3)
M

(
∂t + v · ∇x

)
Γ

(
f

M

)
= Γ′

(
f

M

)
Q(f, f) on R+ × Ω×R3 ,

f|t=0 = fin ≥ 0 on Ω×R3 .

for any Γ ∈ C1(R+) such that |Γ′(z)| ≤ C/
√
1 + z.

The renormalization process consists in truncating large tails of the distribution
function for which the collision operator becomes singular. The crucial remark by
DiPerna and Lions is that the condition |Γ′(z)| ≤ C/(1 + z) guarantees that the
right-hand side at least makes sense under the only assumptions that the entropy,
entropy dissipation, energy, and mass are finite. A later contribution of Lions [32]
shows actually that renormalizations growing like Γ(z) = O(

√
z) at infinity are still

admissible. Note that the quantity to be studied has the same homogeneity as
the wave function in quantum mechanics, which could be considered to be relevant
from the physical point of view.

Together with fine tools of analysis (some of which will be used later in this
paper for the study of hydrodynamic limits), this renormalization process allows us
to prove the existence of global solutions to the Boltzmann equation.
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Theorem 0.2 (DiPerna and Lions). Given any initial data fin satisfying

(0.4) H(fin|M) ≡
∫
Ω

∫ (
fin log

fin
M

− fin +M

)
(x, v) dv dx < +∞,

there exists a renormalized solution f ∈ C(R+, L1
loc(Ω×R3)) relative to M to the

Boltzmann equation (0.1) with initial data fin. Moreover, f satisfies the following:

• the continuity equation

(0.5) ∂t

∫
fdv +∇x ·

∫
fvdv = 0;

• the global entropy inequality

(0.6) H(f |M)(t) +

∫ t

0

∫
D(f)(s, x)dsdx ≤ H(fin|M) ,

where the entropy dissipation D(f) is defined by (0.2).

Note however that, since this notion of solution is very weak, some physical
properties, such as the local conservation of momentum and energy or the unique-
ness, are not known to hold. We will see that it is an important drawback when
considering fluid approximations of the Boltzmann equation.

1. Asymptotic expansions for the fast relaxation limit

of the Boltzmann equation

In the fast relaxation limit, i.e., when the mean free path is very small compared
to the typical observation length, we expect the collision process to be dominant
and the solution to the Boltzmann equation to be close to local thermodynamic
equilibrium. The evolution of the gas should therefore be well approximated by
some fluid equations.

1.1. Chapman–Enskog expansion vs Hilbert expansion. The first mathe-
matical studies of hydrodynamic limits of the Boltzmann equation are due to Hilbert
[29] on the one hand, and to Chapman and Enskog [12] on the other hand. Note
that, in both cases, the derivations are purely formal.

Hilbert’s method consists in seeking a formal solution to the scaled Boltzmann
equation

∂tf + v · ∇xf =
1

ε
Q(f, f)

with small Knudsen number ε, in the form

f(t, x, v, ε) =

∞∑
n=0

εnfn(t, x, v).

Identifying the coefficients of the different powers of ε, we then obtain systems of
equations for the successive approximations f0, f0 + εf1, . . . .

In particular, at leading order we get

f0(t, x, v) ∼
R0(t, x)

(2πT0(t, x))3/2
exp

(
−|v − U0(t, x)|2

2T0(t, x)

)
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for some R0(t, x), T0(t, x) > 0 and U0(t, x) ∈ R3. In order that the next order
equation can be solved, we further obtain the constraints

(1.1)

∂tR0 +∇x · (R0U0) = 0,

∂t(R0U0) +∇x · (R0U0 ⊗ U0 +R0T0Id) = 0,

∂t(R0|U0|2 + 3R0T0) +∇x ·
(
U0(R0|U0|2 + 5R0T0)

)
= 0,

which are exactly the compressible Euler equations.
Going on in Hilbert’s expansion, one gets, as compatibility conditions to solve

the hierarchy, that at each order k ≥ 1, the hydrodynamic part of fk satisfies the
linearized compressible Euler equations (with source terms depending on fk−j , for
j = 1, . . . , n − 1). It seems then natural to collect all contributions to the local
thermodynamic equilibrium at leading order.

1.1.1. The Ansatz. Such a variant of Hilbert’s expansion was found independently
by Chapman and Enskog, and is known today as the Chapman–Enskog expansion
[12]:

f(t, x, v) = Mf (t, x, v)

⎛
⎝1 +

∑
k≥1

εkg̃k(t, x, v)

⎞
⎠ ,

where Mf is the local Maxwellian with same moments as f ,

Mf (t, x, v) =
R(t, x)

(2πT (t, x))3/2
exp

(
−|v − U(t, x)|2

2T (t, x)

)
,(1.2)

R(t, x) =

∫
f(t, x, v)dv, RU(t, x) =

∫
vf(t, x, v)dv,(1.3)

R(|U |2 + 3T )(t, x) =

∫
|v|2f(t, x, v)dv,(1.4)

and the fluctuations g̃k are functions of v depending on (t, x) through R(t, x),
U(t, x), and T (t, x), and their partial x-derivatives evaluated at (t, x). Note that, at
variance with Hilbert’s expansion, the Chapman–Enskog Ansatz requires knowing
in advance that the successive corrections to the compressible Euler system (1.1)
within any order in ε are systems of local conservation laws.

The first correction to the compressible Euler equations is then given by

∂tMf + v · ∇xMf = −MfLMf
(g̃1),

or equivalently

∂t

(
logR− 3

2
log T − 1

2T
|v − U |2

)
+∇x

(
logR − 3

2
log T − 1

2T
|v − U |2

)
· v

= −LMf
(g̃1),

where LMf
denotes the linearization of the collision operator at the local Maxwellian

Mf ,

LMf
g = − 1

Mf
Q(Mf ,Mfg)−

1

Mf
Q(Mfg,Mf ).
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Then, using the properties of the linearized collision operator LMf
, namely the

fact that it is a Fredholm operator, one obtains the weakly viscous Navier–Stokes
system with O(ε) dissipation terms

(1.5)

∂tR+∇x · (RU) = 0,

∂t(RU) +∇x · (RU ⊗ U +RTId) = ε∇x · (μ(R, T )D(U)) +O(ε2),

∂t(R|U |2 + 3RT ) +∇x ·
(
U(R|U |2 + 5RT )

)
= ε∇x · (κ(R, T )∇xT ) + ε∇x · (μ(R, T )D(U) · U) +O(ε2),

where D(U) denotes the traceless part of the deformation tensor

D(U) =
1

2
(∇xU + (∇xU)T )− 1

3
(∇x · U)Id,

and the diffusive coefficients, namely the viscosity μ ≡ μ(R, T ) and the heat con-
ductivity κ ≡ κ(R, T ), are defined in terms of the linearized collision operator
LMf

.
We then deduce formally that the solution to the weakly viscous Navier–Stokes

equations is close to the moments of the solution f to the the Boltzmann equation
at order O(ε2).

1.1.2. A better notion of projection on the slow manifold. Let us now compare
both asymptotic expansions. On the one hand, the Chapman–Enskog expansion
could seem a little bit mysterious insofar as one needs to know in advance that the
thermodynamic fields will satisfy a closed system at any order. On the other hand,
it is quite natural in view of the scale separation in the equation

∂tf + v · ∇xf =
1

ε
Q(f, f) ,

which suggests some splitting between the local relaxation encoded by the homo-
geneous equation

∂tf =
1

ε
Q(f, f)

and the transport on macroscopic time and space scales.
The hypocoercive mechanism relating the effects of transport and collisions has

been studied in detail—especially by Desvillettes and Villani [14]—to describe the
long time behaviour of a gas governed by the Boltzmann equation when collisions
and transport are phenomena of the same order. The idea is that the entropy can
be decomposed as a sum of a “purely kinetic part” and a “macroscopic entropy”:∫

f log fdv =

∫ (
f log

f

Mf
− f +Mf

)
dv +

∫
Mf logMfdv .

