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ABSTRACT. The problem of the derivation of hydrodynamics from the Boltz-
mann equation and related dissipative systems is formulated as the problem
of a slow invariant manifold in the space of distributions. We review a few
instances where such hydrodynamic manifolds were found analytically both as
the result of summation of the Chapman—Enskog asymptotic expansion and by
the direct solution of the invariance equation. These model cases, comprising
Grad’s moment systems, both linear and nonlinear, are studied in depth in
order to gain understanding of what can be expected for the Boltzmann equa-
tion. Particularly, the dispersive dominance and saturation of dissipation rate
of the exact hydrodynamics in the short-wave limit and the viscosity modifica-
tion at high divergence of the flow velocity are indicated as severe obstacles to
the resolution of Hilbert’s 6th Problem. Furthermore, we review the derivation
of the approximate hydrodynamic manifold for the Boltzmann equation using
Newton’s iteration and avoiding smallness parameters, and compare this to
the exact solutions. Additionally, we discuss the problem of projection of the
Boltzmann equation onto the approximate hydrodynamic invariant manifold
using entropy concepts. Finally, a set of hypotheses is put forward where we
describe open questions and set a horizon for what can be derived exactly or
proven about the hydrodynamic manifolds for the Boltzmann equation in the
future.
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1. INTRODUCTION

1.1. Hilbert’s 6th Problem. The 6th Problem differs significantly from the other
22 Hilbert problems [76]. The title of the problem itself is mysterious: “Mathemat-
ical treatment of the axioms of physics”. Physics, in its essence, is a special activity
for the creation, validation, and destruction of theories for real-world phenomena,
where “We are trying to prove ourselves wrong as quickly as possible, because only
in that way can we find progress” [38]. There exist no mathematical tools to formal-
ize relations between theory and reality in live physics. Therefore, the 6th Problem
may be viewed as a tremendous challenge in the deep study of ideas of physical
reality in order to replace vague philosophy by a new logical and mathematical
discipline. Some research in quantum observation theory and related topics can be
viewed as steps in that direction, but it seems that, at present, we are far from an
understanding of the most logical and mathematical problems here.

The first explanation of the 6th Problem given by Hilbert reduced the level of
challenge and made the problem more tractable: “The investigations on the foun-
dations of geometry suggest the problem: To treat in the same manner, by means
of axioms, those physical sciences in which mathematics plays an important part;
in the first rank are the theory of probabilities and mechanics.” This is definitely
“a programmatic call” [23] for the axiomatization of the formal parts of ezistent
physical theories and no new universal logical framework for the representation of
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reality is necessary. In this context, the axiomatic approach is a tool for the retro-
spective analysis of well-established and elaborated physical theories [23] and not
for live physics.

For the general statements of the 6th Problem it seems unclear now how to for-
mulate criteria of solutions. In a further explanation Hilbert proposed two specific
problems: (i) axiomatic treatment of probability with limit theorems for the foun-
dation of statistical physics, and (ii) the rigorous theory of limiting processes “which
lead from the atomistic view to the laws of motion of continua”. For complete res-
olution of these problems, Hilbert has set no criteria either, but some important
parts of them have already been claimed as solved. Several axiomatic approaches
to probability have been developed, and the equivalence of some of them has been
proven [45]. Kolmogorov’s axiomatics (1933) [96] is now accepted as standard,
and thirty years later, the complexity approach to randomness was invented by
Solomonoff and Kolmogorov (see the review [148] and the textbook [I07]). The
rigorous foundation of equilibrium statistical physics of many particles based on
the central limit theorems was proposed [30,95]. The modern development of limit
theorems in high dimensions is based on the geometrical ideas of measure concen-
tration effects [72l[137], and this gives new insight into the foundation of statistical
physics (see, for example, [47,[138]). Despite many open questions, this part of the
Hilbert program is essentially fulfilled—probability theory and the foundations of
equilibrium statistical physics are now well-established chapters of mathematics.

The way from the “atomistic view to the laws of motion of continua” is not so
well formalized. It includes at least two steps: (i) from mechanics to kinetics (from
Newton to Boltzmann), and (ii) from kinetics to mechanics and nonequilibrium
thermodynamics of continua (from Boltzmann to Euler and Navier, Stokes, and
Fourier).

The first part of the problem, the transition from the reversible-in-time equations
of mechanics to irreversible kinetic equations, is still far from being a complete
rigorous theory. The highest achievement here is the proof that rarefied gas of
hard spheres will follow the Boltzmann equation during a fraction of the collision
time, starting from a noncorrelated initial state [43L104]. The Bogoliubov—Born—
Green—Kirkwood-Yvon (BBGKY) hierarchy [13] provides the general framework
for this problem. For the systems close to global thermodynamic equilibrium, the
global-in-time estimates are available, and the validity of the linearized Boltzmann
equation is proven recently in this limit for rarefied gas of hard spheres [12].

The second part, model reduction in dissipative systems from kinetics to macro-
scopic dynamics, is ready for a mathematical treatment. Some limit theorems about
this model reduction are already proven (see the review book [126] and the com-
panion paper by L. Saint-Raymond [127] in this volume), and open questions can
be presented in a rigorous mathematical form. Our review is focused on this model
reduction problem, which is important in many areas of kinetics from the Boltz-
mann equation to chemical kinetics. There exist many similar heuristic approaches
for different applications [60L1T2L124,[129].

It seems that Hilbert presumed the kinetic level of description (the “Boltzmann
level”) as an intermediate step between the microscopic mechanical description
and the continuum mechanics. Nevertheless, this intermediate description may
be omitted. The transition from the microscopic to the macroscopic description
without an intermediate kinetic equation is used in many physical theories such as
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Green-Kubo formalism [I00], the Zubarev method of a nonequilibrium statistical
operator [I47], and the projection operator techniques [67]. This possibility is
demonstrated rigorously for a rarefied gas near global equilibrium [12].

The reduction from Boltzmann kinetics to hydrodynamics may be split into three
problems: existence of hydrodynamics, the form of the hydrodynamic equations,
and the relaxation of the Boltzmann kinetics to hydrodynamics. Formalization of
these problems is a crucial step in the analysis.

Three questions arise:

(1) Is there hydrodynamics in the kinetic equation, i.e., is it possible to lift the
hydrodynamic fields to the relevant one-particle distribution functions in
such a way that the projection of the kinetics of the relevant distributions
satisfies some hydrodynamic equations?

(2) Do these hydrodynamics have the conventional Euler and Navier—Stokes
Fourier form?

(3) Do the solutions of the kinetic equation degenerate to the hydrodynamic
regime (after some transient period)?

The first question is the problem of existence of a hydrodynamic invariant man-
ifold for kinetics (this manifold should be parametrized by hydrodynamic fields).
The second question is about the form of hydrodynamic equations obtained by
the natural projection of kinetic equations from the invariant manifold. The third
question is about the intermediate asymptotics of the relaxation of kinetics to equi-
librium: Do the solutions go fast to the hydrodynamic invariant manifold and then
follow this manifold on the path to equilibrium?

The answer to all three questions is essentially positive in the asymptotic regime
when the Mach number Ma and the Knudsen number Kn tend to zero [6,[46] (see
[126,[127]). This is a limit of very slow flows with very small gradients of all fields,
i.e., almost no flow at all. Such a flow changes in time very slowly and a rescaling
of time to1q = tnew/€ is needed to return it to nontrivial dynamics (the so-called
diffusive rescaling). After the rescaling, we approach in this limit the Euler and
Navier—Stokes Fourier hydrodynamics of incompressible liquids.

Thus in the limit Ma, Kn — 0 and after rescaling, Hilbert’s 6th Problem is
essentially resolved and the result meets Hilbert’s expectations: the continuum
equations are rigorously derived from the Boltzmann equation. Besides the limit
the answers are known partially. To the best of our knowledge, now the answers to
these three questions are: (1) sometimes; (2) not always; (3) possibly.

Some hints about the problems with hydrodynamic asymptotics can be found in
the series of works about the small dispersion limit of the Korteweg—de Vries equa-
tion [I05]. Recently, analysis of the exact solution of the model reduction problem
for a simple kinetic model [57,[135] has demonstrated that a hydrodynamic invari-
ant manifold may exist and produce nonlocal hydrodynamics. Analysis of more
complicated kinetics [19L201[86L87.90] supports and extends these observations: the
hydrodynamic invariant manifold may exist, but sometimes does not exist; and the
hydrodynamic equations when Ma - 0 may differ essentially from the Euler and
Navier—Stokes Fourier equations.

At least two effects prevent us from giving positive answers to the first two
questions outside of the limit Ma, Kn — O:

e Entanglement between the hydrodynamic and nonhydrodynamic modes
may destroy the hydrodynamic invariant manifold.
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e Saturation of dissipation at high frequencies is a universal effect that does
not, appear in the classical hydrodynamic equations.

These effects appear already in simple linear kinetic models and are studied in
detail for exactly solvable reduction problems. The entanglement between the hy-
drodynamic and nonhydrodynamic modes manifests itself in many popular moment
approximations for the Boltzmann equation. In particular, it exists for the three-
dimensional 10-moment and 13-moment Grad systems [19,201[60L86L00] but the nu-
merical study of hydrodynamic invariant manifolds for the Bhatnagar—Gross—Krook
(BGK) model equation [87] demonstrates the absence of such an entanglement.
Therefore, our conjecture is that for the Boltzmann equation, exact hydrodynamic
modes are separated from the nonhydrodynamic ones if the linearized collision op-
erator has a spectral gap between the five-times degenerated zero and the rest of
the spectrum.

The saturation of dissipation seems to be a universal phenomenon [52153][60,90,
T0TIM23132]. Tt appears in all exactly solved reduction problems for kinetic equa-
tions [90] and in BGK kinetics [71[87] and is also proven for various regularizations
of the Chapman—Enskog expansion [52}[60,123]132].

The answer to Hilbert’s 6th Problem concerning transition from the Boltzmann
equation to the classical equations of motion of compressible continua (Ma — 0)
may turn out to be negative. Even if we can overcome the first difficulty, sepa-
rating the hydrodynamic modes from the nonhydrodynamic ones (as in the exact
solution [57] or for the BGK equation [87]) and producing the hydrodynamic equa-
tions from the Boltzmann equation, the result will be manifestly different from the
conventional equations of hydrodynamics.

1.2. The main equations. We discuss here two groups of examples. The first of
them consists of kinetic equations which describe the evolution of a one-particle gas
distribution function f(¢,x;v)

(11) 0uf +0-Vof = QL)

where Q(f) is the collision operator. For the Boltzmann equation, @ is a quadratic
operator and, therefore, the notation Q(f, f) is often used.

The second group of examples are the systems of Grad moment equations [9[60,
68,[84]. The system of 13-moment Grad equations linearized near equilibrium is

6tP: —V'U,

(1.2) du=-Vp—VT -V .o,

2

— 4 1
0o = —2Vu — -Vq — —o,
) €
(1.3) 5 9
ohq=—=-VT -V -0—- —q.
td 9 o 3611
In these equations, o («,t) is the dimensionless stress tensor, o = (0y;), and q(«, t)
is the dimensionless vector of heat flux, ¢ = (¢;). We use the system of units in
which Boltzmann’s constant kg and the particle mass m are equal to 1, and we use
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the system of dimensionless variables,

ou op oT Po / Po_

1.4 U=—, p=—, I'=—, = ——7—=x, t= t,
14 o P T BT imvn )

where ¢’ are spatial coordinates and ¢’ is time.
The dot denotes the standard scalar product, while the overline indicates the
symmetric traceless part of a tensor. For a tensor a = (aij) this part is

1 1
a = §(a+ O,T) — §Itr(a),

where I is unit matrix. In particular,
= 1 2
Vu = i(Vu + (V)" — §IV ‘u),

where I = (d;5) is the identity matrix.