In the present scaling, assuming—according to Cercignani’s conjecture—that the
entropy dissipation controls the purely kinetic part of the entropy (which is not cor-
rect for the Boltzmann equation, but holds for instance for its BGK (Bathnagar,
Gross, and Krook) approximation), we see that the purely kinetic part of the en-
tropy will relax exponentially to 0 as ε → 0, while the macroscopic part is expected
to have a slow evolution.

The splitting between the hydrodynamic part and the purely kinetic part also
corresponds to what would be done in the case of a linear singular perturbation
problem: projection on the kernel of the singular perturbation to get the constraint
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at leading order, then projection on the orthogonal subspace to get the slow evolu-
tion. This will be exactly the strategy we will use when dealing with fluctuations
to get incompressible hydrodynamic limits (see Section 2).

Remark 1.1. Note however that such a heuristic analysis relies on the fact that
(∂t + v · ∇x) behaves as a bounded operator, which can be justified only when
considering smooth functions.

1.1.3. A systematic method to get higher-order fluid approximations. Iterating this
process gives a systematic way of deriving equations of hydrodynamics having for-
mally any given order of accuracy with respect to the Knudsen number ε. The
crucial property is the fact that, under suitable assumptions on the collision cross-
section (satisfied in particular for hard-sphere interactions), for all Maxwellians M,
the linearized collision operator LM satisfies the Fredholm alternative (see [29], [26]
for the proof)

(i)LMg = 0 if and only if g ∈ Ker(LM) = span(1, v, |v|2),

(ii)LM is self-adjoint and

∫
gLMgMdv ≥ C‖g −Πg‖2L2(Mνdv),

(iii) Ker(LM)⊕R(LM) = L2(Mνdv),

denoting by π the orthogonal projection on Ker(LM), and by ν the collision fre-
quency

ν(v) =

∫∫
M1b(v − v1, ω)dv1dω .

Let us introduce the following decomposition (referred to in the sequel as the
Chapman–Enskog decomposition)

fε = Mε + εhε,

where the moments Rε, Uε, Tε defining Mε are the “true” hydrodynamic moments
of fε. The equation for the purely kinetic part then states

hε = h0 + ε
Mε

Rε
L−1
ε

(
(∂t + v · ∇x)hε −Q(hε, hε)

Mε

)
,

where

h0 =
Mε

Rε
L−1
ε ((∂t + v · ∇x) logMε)

= Mε

(
1

RεTε
∇xUε : L−1

ε Φε +
1

2RεT 2
ε

∇xTε · L−1
ε Ψε

)
,

with Φε = (v − Uε)
⊗2 − 1

3
|v − Uε|2Id, Ψε =

1

2
(v − Uε)(|v − Uε|2 − 5) .

Here and in the sequel we denote by Lε the linearized collision operator at Mε, and
by L−1

ε its inverse on Ker(Lε)
⊥ extended by 0 on Ker(Lε).

We can therefore compute the successive orders of the approximation just by
inverting Lε:

hn+1 =
Mε

Rε
L−1
ε

(
(∂t + v · ∇x)hn−1 −

∑n−1
j=0 Q(hj , hn−1−j)

Mε

)
.
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The general equations of hydrodynamics then state∫ ⎛
⎝ 1

v
|v|2

⎞
⎠ (∂t + v · ∇x)Mεdv + ε

∫ ⎛
⎝ 1

v
|v|2

⎞
⎠∇x · ((v − Uε)

+∞∑
n=0

εnhn)dv = 0 .

1.2. The truncation issue.

1.2.1. Some ill-posed fluid models. The next step after the Navier–Stokes equations
gives the so-called Burnett equations. At this stage, the respective corrections for
the momentum and temperature equations are given by∫

h1Φεdv and

∫
h1Ψεdv .

A tedious but straightforward computation (given for instance in [13] or [5]) shows
that, up to terms with lower derivatives, one has

∂tUε =
2

3

ε2

R2
ε

(
A
Tε

Rε
Δx∇xRε + (A− C)Δx∇xTε

)
,

∂tTε =
4

9

ε2

R2
ε

(Tε(B − C)Δ∇x · Uε) ,

for some coefficients A, B, C depending only on the molecular models for the
Boltzmann equation.

The point is that the hyperbolicity condition is generally not satisfied by the
principal symbol. In the one-dimensional case, the nonzero eigenvalues are indeed
given by

λ± = ±
(
2

3
Tε(B − C)(A− C)

)1/2

,

which are not real if (B − C)(A− C) < 0 and which holds for instance in the case
of hard-sphere interactions (see [5] for estimates of the coefficients A, B, and C).
These formulas therefore show that the Burnett equations become unstable with
respect to short-wave perturbations, or in other words that they are ill-posed, which
is a first obvious obstacle to getting rigorous approximations beyond the Navier–
Stokes level. The amplification of short acoustic waves indeed contradicts the H-
theorem, since all near-equilibrium perturbations should decay. The situation does
not improve in the next, super-Burnett approximation.

This obstacle may however be circumvented by a truncation process, to be com-
pared with normal form techniques for dynamical systems. The idea is to modify
the equations

xt + i(B0 + ε2B1)x+ εA0x = O(ε3)

obtained by the Chapman–Enskog expansion, according to some change of variable

z = x+ ε2Rx

so that

zt + i(B0 + ε2B̃1)z + εA0z = O(ε3),

where B̃1 = B1 + (RB0 −B0R) is real and symmetric.
Such a class of transformation (preserving a form of conservation laws) has been

exhibited by Bobylev [6].
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1.2.2. A divergent series. Admitting that one can reproduce such a regularization
process at any order, we end up with a family of locally well-posed fluid equations.
A natural question is then to understand what is the meaning of this formal series.
Note that exact summations of the Chapman–Enskog expansion are known only in
a very limited number of cases [28]. Thus, in general, such an asymptotic expansion
is only formal and has to be understood in the same way as in semiclassical analysis.

Considering smooth functions, the correction terms in the hydrodynamic equa-
tions are expected to be small in the limit ε → 0 (see Remark 1.1), which tells us
something about the consistency of the approximation. In order to prove that the
solutions to these approximate equations are close to the “true” moments of the
Boltzmann equation at some fixed order in ε, we further need some stability, which
is of course the most difficult part from the mathematical point of view.

We insist here that there are actually two additional difficulties:

• stability is required to deduce an asymptotic expansion of the solution from
the asymptotic expansion of the equation;

• but even consistency is conditioned to the fact that the functions to be
considered are smooth, which is the matter of the next section.

1.3. The regularity issue. From the mathematical point of view, the understand-
ing of the fast relaxation limit falls short of these questions of higher-order approx-
imations. Even the first two orders of the Chapman–Enskog expansion—which can
be caught easily at the formal level—still lack for a rigorous derivation.

1.3.1. No uniform regularity estimate. The main difficulty is probably related to
the regularity issue, insofar as the compressible Euler equations are not known to
be globally well-posed even for small data. More precisely, we expect singularities
to develop in finite time, so that classical solutions will generically blow up [41].

In the one-dimensional case, we have a much more precise description of these
singularities and of their propagation, at least under an additional criterion of
entropy [35]. The question of knowing whether this admissibility criterion is the
relevant one in the fast relaxation limit is still largely open, and it will be discussed
at the end of the paper following [42].

Anyway, since the solutions of the first-order hydrodynamic approximation ex-
hibit singularities, such as shocks or discontinuities, the question of their stability
seems out of reach at the present time. There are however some very partial results
in this direction, proving that some self-similar profiles, namely one-dimensional
rarefaction waves [11] and one-dimensional shocks [36], can be obtained as the
limit of some suitable families of solutions to the Boltzmann equation in the fast
relaxation limit ε → 0.

Note that these stability results are still quite far from their counterpart for
one-dimensional weakly viscous perturbations [9], since they cannot deal with su-
perposition (Riemann problem) and a fortiori interactions of these elementary waves
(Glimm’s scheme). The key argument in [9] is a central manifold result giving some
stability with little regularity. More precisely it requires only the nonuniform reg-
ularity estimate coming from the viscous dissipation as well as some uniform BV
estimate.