We also study a simple model of a coupling of the hydrodynamic variables, u
and p (p(x,t) = p(z,t) + T(x,t)), to the nonhydrodynamic variable o, the 3D
linearized Grad equations for 10 moments p, u, and o:

5
5tp = —gv ‘u,
(1.5) ou=-Vp—-V.o,
S
oo = —2Vu — —o.
€
Here, the coefficient % is the adiabatic exponent of the 3D ideal gas.
The simplest model and the starting point in our analysis is the reduction of

system (LH) to the functions that depend on one space coordinate z with the
velocity u oriented along the z axis:

5

Oip = —gax%
(1.6) Ou = —0yp — 00,
4 1
0i0 = —=0,u — —0,
3 €

where o is the dimensionless zx-component of the stress tensor and the equation
describes the unidirectional solutions of the previous system (L.

These equations are elements of the staircase of simplifications, from the Boltz-
mann equation to moment equations of various complexity, which was introduced
by Grad [68] and elaborated further by many authors. In particular, Levermore
proved hyperbolicity of the properly constructed moment equations [106]. This
staircase forms the basis of Extended Irreversible Thermodynamics (EIT) [84].

1.3. Singular perturbation and separation of times in kinetics. The kinetic
equations are singularly perturbed with a small parameter e (the “Knudsen num-
ber”), and we are interested in the asymptotic properties of solutions when e is
small. The physical interpretation of the Knudsen number is the ratio of the “mi-
croscopic lengths” (for example, the mean free path) to the “macroscopic scale”,
where the solution changes significantly. Therefore, its definition depends on the
properties of solutions. If the space derivatives are uniformly bounded, then we can
study the asymptotic behavior ¢ — 0. But for some singular solutions this problem
statement may be senseless. The simple illustration of rescaling with the erasing
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of € gives the set of travelling automodel solutions for (II]). If we look for them in
a form f = p(&,v) where & = (& — ct)/e, then the equation for ¢(&,v) does not
depend on €:

(v—c)-Veo = Q).

In general, ¢ may be considered as a variable that is neither small nor large, and
the problem is to analyze the dependence of solutions on e.

For the Boltzmann equation ([ITT]) the collision term Q(f) does not enter directly
into the time derivatives of the hydrodynamic variables, p = [ fdv, u = [vfdv
and T = [(v—wu)?fdv because, due to mass, momentum, and energy conservation
laws,

/ {1:0: (v — w)?}Q(f)dv = 0.

The following dynamical system point of view is valid for smooth solutions in a
bounded region with no-flux and equilibrium boundary conditions, but it is used
with some success much more widely. The collision term is “fast” (includes the
large parameter 1/¢) and does not affect the macroscopic hydrodynamic variables
directly. Therefore, the following qualitative picture is expected for the solutions:

(i) The collision term goes quickly almost to its equilibrium (the system almost
approaches a local equilibrium), and during this fast initial motion the
changes of hydrodynamic variables are small.

(ii) After that the distribution function is defined with high accuracy by the
hydrodynamic variables (if they have bounded space derivatives).

The relaxation of the collision term almost to its equilibrium is supported by mono-
tonic entropy growth (Boltzmann’s H-theorem). This qualitative picture is illus-
trated in Figure [l

Such a “nonrigorous picture of the Boltzmann dynamics” [29] which operates
by the manifolds in the space of probability distributions is a seminal tool for
production of qualitative hypotheses. The points (“states”) in Figure [l correspond
to the distributions f(x,v), and the points in the projection correspond to the
hydrodynamic fields in space.

For Grad equations (L2)-(L3), (L3), and (L6), the hydrodynamic variables
p,w, T are explicitly separated from the fluxes, and the projection onto the hydro-
dynamic fields is just the selection of the hydrodynamic part of the set of all fields.
For example, for (L6]) this is just the selection of p(x),u(x) from the whole set
of fields p(x), u(x), o (x). The expected qualitative picture for smooth solutions is
the same as in Figure [l

For finite-dimensional ODEs, Figure [Il represents the systems which satisfy the
Tikhonov singular perturbation theorem [140]. In some formal sense, this picture for
the Boltzmann equation is also rigorous when e — 0, and it is proven in [6]. Assume
that f€(¢,x,v) is a sequence of nonnegative solutions of the Boltzmann equation
(L) when ¢ — 0 and there exists a limit f¢(t,z,v) — f°(t,xz,v). Then (under
some additional regularity conditions) this limit f°(¢,x, v) is local Maxwellian and
the corresponding moments satisfy the compressible Euler equation. According to
[126], this is “the easiest of all hydrodynamic limits of the Boltzmann equation at
the formal level”.

The theory of singular perturbations was developed starting from complex sys-
tems, from the Boltzmann equation (Hilbert [77], Enskog [35], Chapman [24], Grad
[68[69]) to ODEs. The recently developed geometric theory of singular perturbation
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Initial conditions Projection to
macroscopic variables
Solution /
Initial layer

Slow

manifold

: !
i / i
Macroscopic variables

Parametrization by
macroscopic variables

FIGURE 1. Fast-slow decomposition. Bold dashed lines outline
the vicinity of the slow manifold where the solutions stay after
the initial layer. The projection of the distributions onto the hy-
drodynamic fields and the parametrization of this manifold by the
hydrodynamic fields are represented.

[36L37.83] can be considered as a formalization of the Chapman—Enskog approach
for the area where complete rigorous theory is achievable.

A program of the derivation of (weak) solutions of the Navier-Stokes equations
from the (weak) solutions of the Boltzmann equation was formulated in 1991 [6]
and finalized in 2004 [46] with the following answer: the incompressible Navier—
Stokes (Navier—Stokes Fourier) equations appear in a limit of appropriately scaled
solutions of the Boltzmann equation.

We use the geometry of time-separation (Figure [I) as a guide for formal con-
structions, and we present further development of this scheme using some ideas
from thermodynamics and dynamics.

1.4. The structure of this paper. In Section 2] we introduce the invariance
equation for invariant manifolds. It has been studied by Lyapunov (Lyapunov’s
auxiliary theorem [IT1], which we reproduce as Theorem [Z1] below). We describe
the structure of the invariance equations for the Boltzmann and Grad equations,
and in Section we construct the Chapman—Enskog expansion for the solution
of the invariance equation.

It may be worth stressing that the invariance equation is a nonlinear equation
and there is no known general method to solve it even for linear differential equa-
tions. The main construction is illustrated on the simplest kinetic equation (L8)): in
Section [2.3] the Euler, Navier—Stokes, Burnett, and super-Burnett terms are calcu-
lated for this equation, and the “ultraviolet catastrophe” of the Chapman—Fnskog
series is demonstrated (Figure [3]).
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The first example of the exact summation of the Chapman—Enskog series is pre-
sented in detail for the simplest system (L6) in Section[Bl We analyze the structure
of the Chapman—FEnskog series and find the pseudodifferential representation of the
stress tensor on the hydrodynamic invariant manifold. Using this representation, in
Section we represent the energy balance equation in the “capillarity-viscosity”
form proposed by Slemrod [I35]. This form explains the macroscopic sense of the
dissipation saturation effect: the attenuation rate does not depend on the wave
vector k for short waves (it tends to a constant value when k? — o0o). In the
highly nonequilibrium gas, the capillarity energy becomes significant, and it tends
to infinity for high-velocity gradients.

In the Fourier representation, the invariance equation for (L6) is a system of
two coupled quadratic equations with linear in k2 coefficients (Section B.4)). It can
be solved in radicals and the corresponding hydrodynamics has the acoustic waves
decay with saturation (Section[33]). The hydrodynamic invariant manifold for (L))
is analytic at the infinitely distant point k2 = oco. Matching of the first terms of
the Taylor series in powers of 1/k? with the first terms of the Chapman-Enskog
series gives simpler hydrodynamic equations with qualitatively the same effects
and even quantitatively the same saturation level of attenuation of acoustic waves
(Section [B.6]). We may guess that the matched asymptotics of this type include all
the essential information about hydrodynamics, both at low and high frequencies.

The construction of the invariance equations in the Fourier representation re-
mains the same for a general linear kinetic equation (Section EI)). The exact
hydrodynamics on invariant manifolds always inherits many important properties
of the original kinetics, such as dissipation and conservation laws. In particular, if
the original kinetic system is hyperbolic, then for bounded hydrodynamic invariant
manifolds the hydrodynamic equations are also hyperbolic (Section F2)).

In Section [ we study invariance equations for three systems: one-dimensional
solutions of the 13-moment Grad system (Section [.3]), the full three-dimensional
13-moment Grad system (Section [£4]), and the linearized BGK kinetic equation
(Section @H)). The 13-moment Grad system demonstrates an important effect: the
invariance equation may lose the physically meaningful solution for short waves.
Therefore, existence of the exact hydrodynamic manifold is not compulsory for all
the usual kinetic equations. Nevertheless, for the BGK equation with the complete
advection operator v - V, the invariance equation exists for short waves also (as is
demonstrated numerically in [87]).

For nonlinear kinetics, the exact solutions to invariance equations are not known.
In Section Bl we demonstrate two approaches to approximate invariant manifolds.
First, for the nonlinear Grad equation, we find the leading terms of the Chapman—
Enskog series in the order of the Mach number and exactly sum them. For this
purpose, we construct the approximate invariant manifold and find the solution for
the nonlinear viscosity in the form of an ODE (Section [i.]). For one-dimensional
solutions of the Boltzmann equation, we construct the invariance equation and
demonstrate the result of the first Newton—Kantorovich iteration for the solution of
this equation (Section[B.2land [53[60]). Use of the approzimate invariant manifolds
causes a problem of dissipativity preservation in the hydrodynamics on these mani-
folds. There exists a unique modification of the projection operator that guarantees
the preservation of entropy production for hydrodynamics produced by projection
of kinetics onto an approximate invariant manifold even for rough approximations
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[59]. This construction is presented in Section In the Conclusion, we discuss
solved and unsolved problems and formulate several hypotheses.

2. INVARIANCE EQUATION AND THE CHAPMAN-ENSKOG EXPANSION

2.1. The idea of an invariant manifold in kinetics. Very often, the Chapman—
Enskog expansion for the Boltzmann equation is introduced as an asymptotic ex-
pansion in powers of € of the solutions of equation (ILT]), which should depend on
time only through time dependence of the macroscopic hydrodynamic fields. His-
torically, the definition of the method is “procedure oriented”: an expansion is
created step by step with the leading idea that solutions should depend on time
only through the macroscopic variables and their derivatives. In this approach what
we are looking for often remains hidden.

The result of the Chapman—Enskog method is not a solution of the kinetic equa-
tion but rather the proper parametrization of microscopic variables (distribution
functions) by the macroscopic (hydrodynamic) fields. It is a lifting procedure: we
take the hydrodynamic fields and find for them the corresponding distribution func-
tion. This lifting should be consistent with the kinetics, i.e., the set of the corre-
sponding distributions (collected for all possible hydrodynamic fields) should be
invariant with respect to a shift in time. Therefore, the Chapman—Enskog proce-
dure looks for an invariant manifold for the kinetic equation which is close to the
local equilibrium for a small Knudsen number and smooth hydrodynamic fields with
bounded derivatives. This is the “object oriented” description of the Chapman—
Enskog procedure.

The puzzle in the statement of the problem of transition from kinetics to hydro-
dynamics has been so deep that Uhlenbeck called it the “Hilbert paradox” [142]. In
the reduced hydrodynamic description, the state of a gas is completely determined
if one knows initially the space dependence of the five macroscopic variables p, u,
and T'. Uhlenbeck has found this impossible:

“On the one hand, it couldn’t be true because the initial-value prob-
lem for the Boltzmann equation (which supposedly gives a better
description of the state of the gas) requires the knowledge of the
initial value of the distribution function f(7,w,t) of which p, u, and
T are only the first five moments in v. But on the other hand the
hydrodynamical equations surely give a causal description of the
motion of a fluid. Otherwise, how could fluid mechanics be used?”

Perhaps McKean gave the first clear explanation of the problem as a construction
of a “nice submanifold” where “the hydrodynamical equations define the same
flow as the (more complicated) Boltzmann equation does” [I114]. He presented the
problem using a partially commutative diagram; we use this idea in slightly revised
form in Figure

The invariance equation just expresses the fact that the vector field is tangent
to the manifold. The invariance equation has the simplest form for manifolds
parametrized by moments, i.e., by the values of the given linear functionals. Let us
consider an equation in a domain U of a normed space E with analytical (at least,
Gateaux-analytical) right-hand sides

(2.1) of = J(f)
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FIGURE 2. McKean diagram. The Chapman-Enskog procedure
aims to create a lifting operation, from the hydrodynamic variables
to the corresponding distributions on the invariant manifold. IM
stands for invariant manifold. The part of the diagram in the
dashed polygon is commutative.