1.3.2. Dissipation and averaging lemma. Let us therefore investigate what kind of
regularity can be expected for the Boltzmann equation in the fast relaxation limit.
We will describe here the main mechanisms providing regularity in order to get a
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qualitative picture of the different terms in the expansion, but we insist that some
arguments are not completely correct. More precise and rigorous results will be
given in the next part when proving convergence theorems.

We recall that we are interested in describing the solution to

∂tf + v · ∇xf =
1

ε
Q(f, f)

in the limit ε → 0, and that the only uniform a priori bounds we can use are those
coming from the entropy inequality

H(f |M)(t) +
1

ε

∫ t

0

∫
D(f)(s, x)dsdx ≤ H(fin|M),

assuming that the initial entropy is finite.
We have first to note that the regularity issue arises not only when consider-

ing the fast relaxation limit. It is also crucial when proving the weak stability of
the Boltzmann equation and establishing the existence of renormalized solutions
(cf Theorem 0.2). The stability of the collision term Γ′(f/M)Q(f, f) indeed re-
quires some strong compactness on the moments of f , inherited from some uniform
regularity estimate. The key argument here is the following averaging lemma [17].

Theorem 1.2 (Golse, Lions, Perthame, and Sentis). Let f ≡ f(t, x, v) be such that
f and (∂t + v · ∇x)f both belong to Lp(R×Rd ×Rd). Then, for all ϕ ∈ Cc(R

d),
the moment

∫
f(t, x, v)ϕ(v)dv belongs to W s,p(R×Rd) with 0 < s < inf( 1p , 1−

1
p ).

In the fast relaxation limit, we obtain that

M
(
∂tΓ(f/M) + v · ∇xΓ(f/M)

)
=

1

ε
Γ′(f/M)Q(f, f)

= Γ′(f/M)

∫∫ (√
f ′f ′

1 −
√
ff1√

ε

)2

bdvdv1dω

+
1√
ε

√
fΓ′(f/M)

∫∫ √
f1

(√
f ′f ′

1 −
√
ff1√

ε

)
bdvdv1dω

from which we deduce that∥∥∥∥
∫

Γ(f/M)φMdv

∥∥∥∥
W s,1

t,x

= O(ε−
s
2 )

for s small enough. This tells us more or less that the frequencies are localized in
a sphere of diameter ε−1/2.

1.3.3. What about higher-order regularity? The previous interpretation, however,
is not correct because the cancellation occuring at leading order due to the entropy
dissipation bound has no counterpart at higher orders. Even at the formal level,
we have

∂tDt,xf + v · ∇xDt,xf =
2

ε
Q(Dt,xf, f)

so that, even with a L∞ bound on f and good hypoelliptic properties of the trans-
port operator, we will get a loss of O( 1ε ) for each additional derivative.

These remarks are crucial in view of Remark 1.1, which states that one of the
underlying assumptions in the Chapman–Enskog expansion is the fact that the
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operator (∂t + v · ∇x) behaves as a bounded operator. We indeed note that the
actual expansion parameter is ε∇x, which is not small if functions have derivatives
of order O( 1ε ).

1.4. Extrapolation of the Chapman–Enskog procedure in the absence
of scale separation. The previous iterative scheme leads to a formal series of
operators governing the hydrodynamic part of the motion, which can be viewed as
the projection of the motion on some invariant manifold. If such a manifold exists
and if it is analytic, it should be obtained from the Chapman–Enskog germ near
local equilibria by unique analytic continuation. However, this does not guarantee
the convergence of the series in powers of ε∇x (especially at high frequencies).

In order to bypass this difficulty, Gorban and Karlin have proposed in [23,24] a
slightly different strategy, replacing the iterative construction of the invariant man-
ifold by a more direct approach which does not need any scale separation between
transport and relaxation: they actually use the symmetries and invariances of the
microscopic system to design a suitable ansatz. This approach has been applied suc-
cessfully to some simplified linear models with finite numbers of moments. The idea
is to consider minimal kinetic models where the Chapman–Enskog method can be
studied exactly, thereby providing the basis to compare various approximations in
extending the hydrodynamic description beyond the Navier–Stokes approximation.

In the linear case [23], the Chapman–Enskog series is summed up exactly in
closed form. This result shows that the corresponding hydrodynamics, despite di-
vergences of some truncated expansions, is globally well defined because of disper-
sive effects. This indicates in particular that the Knudsen number ε used to get the
expansion is maybe not the good parameter: finite-order truncations do not seem
to provide suitable approximations in the whole, and especially in the short-wave,
domain. As noted by Slemrod [42], this could mean that even the Navier–Stokes
approximation is wrong in the vicinity of compressible shocks.

In the nonlinear case, there is no immediate generalization of these techniques.
Karlin and Gorban [24] have thus introduced reduced descriptions based on the
principle of dynamic invariance. They sum exactly a subseries of the Chapman–
Enskog expansion, for instance the dominant contribution in the limit of high av-
erage velocities.

The main drawback of this approach comes from the fact that, like the classical
perturbative Chapman–Enskog expansion, the extended Chapman–Enskog proce-
dure assumes the existence of the invariant manifold, which is not known in general
and especially for nonlinear systems. Thus, at this stage, this systematic—even
promising—strategy does not say anything about the hydrodynamics associated to
the full nonlinear Boltzmann equation. Note however that the approach of Liu
and Yu [36] of the compressible limit is in the same spirit and could be probably
reinterpreted in such terms if at least the existence of the invariant manifold was
known.

2. Fluctuations around a global equilibrium

and incompressible hydrodynamic limits

A natural idea to avoid these complicated questions about the compressible Euler
equations is to consider fluctuations around some special solutions, the simplest
ones being constant solutions. At the present time, this is essentially the only
mathematical framework in which we have quite satisfactory results describing the
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fast relaxation limit. Note that this framework is not so restrictive insofar as in the
long time limit (in particular on diffusive or dispersive time scales), all solutions of
the compressible Euler equations should behave as constants at least locally.

At this stage, there is no problem with the leading order approximation, which
is simply a constant state, say without loss of generality

M(v) =
1

(2π)3/2
exp

(
− |v|2

2

)
.

In particular, it is smooth and stable thanks to Boltzmann’s H-theorem stating
that the entropy is a Lyapunov functional for the Boltzmann dynamics

H(f |M)(t) ≡
∫∫ (

f log
f

M
− f +M

)
(t, x, v)dxdv ≤ H(fin|M) .

2.1. A problem of convergence rather than asymptotics. A first simplifica-
tion in this setting is that we can define easily the fluctuation

Mgε =
1

δε
(fε −M)

with the proper scaling δε such that the first correction to the Euler equations now
appears as a term of order 1.

From the formal expansion, we deduce that convection and diffusion terms will be
comparable if δε ∼ ε. This corresponds to having the Mach and Knudsen numbers
of the same order of magnitude, which is relevant with the Von Karman relation
for perfect gases giving the Reynolds number as the ratio of the Mach and Knudsen
numbers. Of course, to observe a macroscopic motion, we further need to dilate
time by a factor 1/ε.

We therefore end up with the scaled equation

(2.1) ε∂tgε + v · ∇xgε = −1

ε
Lgε +Q(gε, gε) ,

denoting by L the linearized collision operator at M and by Q the quadratic part
of the collision operator

Q(g, g) =
1

M
Q(Mg,Mg) .

With these notations and scalings, justifying the second-order Chapman–Enskog
expansion then comes down to proving the convergence of (gε) to an infinitesimal
Maxwellian, the moments of which should satisfy the incompressible Navier–Stokes
equations. This is of course much simpler than dealing with a multiscale expansion,
especially because we do not need to control the error in some strong topology.

To make this remark more comprehensive, let us just go through a small digres-
sion and recall the different types of methods which are usually used to deal with
such singular perturbation problems.