A space of macroscopic variables (moment fields) is defined with a surjective linear
map to them, m : f — M (M are macroscopic variables). Below when referring to
a manifold parametrized with the macroscopic fields M, we use the notation f,,.
We are looking for an invariant manifold f,, parametrized by the value of M, with
the self-consistency condition m(f,;) = M.

The invariance equation is

(2.2) | J(far) = Dacfr)m(I(Far). |

Here, the differential Dy of f,, is calculated at the point M = m(f,,).

Equation (Z2]) means that the time derivative of f on the manifold f,, can be
calculated by a simple chain rule: calculate the derivative of M using the map m,
M = m(J(f,,)), and then write that the time dependence of f can be expressed
through the time dependence of M. If we find the approximate solution to equation
[22), then the approximate reduced model (hydrodynamics) is

(2.3) WM =m(J(f))-
The invariance equation can be represented in the form
a;nicrOfM _ a;nacro.fM’

where the microscopic time derivative, 9/ £, . is just a value of the vector field
J(f ) and the macroscopic time derivative is calculated by the chain rule

8;nacrofM = (DMfJVI)atM

under the assumption that dynamics of M follows the projected equation (23]).
We use the natural (and naive) moment-based projection (Z3]) until Section

where we demonstrate that in many situations the modified projectors are more

suitable from the thermodynamic point of view. In addition, the flexible choice of
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projectors allows us to treat various nonlinear functionals (like scattering rates) as
macroscopic variables [56,61].

If f,; is a solution to the invariance equation (22]), then the reduced model (23]
has two important properties:

e Preservation of conservation laws. If a differentiable functional U(f)
is conserved due to the initial kinetic equation (21I), then the functional
Uy = U(f ) conserves due to reduced system ([23), i.e., it has zero time
derivative due to this system.

e Preservation of dissipation. If a time derivative of a differentiable func-
tional H(f) is nonpositive due to the initial kinetic equation, then the time
derivative of the functional Hyy = H(f,,) is also nonpositive due to re-
duced system.

These elementary properties are the obvious consequences of the invariance equa-
tion ([22) and the chain rule for differentiation. Indeed, for every differentiable
functional S(f) we introduce a functional Sy; = S(f ;). Then the time derivative
of Sy due to projected equation ([Z3]) coincides with the time derivative of S(f)
at point f = f,; due to [2I). (Preservation of time derivatives.) Despite the
very elementary character of these properties, they may be extremely important in
construction of the energy and entropy formulas for the projected equations (Z3)
and in the proof of the H-theorem and hyperbolicity.

The difficulties with preservation of conservation laws and dissipation inequali-
ties may occur when one uses the approximate solutions of the invariance equation.
For these situations, two techniques are invented: modification of the projection
operation (see [5IL[59] and Section [f] below) and modification of the entropy func-
tional [fO,[7I]. They allow to retain the dissipation inequality for the approximate
equations.

It is obvious that the invariance equation ([2.2]) for dynamical systems usually
has too many solutions, at least locally, in a vicinity of any nonsingular point. For
example, every trajectory of (2] is a one-dimensional invariant manifold, and if a
manifold £ is transversal to a vector field J, then the trajectory of £ is invariant.

Lyapunov used the analyticity of the invariant manifold for the finite-dimensional
analytic vector fields J to prove its existence and uniqueness near a fixed point
fo if kerm is a invariant subspace of the Jacobian (DJ)g of J at this point and
under some “no resonance” conditions (the Lyapunov auxiliary theorem [IT1]).
Under these conditions, there exist many smooth nonanalytical manifolds, but the
analytical one is unique.

Theorem 2.1 (Lyapunov auxiliary theorem). Let ker m have a (DJ)g-invariant
supplement (kerm)’, E = kerm @ (kerm)’. Assume that the restriction (DJ)o

onto kerm has the spectrum K1,...,K; and the restriction of this operator on the
supplement (kerm)’ has the spectrum Ay,...,N\. Let the following two conditions
hold:

(1) 0 ¢ conv{ki,...,K;j};
(2) the spectra {k1,...,k;} and {A1,..., N} are not related by any equation of

the form
Z?’Liﬂi = )\k

with integer n;.
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Then there exists a unique analytic solution f,; of the invariance equation (2.2])
with condition f,; = fo for M = m(f,), and in a sufficiently small vicinity of
m(fo)-

This solution is tangent to (kerm)’ at point f.

Recently, the approach to invariant manifolds based on the invariance equation
in combination with the Lyapunov auxiliary theorem was used for the reduction of
kinetic systems [92H94].

2.2. The Chapman—Enskog expansion. The Chapman—Enskog and geometric
singular perturbation approach assume the special singularly perturbed structure
of the equations and look for the invariant manifold in a form of the series in the
powers of a small parameter €. A one-parametric system of equations is considered:

(24) 0uf + A(f) = 2QUN).

The following assumptions connect the macroscopic variables to the singular per-
turbation:

o m(Q(f)) = 0;

o for each M € m(U), the system of equations

Q(f) =0, m(f) =M,

has a unique solution f}} (in Boltzmann kinetics it is the local Maxwellian);
e f9} is asymptotically stable and globally attracting for the fast system

of = QU

in (f§} +kerm)NU.
Let the differential of the fast vector field Q(f) at equilibrium f§} be Qus. For
the Chapman—Enskog method it is important that Q,; is invertible in ker m. For
classical kinetic equations this assumption can be checked using the symmetry of
Q) with respect to the entropic inner product (Onsager’s reciprocal relations).
The invariance equation for the singularly perturbed system (Z4) with the mo-
ment parametrization m is:

(25) QU ) = AFar) — (Darfa) (m(A(F 1))

The fast vector field vanishes on the right-hand side of this equation because
m(Q(f)) = 0. The self-consistency condition m(f,;) = M gives

m(Dur f pr)m(J) = m(J)
for all J, hence,
(2.6) mIA(f 1) — (Das Far)m(A(f11))] = 0.

If we find an approximate solution of (2.1, then the corresponding macroscopic
(hydrodynamic) equation ([23)) is

(2.7) M +m(A(fa)) = 0.

Let us represent all the operators in (23] by the Taylor series (recall that in the
Boltzmann equation A is the linear free-flight operator, A = v -V, and @ is the
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quadratic collision operator). We look for the invariant manifold in the form of the
power series

(2.8) Fau=F55+ el
=1

with the self-consistency condition m(f,;) = M, which implies m(f3}) = M,
m( S&)) = 0 for ¢ > 1. After matching the coefficients of the series in (2I]), we

obtain for every f xj) a linear equation

(2.9) Qufy) = PO 5 FY),

where the polynomial operator P(*) at each order i can be obtained by straightfor-
ward calculations from (Z3]). Due to self-consistency, m(P®) = 0 for all 4, and the
equation (29)) is solvable. The first term of the Chapman—Enskog expansion has a
simple form:

(2.10) £ = 0l (1= (D fF5Hm)AFSD)).

A detailed analysis of explicit versions of this formula for the Boltzmann equation
and other kinetic equations is presented in many books and papers [241[78]. Most of
the physical applications of kinetic theory, from the transport processes in gases to
modern numerical methods (lattice Boltzmann models [136]) give examples of the
practical applications and deciphering of this formula. For Boltzmann kinetics, the

zero-order approximation, 58[) ~ f%}, produces in projection on the hydrodynamic
fields ([Z77) the compressible Euler equation. The first-order approximate invariant
manifold, fgvll) ~ fo te fg\}f), gives the compressible Navier-Stokes equation and
provides the explicit dependence of the transport coeflicients from the collision
model. This bridge from the “atomistic view to the laws of motion of continua” is,
in some sense, the main result of the Boltzmann kinetics, and it follows precisely
Hilbert’s request, but not as rigorously as desired.

The calculation of higher-order terms needs nothing but differentiation and cal-
culation of the inverse operator Ql\f/}. (Nevertheless, these calculations may be very
bulky, and one of the creators of the method, S. Chapman, compared reading his
book [24] to “chewing glass”, cited by [I5].) Differentiability is needed also because
the transport operator A should be bounded to provide strong sense to the manipu-
lations (see the discussion in [I127]). The second order in € hydrodynamic equations
(23)) are called Burnett equations (with €2 terms) and super-Burnett equations for
higher orders.

2.3. Euler, Navier—Stokes, Burnett, and super-Burnett terms for a simple
kinetic equation. Let us illustrate the basic construction on the simplest example
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p(x) 10 0
S=| u@ |, Dufs=(0 1], f/=| o
0 0 0 —30,u

We hasten to remark that (1.6) is a simple linear system and can be integrated
immediately in explicit form. However, that solution contains both the fast and
slow components, and it does not readily reveal the slow hydrodynamic manifold of
the system. Instead, we are interested in extracting this slow manifold by a direct
method. The Chapman—FEnskog expansion is thus the tool for this extraction, which
we shall address first.

The projected equations in the zeroth (Euler) and the first (Navier—Stokes) order
of € are

5
(Euler) gzz _ _3:?;?’ (Navier—Stokes) gﬁ _ fpzfl— cdo2.

It is straightforward to calculate the two next terms (Burnett and super-Burnett
ones), but let us introduce some convenient notation to represent the whole Chap-
man-Enskog series for (Lf). Only the third component of the invariance equation
23) for (L) is nontrivial because of the self-consistency condition (2.4), and we
can write

1 4 5
(211) —ZO'(Z,M) = gaxu — g(DpO'(pM))(axu) — (Dua(p)u))(&cp + 6950'(1,)“)).
Here, M = (p,u) and the differentials are calculated by the elementary rule: if a
function ® depends on values of p(z) and its derivatives, ® = ®(p, d,p,2p, . ..),
then D,® is a differential operator,

0P 0P 0P

_o® 2y
Dy =5, * 5o ooz O

The equilibrium of the fast system (the Euler approximation) is known, a((o)u) =

0. We have already found ag ) w = %&Eu (the Navier—Stokes approximation). In

each order of the Chapman-— Enskog expansion ¢ > 1, we get from (ZTIT])

i 5 !
(2:12) 2131 = 5(Dp71y00) @at) + (Du(y ) 0ep) 3 (Duo ) Pep)
jHI=i

This chain of equations is nonlinear but every O'E;J;l)) is a linear function of

derivatives of u and p with constant coefficients because this sequence starts from

—48 u and the induction step in 4 is obvious. Let UEi) ) be a linear function of
()

(psu)
D ng) ) are linear differential operators with constant coefficients, and all terms in

derivatives of u and p with constant coefficients. Then its differentials D, o and

([212) are again linear functions of derivatives of u and p with constant coefficients.
1
For %) (i+1=2) the operators in the right-hand part of 2I2) are (D pa( ) )=

(p,w) (pyw)
0, (D, O'é;)u)) —30,, and in the third term in each summand either [ =0, j = 1

or | =1, j = 0. Therefore, for the Burnett term,
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For the super-Burnett term in ag)u) (i+ 1 = 3), the operators in the right-hand

part of (212) are (DPUE?M)) = —302, (DuUE;)u)) = 0, and in the third term the
only summand with [ = j = 1 may take a nonzero value:

(p,u) /N7 (p,u)

(DyoM V(0,0M ) = (—%5‘%)(—%8110 — 1—963§u.

Finally, 0((2)“) = —%(’ﬁu and the projected equations have the form
8tp = —%amu, .
(213) 8tu = —up + E%agu + 62%831) (Burnett),
8tp = _%awu7
(2.14) Dru = —Opp+ 202 + 2403p 1 4oty (super Burnett).

To see the properties of the resulting equations, we compute the dispersion re-
lation for the hydrodynamic modes. Using a new space-time scale, ' = ¢ 'z, and
t' = e ', and representing u = ugp(2’,t'), and p = prp(a’,t'), where p(z’,t') =
exp(wt'+ika’), and k is a real-valued wave vector, we obtain the following dispersion
relations w(k) from the condition of a nontrivial solvability of the corresponding
linear system with respect to uy and pyg:

2 1
(2.15) wy = —ng + §i|k\\/15 — 4k?2

for the Navier—Stokes approximation;

2 1
(2.16) wy = —gkz + §i|k|\/15 + 16k2

for the Burnett approximation (2I3); and

2 1
(2.17) wi = §k2(k:2 —3)+ §z'|k\\/135 + 144k2 + 24k* — 4kS

for the super-Burnett approximation (2.14]).