• Energy or entropy methods are based on some strong (or weak-strong) sta-
bility principle: the idea is to control some distance between the solution
of the singular perturbation problem and its (possibly multiscale) approxi-
mation. In particular, such methods provide a convergence rate. But as a
counterpart, they generally ask for some regularity, typically Lipschitz reg-
ularity at least on the limiting field, to control the growth of this distance
with respect to time.
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• Weak stability methods require in general many fewer assumptions, but
can only describe a weak limit without any precise information on the
convergence (only one scale, no description of possible oscillations, no rate
of convergence, . . . ).

Note that both approaches are conditioned by the structure of the limiting system
and its stability properties.

2.2. A well-posed limiting model. The second important feature of the regime
we consider here is that the limiting system

(2.2) ∂tu+ (u · ∇x)u+∇xp = μΔxu, ∇x · u = 0,

is well-posed and stable. Actually it is both

• locally well-posed in the sense of Hadamard for smooth initial data, say in
Hs with s > 5

2 , and then strongly stable;
• and globally well-posed in a weaker sense (not implying uniqueness), and
weakly stable.

This second notion of solution fits better with physics insofar as the initial data is
only required to satisfy energy bounds. We therefore expect that it should provide
a good framework to study the transition between kinetic and fluid scales.

Remark 2.1. Note that historically the first derivation of the incompressible Navier–
Stokes equations from the scaled Boltzmann equation has been obtained in the
framework of smooth solutions [4], but the result is not optimal in the sense that
smallness and regularity are imposed on the initial data, that only well-prepared
profiles and thermodynamic fields can be considered, and that boundary conditions
cannot be dealt with using a simple extension of the method.

Actually what is proved in [4] and the subsequent literature is rather the existence
of one family of solutions to the scaled Boltzmann equation having the expected
asymptotic behaviour rather than a characterization of all limiting points in the
fast relaxation limit.

We will therefore focus here on global weak solutions satisfying the Leray energy
inequality

(2.3) ‖u(t)‖2L2(Ω) + 2μ

∫ t

0

‖∇xu(s)‖2L2(Ω)ds ≤ ‖uin‖2L2(Ω),

and which are stable under weak convergence [31].

Theorem 2.2 (Leray). Let uin ∈ L2(Ω) be a divergence-free vector field. Then
there exists (at least) one global weak solution u ∈ L2

loc(R
+, H1(Ω)) ∩ C(R+, w −

L2(Ω)) to the incompressible Navier–Stokes equations (2.2). It further satisfies the
energy inequality (2.3).

The dissipation term in (2.3) provides indeed some spatial regularity which,
combined with the time regularity coming from the evolution equation in (2.2),
gives some strong compactness and therefore stability of the (nonlinear) convection
term.

Remark 2.3. This weak stability result can be extended without any additional dif-
ficulty to the full viscous incompressible approximation of the Boltzmann equation

∂tu+ (u · ∇x)u+∇xp = μΔxu, ∇x · u = 0,

∂tθ + (u · ∇x)θ = κΔθ , ∇x(ρ+ θ) = 0,
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since the equation for the temperature is a simple linear transport-diffusion equa-
tion, once the convection field u ∈ L2

loc(R
+, H1(Ω))∩C(R+, w−L2(Ω)) is known.

A similar mechanism will give the weak convergence of the thermodynamic fields
associated to the scaled Boltzmann equation as the Knudsen and Mach number goes
to 0 at the same rate. In such a viscous regime, the Leray energy inequality (2.3)
and the DiPerna–Lions entropy inequality (0.6) are indeed very similar objects.

2.3. Entropy and entropy-dissipation estimates. The entropy inequality

(2.4) H(fε|M) +
1

ε2

∫ t

0

∫
D(fε)(s, x)dxds ≤ H(f in

ε |M)

is the central tool of the asymptotic analysis, exactly as its limiting form—the Leray
energy inequality—in the theory of weak solutions to the incompressible Navier–
Stokes equations.

2.3.1. Control of the fluctuation. In order that the scaling assumption is consistent,
we consider initial data which are perturbations of order ε around M , for instance

f in
ε = M(1 + εgin)

so that
H(f in

ε |M) ≤ C0ε
2.

We indeed check that, for such distributions, the thermal speed is typically of order
1 while the bulk velocity is of order ε, which guarantees that the Mach number is
effectively of order ε.

The first use of the scaled relative entropy inequality is to ensure that the solution
to the Boltzmann equation remains a perturbation of order ε aroundM for all times,
that is to give some uniform a priori estimate on the fluctuation gε defined by

fε = M(1 + εgε).

The relative entropy can be indeed recast in the form

1

ε2
H(fε|M) =

1

ε2

∫∫
Mh(εgε)dvdx with h(z) = (1 + z) log(1 + z)− z.

Since h(z) ∼ z2/2 as z → 0, we thus expect the scaled relative entropy to almost
control the L2-norm of the fluctuation gε∫∫

Mg2εdvdx ≤ C(‖εgε‖∞)

ε2
H(fε|M) .

Nevertheless, for fixed ε, we have only a L1-bound. It comes for instance from
Young’s inequality

M |gε| ≤
1

ε2
(Mh(εgε) +Mh∗(ε)) ,

which provides

(2.5) ‖gε‖L1(Mdv) = O(1)L∞
t (L1

x)
+O(1)L∞

t,x
.

Refined estimates can be obtained by introducing the renormalized fluctuation

(2.6) ĝε =
2

ε
(
√
1 + εgε − 1).

A simple functional inequality indeed shows that

|ĝ2ε | ≤
2

ε2
h(εgε)
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so that

(2.7) ‖ĝε‖L2(Mdv) = O(1)L2(dx) .

Note that the identity

gε = ĝε +
ε

4
ĝ2ε

allows us, in particular, to retrieve the L1-bound (2.5) on the total fluctuation gε.

2.3.2. Control on the relaxation. The second use of the scaled relative entropy in-
equality is to control the relaxation.

Rewriting the kinetic equation in terms of the fluctuation, we get

(2.8) ε∂tgε + v · ∇xgε = −1

ε
Lgε +Q(gε, gε) .

We deduce formally that gε should be close to its orthogonal projection on KerL,
which is the expected relaxation toward the infinitesimal Maxwellian.

The previous argument, however, is not correct in the framework of renormalized
solutions, since

• the kinetic equation is not known to be satisfied (even in the sense of
distributions);

• the fluctuation gε is not in L2, so that the Hilbertian theory of L cannot
be applied.

Our starting point here is therefore the following identity for the renormalized
fluctuation,

(2.9)
1

ε
Lĝε =

1

4
Q(ĝε, ĝε)−

1

ε2
1

M
Q(

√
Mfε,

√
Mfε) ,

based on the bilinearity of Q.
The estimate on the renormalized fluctuation obtained in the previous paragraph,

together with easy continuity properties of Q (possibly after suitable truncations
of the collision cross-section b), provides a control on the first term in (2.9):

Q(ĝε, ĝε) = O(1)L1(dx,L2(Mdv)) .

The second term in the right-hand side of (2.9), which is a kind of renormalized
collision term, is controlled by the entropy dissipation∥∥∥∥ 1

ε2
Q(

√
Mfε,

√
Mfε)

∥∥∥∥2
L2(Mdv)

≤ 4

ε4
D(fε),

using the same kind of functional inequality as for (2.7).
We therefore end up with the relaxation estimate

(2.10) ĝε −
(
ρ̂ε + ûε · v + θ̂ε

|v|2 − 3

2

)
= O(ε)L2

t (L
1
x(L

2(Mdv)) ,

denoting by ρ̂ε, ûε, and θ̂ε the density, bulk velocity, and temperature, respectively,
associated to the fluctuation ĝε.

Remark 2.4. Of course this step is specific to the study of hydrodynamic limits
of the Boltzmann equation, and has no analogy at the level of the incompressible
Navier–Stokes equations: it corresponds indeed to the control of the purely kinetic
part of the solution, the one which is precisely neglected in the fluid approximation.

This estimate is however crucial in order to understand the dissipation process,
which also appears at the macroscopic level and will be studied in the next section.
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3. Some mathematical tools for the analysis of convergence

Since we just want to describe the limiting fluctuation g, the only remaining point
is to establish that its moments ρ, u, and θ satisfy the incompressible Navier–Stokes
equations. This program, suggested by Grad in the framework of the compressible
Euler asymptotics, has been developed by Bardos, Golse and Levermore [3] in the
viscous inviscid regime. We will not give here all the details of the proof, instead
we refer to [21], but insist on just the key arguments.

3.1. Renormalization and conservation defects. The first difficulty is related
to the fact that the only solutions to the Boltzmann equation which are known to
exist globally in time (without any restriction on the size or the regularity of the
initial data) are renormalized solutions.

Because of the symmetry breaking, renormalized solutions are not known to
satisfy conservation laws. More precisely, only the local conservation of mass and
the global conservation of momentum are satisfied. Since these conservation laws
are expected to provide the incompressible Navier–Stokes and Fourier equations as
ε → 0, one has first to establish that the conservation defects vanish asymptotically.

To do so, we start with the following approximate conservation laws

(3.1) ∂t

∫
Mgεγεϕεdv +

1

ε
∇x ·

∫
Mgεγεϕεvdv =

1

ε3

∫
γ̂εQ(fε, fε)ϕεdv,

where γε = γ(1+εgε), γ̂ε = εgεγ
′(1+εgε)+γ(1+εgε) and γ is a truncation satisfying

the conditions

γ ∈ C∞
c (R+), γ(z) ≡ 1 on [0, 2],

and ϕε is a truncated collision invariant

ϕε = ϕ1|v|2≤Kε
with ϕ ∈ span(1, v, |v|2) .

The conservation defects are then decomposed by introducing the renormalized
collision integrand

qε =
1

ε2

(√
f ′
εf

′
ε1 −

√
fεfε1

)
,

which is controlled by the entropy dissipation. More precisely,

(3.2)

Dε(ϕ) ≡
1

ε3

∫
γ̂εQ(fε, fε)ϕεdv

= ε

∫∫∫
γ̂ε1|v|2≤Kε

q2εϕbdvdv1dσ

− 2

ε

∫∫∫
γ̂ε

(
1− 1|v|2≤Kε

)
qεϕbdvdv1dσ

+
2

ε

∫∫∫
γ̂ε(1− γ̂ε1)qε

√
fεfε1ϕbdvdv1dσ

+
2

ε

∫∫∫
γ̂εγ̂ε1(1− γ̂′

εγ̂
′
ε1)qε

√
fεfε1ϕbdvdv1dσ

− ε

2

∫∫∫
γ̂εγ̂

′
εγ̂ε1γ̂

′
ε1q

2
ε (ϕ+ ϕ1)bdvdv1dσ,

where we have used that ϕ is a collision invariant to symmetrize the last term.
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The different terms are then estimated using:

• the entropy dissipation bound∫ t

0

ds

∫
dx

∫∫
q2ε bdvdv1dσ ≤ C0;

• Gaussian tails∫
|v|2>R

|v|pM(v)dv ∼
√

2

π
R(p+1)/2e−R/2;

• and the convergence

1− γε
ε

→ 0 in L2
loc(dtdx, L

p(Mdv)),

which results from the equi-integrability

(3.3) |ĝε|2 is weakly compact in L1
loc(dtdx, L

1(Mdv)) .

Such an integrability (or equivalently a L1-weak compactness) is not a consequence
of the entropy and entropy dissipation bounds. For instance, it is not known to
hold in inviscid regimes (when the Knudsen number is very small compared to the
Mach number). At this stage, (3.3) is therefore an assumption that we will have to
check later on.

3.2. Hypoellipticity. Controlling the spatial regularity of the fluctuation (or at
least of its moments) is the second major challenge of the proof. The main idea
is that the entropy dissipation controls the regularity with respect to velocity vari-
ables, and that this regularity is then transferred to spatial variables by hypoellip-
ticity. The entropy dissipation is therefore used twice, both

• to control the regularity with respect to v and
• to control the source terms of the free transport.

Let us sketch briefly the main steps to obtain these two types of estimates.

3.2.1. Weak compactness in v. The equi-integrability with respect to v comes from
the relaxation and, more precisely, from the decomposition

(3.4) ĝε = Πĝε + (ĝε −Πĝε),

which is the linear version of the first-order Chapman–Enskog expansion.
The first term is obviously smooth in v since, by definition,

Πĝε = ρ̂ε + ûε · v + θ̂ε
|v|2 − 3

2
,

where (ρ̂ε, ûε, θ̂ε) are bounded in L∞
t (L2

x).
The second term is controlled by the entropy dissipation as shown in (2.9). We

indeed have
‖ĝε −Πĝε‖L2(Mdv) = O(ε)L∞

t (L1
x)

+O(ε)L2
t,x

.

Combining this estimate with some pointwise bound, we find that for any λ > 0

M |ĝε|21fε≤λM is equi-integrable in v .

Note that large tails of the distribution M |ĝε|21fε>λM as well as large velocities
M |ĝε|2|v|2 can be controlled directly by the relative entropy (see [39] for instance),
so that we end up with the following estimate: for any p < 2,

M |ĝε|2(1 + |v|p) is equi-integrable in v .
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3.2.2. Regularizing properties of the free transport operator. The core of the proof
is then to obtain the equi-integrability of Mĝ2ε with respect to spatial variables (see

(3.3)) and the strong compactness of the moments ρ̂ε, ûε, and θ̂ε. Both properties
come from the structure of the free transport operator and, more precisely, from
hypoellipticity and averaging lemma.

Hypoellipticity allows to transfer regularity or integrability from the v variable
to the x variable. The result we need here is the following local dispersion statement
[22]:

Theorem 3.1 (Golse and Saint-Raymond). Let (βε) be a bounded family in
L∞
t (L1

x,v) such that

(ε∂tβε + v · ∇xβε) is bounded in L1
t,x,v,

(βε) is uniformly equi-integrable in v.

Then the family (βε) is uniformly equi-integrable (in all variables) and thus weakly
compact by the Dunford–Pettis criterion.

Note that extensions of this statement (required, for instance, when considering
additional force terms in the transport equation [2]) can be obtained by using
refined arguments of harmonic analysis based on a careful splitting of the phase
space according to the symbol of the free transport operator. We refer to [1] for
more precise statements.

The averaging lemma, already stated in Theorem 1.2, exploits another feature
of the free transport operator, namely the fact that outside of a small subset of the
phase space, it behaves as an elliptic operator.

It has been improved in many directions, especially in [16] to account for deriva-
tives in v in the source term, but we will not need these refinements here.

3.2.3. Control of the source terms. The key point is therefore to obtain a control
on the transport, which is done essentially by the same techniques as for the conser-
vation defects, except that we neither use the symmetries of the collision integrand
nor the equi-integrability (3.3). What can be proved is the following estimate:

(3.5) (ε∂t + v · ∇x)Mĝε,a = O(ε2−a/2)L1
t,x,v

+O(1)L2
t,x,v

+ O(ε)L1
loc(dtdx,L

2
v)
,

where

ĝε,a =
2

ε
(
√
fε/M + εa − 1) .

At this stage using both Theorems 1.2 and 3.1, we have therefore the strong

compactness with respect to x of the moments (ρ̂ε, ûε, θ̂ε) and the fact that they
satisfy some approximate conservation laws.

3.3. Compensated compactness. The last step is to take limits in these approx-
imate conservation laws. Using the identity (2.9),

1

ε
Lĝε =

1

4
Q(ĝε, ĝε)−

∫∫
qε
√
M1Mbdvdv1dω

together with the fact that (ĝε, qε) satisfies

(v · ∇x)Mĝε =

∫∫
qε
√
MM1bdvdv1dω + o(1) ,
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we decompose the momentum flux (resp. the energy flux) as the sum of a nonlinear
convection term and a diffusion term. Denoting by P the Leray projection, we have

∂tPuε +P∇x · (uε ⊗ uε)− μΔxPuε → 0 in the sense of distributions,

∂t
1

5
(3θε − 2ρε) +∇x · (θεuε)− κΔxθε → 0 in the sense of distributions.