These examples demonstrate that the real part is nonpositive, Re(wy(k)) < 0
(Figure[d), for the Navier—Stokes (ZI5]) and for the Burnett ([2-I6]) approximations,
for all wave vectors. Thus, these approximations describe attenuating acoustic
waves. However, for the super-Burnett approximation, the function Re(w4 (k))
([@I7) becomes positive as soon as |k| > +/3. The equilibrium is stable within the
Navier—Stokes and the Burnett approximation, and it becomes unstable within the
super-Burnett approximation for sufficiently short waves. Similar to the case of the
Bobylév instability of the Burnett hydrodynamics for the Boltzmann equation, the
latter result contradicts the dissipative properties of the Grad system (LE): the
spectrum of the kinetic system (6] is stable for arbitrary k (see Figure [3)). For
the 13-moment system ([C2)—(L3) the instability of short waves appears already
in the Burnett approximation [60,[90] (see Section Bl below). For the Boltzmann
equation this effect was discovered by Bobylév [9]. In FigureB] we also represent the
attenuation rates of the hydrodynamic and nonhydrodynamic mode of the kinetic
equations ([[6)). The characteristic equation of these kinetic equations reads

(2.18) 3w? + 3w? + 9k%w + 5k = 0.

The two complex-conjugate roots of this equation correspond to the hydrodynamic
modes, while for the nonhydrodynamic real mode, wyp(k), w,p(0) = —1, and
wpn — —0.5 as |k| = oo. The nonhydrodynamic modes of the Grad equations
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FIGURE 3. Attenuation rates [00]. Solid: exact summation; dia-
monds: hydrodynamic modes of the kinetic equations with ¢ = 1
(L) (they match the solid line per construction); circles: the non-
hydrodynamic mode of (L)), ¢ = 1; dash-dot line: the Navier—
Stokes approximation; dash: the super-Burnett approximation;
dash—double-dot line: the first Newton iteration ([BI9)). The re-
sult for the second iteration (B.20) is indistinguishable from the
exact solution at this scale.

are characterized by the common property that for them w(0) # 0. These modes
are irrelevant to the Chapman—Enskog branch of the invariant manifold.
Thus, the Chapman—Enskog expansion

e gives excellent, but already known on phenomenological grounds, zero-, and
first-order approximations—the Euler and Navier—Stokes equations;

e provides a bridge from microscopic models of collisions to macroscopic
transport coefficients in the known continuum equations;

e already the next correction, not known phenomenologically and hence of
interest, does not exist because of nonphysical behavior.

The first term of the Chapman—Enskog expansion gives the possibility of evalu-
ating the coefficients in the phenomenological equations (such as viscosity, thermal
conductivity, and diffusion coeflicient) from the microscopic models of collisions.
The success of the first-order approximation (2.10) is compatible with the failure of
the higher-order terms. The Burnett and super-Burnett equations have nonphysi-
cal properties, negative viscosity for high gradients, and instability for short waves.
The Chapman-Enskog expansion has to be truncated after the first-order term or
not truncated at all.

Such a situation, when the first approximations are useful but the higher terms
become senseless, is not very novel. There are at least three famous examples:
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e The “ultraviolet catastrophe” in higher-order terms because of physical
phenomena at very short distances [33] and the perturbation series diver-
gencies [146] are well known in quantum field theory, and many approaches
have been developed to deal with these singularities [I45].

e Singularities and divergence in the semi-classical Wentzel-Kramers—Brill-
ouin (WKB) approach [42,[811[144].

e The small denominators affect the convergence of the Poincaré series in the
classical many-body problem and the theory of nearly integrable systems.
They may even make the perturbation series approach senseless [3].

Many ideas have been proposed and implemented to deal with these singulari-
ties: use of the direct iteration method instead of power series in KAM [213L197];
renormalization [21,[89L[116]; summation and partial summation and rational ap-
proximation of the perturbation series [34}[113]; and string theories [28,[143] in
quantum field theory [I45]. Various ad hoc analytical and numerical regulariza-
tion tricks have been proposed also. Exactly solvable models give the possibility
of exhaustive analysis of the solutions. Even in the situation when they are not
applicable directly to reality, we can use them as benchmarks for all perturbation
and approximation methods and for regularization tricks.

We follow this stream of ideas with the modifications required for kinetic theory.
In the next section we describe algebraic invariant manifolds for the kinetic equa-
tions (L2)—(T3), (CH), (LT), and demonstrate the exact summation approach for
the Chapman—Enskog series for these models. We use these models to demonstrate
the application of the Newton method to the invariance equation (21]).

3. ALGEBRAIC HYDRODYNAMIC INVARIANT MANIFOLDS
AND EXACT SUMMATION OF THE CHAPMAN—ENSKOG SERIES
FOR THE SIMPLEST KINETIC MODEL

3.1. Grin of the vanishing cat: e=1. At the end of the previous section we
introduced a new space-time scale, 2’ = e 'z, and ¢’ = e 't. The rescaled equations
do not depend on ¢ at all and are, at the same time, equivalent to the original
systems. Therefore, the presence of the small parameter in the equations is virtual.
“Putting € back = 1, you hope that everything will converge and single out a nice
submanifold” [114].

In this section, we find the invariant manifold for the equations with e=1. Now,
there is no fast-slow decomposition of motion. It is natural to ask: What is the re-
mainder of the qualitative picture of slow invariant manifold presented in Figure [I?
Or an even sharper question: What we are looking for?