The difficulty is therefore to obtain the weak stability of the convection terms.
We indeed know that (uε) is strongly compact with respect to x, but we do not
expect any uniform regularity with respect to time.

More precisely, because the incompressibility and Boussinesq constraints are not
satisfied for fixed ε, fast temporal oscillations (referred to as acoustic waves) arise
in the system. Integrating the transport equation (3.1) and using the Chapman–
Enskog decomposition (3.4), we actually find that

(3.6)

ε∂tρε +∇x · uε = O(ε)L1
loc(dt,W

−1,1
loc (dx)) ,

ε∂tuε +∇x(ρε + θε) = O(ε)L1
loc(dt,W

−1,1
loc (dx)) ,

ε∂t(3θε − 2ρε) = O(ε)L1
loc(dt,W

−1,1
loc (dx)).

It is thus natural to decompose

uε = ūε +∇ψε with ūε = Puε,

ρε = −θ̄ε + πε, θε = θ̄ε +
2

3
πε with θ̄ε =

1

5
(3θε − 2ρε) .

We then expect ūε and θ̄ε to be strongly compact both in t and x (which can be
proved using some interpolation lemma together with a careful study of the Leray
projection). The question is to understand how the fast oscillating components
∇ψε and πε interact and possibly create interferences preventing the convergence
of the product

P∇x · (uε ⊗ uε) → P∇x · (ū⊗ ū) .

Here, compensated compactness will replace the usual weak-strong compactness;
it relies both on the algebraic structure of the nonlinearity and on the spectral
description of the wave operator. The key result, obtained by Lions and Masmoudi
in [34], is the following

Theorem 3.2 (Lions and Masmoudi). Consider two families πε and ∇ψε uniformly
bounded in L∞

t (L2
x) and strongly compact in x. Assume that

ε∂tπε +Δxψε = o(1)L1
t (W

−s,1
x ),

ε∂t∇ψε +
5

3
∇xπε = o(1)L1

t (W
−s,1
x ),

for some s > 1. Then,

P∇x · ((∇ψε)
⊗2) → 0 and ∇x · (πε∇ψε) → 0

in the sense of distributions.
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For the sake of completeness, we recall here the formal computation leading to
these statements:

∇x · ((∇ψε)
⊗2) =

1

2
∇x(|∇xψε|2) +∇xψεΔxψε =

1

2
∇x(|∇xψε|2) +∇xψε(s

0
ε − ε∂tπε)

=
1

2
∇x(|∇xψε|2) +∇xψεs

0
ε − ε∂t

(
πε∇xψε

)
+ πε

(
sε −

5

3
∇xπε

)

=
1

2
∇x

(
|∇xψε|2 −

5

3
(πε)

2

)
− ε∂t

(
πε∇xψε

)
+ (∇xψε)s

0
ε + πεsε,

denoting s0ε = ε∂tπε+Δxψε and sε = ε∂t∇ψε+
5
3∇xπε. An analogous identity holds

for the energy transport

∇x · (πε∇xψε) = πδ
εΔxψε +∇xπε · ∇xψε

= πε(s
0
ε − ε∂tπε) +∇xψε ·

3

5
(sε − ε∂t∇xψε)

= − ε

2
∂t

(
(πε)

2 +
3

5
|∇ψε|2

)
+ πεs

0
ε +

3

5
∇xψε · sε.

The rigorous justification of these computations would require a regularization with
respect to spatial variables, which will not be detailed in this review paper. We
only note that the spatial regularity is needed here.

We finally end up with the following convergence result, established in [20] for
Maxwellian cross-sections and in [21] for general hard potentials with cut-off:

Theorem 3.3 (Golse and Saint-Raymond). Let (f in
ε ) be a family of initial data

such that
1

ε2
H(f in

ε |M) ≤ C0.

For any fixed ε, let fε = M(1 + εgε) be a renormalized solution to the scaled Boltz-
mann equation (2.1). Then (gε) is relatively weakly compact in L1

loc(dtdxMdv),
and any limit point g of (gε) satisfies

g = Πg = ρ+ u · v + θ
|v|2 − 3

2
,

where

(3.7)
∂tu+ u · ∇xu+∇p− μΔxu = 0, ∇x · u = 0 ,

∂tθ + u · ∇xθ − κΔxθ = 0, ∇x(ρ+ θ) = 0 .

This actually justifies the Chapman–Enskog expansion up to second order

Πĝε = ρ̂ε + ûε · v + θ̂ε
|v|2 − 3

2
,

ĝε −Πĝε = O(ε) ,

where (ρ̂ε, ûε, θ̂ε) are approximate solutions to the Navier–Stokes Fourier equations.
But this does not tell us anything about the size of the error made by replacing

(ρ̂ε, ûε, θ̂ε) by the solutions to the Navier–Stokes Fourier equations.

4. Weak convergence versus strong convergence

Additional information on the asymptotics may be obtained by considering
strong convergence rather than weak convergence. Note that this will not give
higher approximations of the Chapman–Enskog expansion but only a more precise
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description of O(1) terms: we indeed expect to catch oscillations and concentrations
if they exist in the system.

The strategy of the proof is then based on some weak-strong stability principle,
meaning that we will compare the solution of the scaled Boltzmann equation to its
formal asymptotics in some suitable “distance”, here by computing their relative
entropy. The idea of using the relative entropy for the study of hydrodynamic limits
goes back to Yau [43]. It has been first implemented for the Boltzmann equation
in [19], then improved by the author [37] to get some convergence result in the
incompressible Euler limit under the only assumption that the initial data is well
prepared.

Dealing with ill-prepared data is more difficult since we have to describe both
the acoustic waves and the initial layer (assuming for the sake of simplicity that
there is either no spatial boundary or purely specular reflection at the boundary).
A first attempt to extend the relative entropy method in this case has been made
in the incompressible inviscid setting [38], but it requires additional assumptions
on the renormalized solutions in order that the conservation laws are satisfied and
that the energy flux can be controlled.

In viscous regimes, such assumptions are not compulsory insofar as one can intro-
duce approximate conservation laws and prove that the conservation defects vanish
asymptotically. The idea is to modulate not the entropy itself, but a functional
which is controlled by the entropy. This functional is essentially the L2-norm of the
renormalization gεγε; we therefore work in a Hilbertian setting and with approxi-
mate conservation laws.

This remark has been developed in recent work with D. Arsenio [2] and is funda-
mental when dealing with magneto-hydrodynamic limits of the Vlasov–Maxwell–
Boltzmann system leading to Ohm’s law, since conservation defects can be con-
trolled but weak stability is not known to hold in this kind of regime.

Define the modulated renormalized entropy by

δH(t) =
1

2

∫∫
M

(
gεγε1|v|2≤Kε

−
(
ρ+ u · v + θ

|v|2 − 3

2

))2

dvdx

for some renormalization such that

γ(z) ≡ 1 in the vicinity of 1, γ(z) ∼
√
z at infinity,

and the modulated renormalized entropy dissipation by

δD(t) =
1

4

∫∫
(qε − q)2 bMM1dvdv1dωdx,

where

q =
1

4
∇xu : (Φ̃ + Φ̃1 − Φ̃′ − Φ̃′

1) +
1

4
∇xθ · (Ψ̃ + Ψ̃1 − Ψ̃′ − Ψ̃′

1)

denoting by Φ and Ψ the kinetic momentum and energy fluxes

Φ = v⊗2 − 1

3
|v|2Id, Ψ =

1

2
v(|v|2 − 5) ,

and by Φ̃ and Ψ̃ their respective images by L−1.



PDE PERSPECTIVE ON THE CHAPMAN–ENSKOG EXPANSION 267

What can be proved is the stability inequality

(4.1)

δH(t) +

∫ t

0

D(s)ds

≤ 1

ε2
H(f in

ε |Mexp(ερin,εuin,exp(εθin) exp (γ(t))

−
∫ t

0

∫ ⎛
⎝ ρε − ρ

uε − u
θε − θ

⎞
⎠ ·Aε(ρ, u, θ) exp (γ(s)) dxds+ o(1),

where the acceleration operator is defined by

Aε(ρ, u, θ) =

⎛
⎜⎜⎜⎜⎝

∂tρ+
1

ε
∇x · u+ u · ∇xρ

∂tu+
1

ε
∇x(ρ+ θ) + θ∇x

(
ρ− 3

2
θ

)
+ u · ∇xu− μΔxu

∂tθ +
2

3ε
∇x · u+ u · ∇xθ − κΔxθ

⎞
⎟⎟⎟⎟⎠

and the growth rate is given by

γ(t) =

∫ t

0

(‖u(s)‖W 1,∞ + ‖θ(s)‖W 1,∞) ds .

The main ingredients to prove this stability inequality are the scaled entropy
inequality (2.4) and the approximate conservation laws obtained by (3.1) together
with the convergence of conservation defects. Actually, in order to obtain a rate
of convergence, we do not exactly use the convergence to 0 of conservation de-
fects based on the equi-integrability statement (3.3) (which is not quantitative) but
rather a control of conservation defects by the modulated entropy and some Gron-
wall inequality. For the precise computations of the renormalized relative entropy
and the proof of stability, we refer to [2].

We will focus here on the construction of the approximate solution as the sum
of different contributions, the main one being

g = ρ̄+ ū · v + θ̄
|v|2 − 3

2
,

where (ρ̄, ū, θ̄) satisfy the Navier–Stokes-Fourier system (3.7).

4.1. Fast time oscillations. Acoustic waves only contribute to the hydrodynamic
part of the distribution:

gosc = ρosc + uosc · v + θosc
|v|2 − 3

2
,

where (ρ̄+ ρosc, ū+uosc, θ̄+ θosc) are approximate solutions to the singular pertur-
bation problem

Aε(ρ, u, θ) = 0 .

More precisely, we will require that

(4.2) Aε(ρ̄+ ρosc, ū+ uosc, θ̄ + θosc) → 0 in L2(dtdx) as ε → 0.

Such a construction is done by a filtering method (see [27] or [40] for instance),
i.e., considering the family W

(
t
ε

)
(ρ, u, θ), where W is the semigroup generated by
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the linear penalization

W (ρ, u, θ) =

(
∇x · u,∇x(ρ+ θ),

2

3
∇x · u

)
.

The first-order approximation is then obtained by taking (strong) limits in the
filtered system. Nevertheless, because of the high frequency oscillations, we do not
expect the error in this first-order approximation to converge strongly to 0.

We therefore have to add some correctors (i.e., the second-order approximation)
in order to establish the convergence statement (4.2).

More precisely, we have the following

Proposition 4.1. Let (ρin, uin, θin) belong to Hs(Ω) for some s > 5
2 . Then there

exist some t∗ > 0 and some family (ρNosc, u
N
osc, θ

N
osc) satisfying the uniform bound

(4.3) sup
N∈N

lim
ε→0

‖(ρNosc, uN
osc, θ

N
osc)‖L1([0,t∗],Hs(Ω)) ≤ C

and such that the following convergences hold as ε → 0 then N → ∞:

(4.4) (ρ̄+ ρNosc, ū+ uN
osc, θ̄ + θNosc))|t=0 → (ρin, uin, θin) in Hs(dx),

(4.5) Aε(ρ̄+ ρNosc, ū+ uN
osc, θ̄ + θNosc) → 0 in L2(dtdx).

Note that, because of the structure of the nonlinearity already exhibited in sec-
tion 3.3, the filtered system can be decoupled at leading order in

• an independent system for the projection (ρ̄, ū, θ̄) on the kernel of W and
• a linear transport-diffusion equation (with coefficients depending on
(ρ̄, ū, θ̄)) for the oscillating part W

(
t
ε

)
(ρosc, uosc, θosc).

This structure is crucial for establishing the existence of smooth solutions and then
for constructing the correctors by linearization techniques.

4.2. Relaxation layers. For general initial data, the purely kinetic part of the
solution to the Boltzmann equation is expected to converge to 0 exponentially
in time, in particular in L1

loc(dtdxdv), but not in L∞
loc(dt, L

1
loc(dxdv)). We have

therefore to introduce another corrector, which is essentially localized in a thin
time interval of size ε2.

In this initial layer, the dominant process is expected to be the relaxation, so
that the transport can be neglected in first approximation. Nonlinear effects are
also small compared to the linear relaxation. We thus solve the homogeneous linear
equation

∂tgrel =
1

ε2
Lgrel ,

grel |t=0 = gin .

The coercivity estimate for L ensures that grel tends exponentially in (t/ε2) to

the infinitesimal Maxwellian ρin + uin · v + θin
|v|2−3

2 . Furthermore, the regularity
with respect to x is obviously propagated.

The point is then to prove that this approximation is relevant, in the sense that

1

2

∫∫
M (gεγε − grel)

2
dxdv → 0
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in the initial layer. This step is extremely technical in [38], insofar as:

• we used the nonlinear relaxation equation to build the approximation;
• we needed to truncate large velocities to ensure a suitable decay at infinity;
• we modulated the entropy and the entropy dissipation (which is not ex-
pected to converge to 0 in the initial layer), which are convex functionals
but not associated to some Hilbertian structure.

Here the proof is much simpler. Once again we will not give all the details but
just mention how to modulate the dissipation.

Define the modulated renormalized entropy by

δH(t) =
1

2

∫∫
M

(
gεγε1|v|2≤Kε

− grel
)2

dvdx

and the modulated renormalized entropy dissipation by

δD(t) =
1

4

∫∫
(qε − qrel)

2 bMM1dvdv1dωdx,

where

qrel =
1

ε
(grel + grel,1 − g′rel − g′rel,1) .

What can be proved is the stability inequality (provided that g ∈ L∞
t,x,v)

(4.6)

δH(t) +

∫ t

0

D(s)ds

≤ 1

ε2
H(f in

ε |M(1 + εgin)) exp (γ(t))

−
∫ t

0

∫
M (gεγε − grel)

(
1

ε
v · ∇xgrel

)
exp (γ(t)− γ(s)) dxds+O

(
t

ε

)
.

The main difference with (4.1) comes from the facts that the transport is dealt with
as a perturbation and that grel is not a collision invariant, which introduces two
additional terms. The first one comes from the time derivative of grel

− 1

ε2

∫
Lgrel(grel − gεγε1|v|2≤Kε

)Mdv

= − 1

ε2

∫
grelL(grel − gεγε1|v|2≤Kε

)Mdv

= −1

4

∫∫
qrel(qrel − qε)bMM1dv1dvdω +O

(
1

ε

)
L∞

t (L1
x)

,

where we have used identity (2.9) to compute Lĝε.
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The second one comes from the time derivative of gεγε

1

ε3

∫
γ̂εQ(fε, fε)greldv

= ε

∫∫∫
γ̂εq

2
εϕgreldvdv1dσ

+
2

ε

∫∫∫
γ̂ε(1− γ̂ε1)qε

√
fεfε1grelbdvdv1dσ

+
2

ε

∫∫∫
γ̂εγ̂ε1(1− γ̂′

εγ̂
′
ε1)qε

√
fεfε1grelbdvdv1dσ

− ε

4

∫∫∫
γ̂εγ̂

′
εγ̂ε1γ̂

′
ε1q

2
ε (grel + grel,1)bdvdv1dσ

− 1

4

∫∫∫ √
fεfε,1γ̂εγ̂

′
εγ̂ε1γ̂

′
ε1qε

1

ε
(grel + grel,1 − g′rel + g′rel,1)bdvdv1dσ.

The last term contributes to the modulated renormalized entropy dissipation, while
the others are dealt with as in the case of conservation defects.

The inequality (4.6) shows that the purely kinetic part is negligible outside from
the initial layer, the size of which is typically O(ε2). Note however that it is not
possible to use (4.6) in the initial layer, then (4.1) after a time tε such that ε2 � tε �
ε. We indeed have no information on the relative entropy at time tε, but only on a
renormalized functional. We therefore have to build one approximate solution (g, q)
by combining the two previous constructions and using the modulated renormalized
entropy inequality only once.

We finally end up with the following convergence result, which is obtained as
a combination of the results obtained in [39] in the inviscid regime and of the
renormalized entropy method introduced in [2]:

Theorem 4.2. Let (fε,in) be a family of initial data converging entropically at scale
ε to some smooth fluctuation gin

1

ε
(fε,in −M) ⇀ Mg in L1

loc(dxdv) and
1

ε2
H(fε,in|M) → 1

2

∫∫
M(gin)

2dvdx.

For any fixed ε, let fε = M(1 + εgε) be a renormalized solution to the scaled Boltz-
mann equation (2.1).

Let gapp be the approximation defined by

gapp = exp

(
− t

ε2
L
)
Π⊥gin + (ρ̄+ ρosc) + (ū+ uosc) · v + (θ̄ + θosc)

|v|2 − 3

2
,

where (ρ̄, ū, θ̄) satisfy the Navier–Stokes Fourier system (3.7), (ρosc, uosc, θosc)
are the acoustic waves (defined in Proposition 4.1), and Π⊥gin is the purely
kinetic part of the initial fluctuation. Then gε − gapp converges strongly to 0 in
L1
loc(dtdx, L

1(M(1 + |v|2)dv)).

Note that we could obtain a rate of convergence by a careful study of all error
terms.

4.3. Regularity and uniqueness. In modulated entropy (or energy) methods,
the regularity of the limiting field is the key point in proving the stability (and
also to build the correctors for ill-prepared initial data). In hyperbolic regimes,
we typically need some Lipschitz regularity to estimate the flux term by some
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Gronwall inequality. In parabolic regimes, it should be possible to relax a little bit
this regularity assumption by using the a priori regularity on the moments coming
from the entropy dissipation estimate and averaging lemma.

4.3.1. Weak-strong uniqueness. This is the counterpart at the kinetic level of the
weak-strong stability, which has been stated by Leray for the solutions to the
Navier–Stokes equations. For any weak (Leray) solution u and any strong (Lip-
schitz) solution ū of the Navier–Stokes equations, the following inequality holds:

‖u(t)− ū(t)‖2L2 ≤ ‖uin − ūin‖2L2 exp

(
C

∫ t

0

‖∇ū(s)‖L∞ds

)
.

It can be refined as

‖u(t)− ū(t)‖2L2 ≤ ‖uin − ūin‖2L2 exp

(
C

μ

∫ t

0

‖∇ū(s)‖2
Ḣ1/2ds

)
,

using Sobolev’s embeddings together with some trilinear estimate for the flux term∣∣∣∣
∫
((u− ū) · ∇)ū · (u− ū)(s, x)dx

∣∣∣∣ ≤ C‖(u−ū)(s)‖L2‖∇ū(s)‖Ḣ1/2‖∇(u−ū)(s)‖L2 .

Note that this is essentially the only setting for which the uniqueness of Leray
solutions is guaranteed. It is then natural that strong convergence requires this
level of regularity (since strong convergence of approximate solutions implies more
or less uniqueness of the limit).

4.3.2. Dissipative solutions. Actually, the stability inequality that is established is
a little bit more general insofar as we do not require that the test function ū be
a solution to the Navier–Stokes equations. What can be proved is typically the
inequality

‖u(t)− ū(t)‖2L2

≤ ‖uin − ūin‖2L2 exp

(
C

∫ t

0

‖∇ū(s)‖L∞ds

)

−
∫ t

0

∫
(u− ū) · (∂tū+ ū · ∇xū− μΔxū)(s)

× exp

(
C

∫ t

s

‖∇ū(s′)‖L∞ds′
)
ds

(4.7)

for any Lipschitz divergence-free vector field ū.
Starting from this remark, Lions has introduced [33] a very weak notion of solu-

tions, referred to as dissipative solutions, defined by the constraint that ∇x ·u = 0,
in which u is weakly continuous with respect to time and satisfies the stability
inequality (4.7). By definition, these solutions coincide with the smooth solutions
of the Navier–Stokes equations as long as they exist, but they are not known to
be Leray solutions to the Navier–Stokes equations, nor to satisfy any renormalized
form of the equations.

This means that the Leray solutions cannot be obtained in general as asymptotics
of the scaled Boltzmann equation by entropy methods. In that respect, the relative
entropy method is more restrictive than the weak compactness method described
previously.
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5. Consequences and perspectives

Even looking at only the first two orders in the Chapman–Enskog expansion,
we have seen that both regularity and truncation are important and still-unsolved
issues.

5.1. About the small parameter in the Chapman–Enskog expansion. Reg-
ularity is typically required to control the stability. For the time being, the only
regime for which we are able to get enough a priori regularity to prove a rigorous
convergence result is the one leading to the incompressible Navier–Stokes equations,
which is the first-order correction to constant solutions of the compressible Euler
equations. A natural question is then to know whether we can find other solutions
to the compressible Euler equations that describe the asymptotics of the Boltzmann
equation.

We have to mention here that rarefaction waves and shock waves of small ampli-
tudes have been proved (in [10] and [36], respectively) to be limits of some Boltz-
mann dynamics. However the question we address here is much more general: we
are not interested only in proving that one can build particular families of solu-
tions to the scaled Boltzmann equation which have good asymptotics, but also in
characterizing all the possible limit points in the fast relaxation limit.

• If the solution to the Euler equations is not smooth, as mentioned by Slem-
rod [42], it is not even clear what is the good notion of solution to be
studied.

The Chapman–Enskog expansion requires in order to be consistent that
the spatial derivatives are o( 1ε ). This means that the weakly viscous approx-
imation may be wrong, in which case the entropy criterion is not necessarily
a good tool for selecting admissible solutions to the Euler equations.

• If we restrict our attention to smooth solutions to the Euler equations
(which is of course a serious limitation), a natural idea is to extend the
relative entropy method and to use the regularity of the limiting field to
control the stability.

However, this strategy fails because of the lack of control on large ve-
locities, which is a problem arising only at the kinetic level (we have no
counterpart at the fluid level, which could be used for loop estimates).
More precisely, the energy flux contains a moment of order 3 with respect
to v, which cannot be controlled either by the relative entropy or by the
entropy dissipation.

The point is that the Chapman–Enskog expansion actually involves pow-
ers of the scaled transport operator ε(v · ∇x). Controlling large velocities
is therefore as important as controlling the regularity.

In other words, because of large velocities and high frequencies, it is not clear at
the present time whether or not the Chapman–Enskog expansion is relevant at any
order (even one or two) to describe the asymptotics of the Boltzmann equation in
the fast relaxation limit, except in very particular situations.

5.2. About concentrations and large velocities in the Boltzmann equa-
tion. As a conclusion, we would like to bring attention to the fact that this question
of large velocities and high frequencies is not specific to hydrodynamic limits of the
Boltzmann equation. What is actually not clear is the relevance of the Boltzmann
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equation in such regimes. We indeed recall that this equation is expected to model
the evolution of rarefied gases and that it has been rigorously derived from Hamil-
tonian dynamics of elementary particles in the Boltzmann–Grad scaling under very
restrictive assumptions.

Actually, these assumptions lead to a short time validity for the full nonlinear
Boltzmann equation (see [30] and references therein), which is anyway not com-
patible with the study of the fast relaxation limit. But we could hope that this
restriction is technical. The important point is that, in order to control recollisions
(which are not predicted by the Boltzmann equation) and to prove that their occur-
rence has vanishing probability in the limit, we need to control both concentrations
and large velocities. The suitable norms are typically weighted L∞-norms giving
some exponential decay for large v. The possibility of extending Lanford’s argu-
ments to enlarged functional spaces is a challenging question (see [7,8] for instance),
but this probably would not be enough to avoid nonlinear pathologies.

This means that we have to think about regularization and renormalization
methods, not only for fluid limits but as a more general question regarding gas
dynamics.
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