The rest of the fast-slow decomposition is the zeroth term in the Chapman-—
Enskog expansion (23). It starts from the equilibrium of the fast motion, f3}.
This (local) equilibrium manifold corresponds to the limit e = 0. The first terms of
the series for o for (L6,

4 4 4
(3.1) o= —e§8zu—e2§8£p—e3§8§u+-~ ,
also bear the imprint of the zeroth approximation, ¢(®) = 0, even when we take

€ = 1. The Chapman—Enskog procedure derives recurrently terms of the series from
the starting term f37.
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The problem of the invariant manifold includes two difficulties: (i) it is difficult
to find any global solution or even prove its existence; and (ii) there often exists
too many different local solutions. The auxiliary Lyapunov theorem gives the first
solution of the problem near an equilibrium and several seminal hints for further
attempts. One of them: Use the analyticity as a selection criterion. The Chapman—
Enskog method demonstrates that the inclusion of the system in the one-parametric
family (parametrized by €) and the requirement of analyticity up to the limit e = 0
allows us to select a sensible solution to the invariance equation. Even if we return
to a single system with € = 1, the structure of the constructed invariant manifold
remembers the limit case ¢ = 0---. This can be considered as a manifestation of
the effect of the grin of the vanishing cat: “I’ve often seen a cat without a grin,”
thought Alice: “but a grin without a cat! It’s the most curious thing I ever saw in
my life!” [Lewis Carroll, Alice’s Adventures in Wonderland]. The small parameter
disappears (we take e = 1), but the effect of its presence persists in the analytic
invariant manifold. There are some other effects of such a grin in kinetics [60].

The use of the term “slow manifold” for the case ¢ = 1 seems to be an abuse
of language. Nevertheless, this manifold has some imprints of slowness, at least
for smooth solutions bounded by small number. The definition of slow manifolds
for a single system may be a nontrivial task [27,[60]. There is a problem with a
local definition because for a given vector field, the “slowness” of a submanifold
cannot be invariant with respect to diffeomorphisms in a vicinity of a regular point.
Therefore, we use the term “hydrodynamic invariant manifold”.

3.2. The pseudodifferential form of the stress tensor. Let us return to the
simplest kinetic equation ([6l). In order to construct the exact solution, we first
analyze the global structure of the Chapman—-Enskog series given by the recurrence
formula ([ZI2). The first three terms (3.1 give us a hint: the terms in the series
alternate. For odd i = 1,3,..., they are proportional to diu, and for even i =
2,4,..., they are proportional to dip. Indeed, this structure can be proved by
induction on i starting in (ZI2) from the first term —30,u. It is sufficient to notice
that (D,0p) = 0%, (D,diu) = 0, (D,dip) = 0, (D,0%u) = 85 and to use the
induction assumption in

The global structure of the Chapman—FEnskog series gives the following repre-
sentation of the stress ¢ on the hydrodynamic invariant manifold

(3-2) o(x) = A(=03)0su(x) + B(=07)0;p(x),

“_»

where A(y), B(y) are yet unknown functions and the sign
adopted for simplicity of formulas in the Fourier transform.

It is easy to prove the structure ([B:2)) without any calculation or induction.
Let us use the symmetry property of the kinetic equation (LG): it is invariant with
respect to the transformation  — —z, u — —u, p — p and o +— ¢ which transforms
solutions into solutions. The invariance equation inherits this property, the initial
equilibrium (o = 0) is also symmetric and, therefore, the expression for o(z) should
be even. This is exactly (B:2) where A(y) and B(y) are arbitrary even functions.
(If they are, say, twice differentiable at the origin, then we can represent them as
functions of y2.)

in the arguments is

13

3.3. The energy formula and “capillarity” of ideal gas. Traditionally, o
is considered as a viscous stress tensor, but the second term, B(—02)02p(x), is
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proportional to second derivative of p(z), and it does not meet usual expectations
(o0 ~ Vu). Slemrod [I34[I35] noticed that the proper interpretation of this term
is the capillarity tension rather than viscosity. This is made clear by inspection
of the energy balance formula. Let us derive the Slemrod energy formula for the
simple model ([L6]). The time derivative of the kinetic energy due to the first two

equations (L6 is

1 oo o0 oo o0
5@/ u? dx :/ ulyu dx = —/ udy,p do —/ ud o dz

1 3 o0 9 oo
7—5&55/_0017 dfc—l—/ o0yudzx.

— 00

(3.3)

Here we used integration by parts and assumed that all the fields with their deriva-
tives tend to 0 when z — £oo.
In z-space the energy formula is

(3.4) %& (%/ P> dx—f—/ u? dx> :/ o0yudz.

This form of the energy equation is standard. Note that the usual factor p in front
of u? is absent because we work with the linearized equations.
Let us use in ([B4) the representation ([B.2) for o and notice that d,u = —329;p:

/ o0zudz :/ A(—03)0%udx — g/ (04p)[B(—0%)02p] da.

— 00 — 00 — 00

The operator B(—02)9? is symmetric; therefore,

| @misaheza = o ([ sm-ooiac).

The quadratic form,
3 [ 3 [
65) V=3 [ pBEdnd=-2 [ (@p)B00m) .

may be considered as a part of the energy. Moreover, if the function B(y) is
negative, then this form is positive. Due to Parseval’s identity we have

(3.6) U, = _g/ KB px|? dk.

— 00

Finally, the energy formula in z-space is

(3.7) %8/ . <5p2 ot g@ ><B<—8£>amp)) dz
3.7 —00

= /OO (0pu) (A(—02)Dpu) da.

—0o0

In k-space it has the form

1 >~ /3 3 o0
—at/ <g|pk|2+|uk|2—gk2B(k2)pk|2) dk:/ E2A(K?)|ug)? dk.

270 ) —so

(3.8)

It is worth mentioning that the functions A(k?) and B(k?) are negative (see Sec-
tion B4)). If we keep only the first nontrivial terms, A = B = —%, then the energy
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formula becomes

1 (32, 2 4 2 __é/oo 2
(3.9) 2(%/ (5p +ut+ 5(811)) > dor = 3 (Opu)* dez,

1 > 73 4 4 [
) o [ (5|pk|2dk+uk|2+gk2pk|2) at==3 [~ W a.

Slemrod represents the structure of the obtained energy formula as

0:(MECHANICAL ENERGY) + 9;(CAPILLARITY ENERGY)

(3.11) — VISCOUS DISSIPATION.

The capillarity terms (9,p)? in the energy density are standard in the thermo-
dynamics of phase transitions.

The bulk capillarity terms in fluid mechanics were introduced into the Navier—
Stokes equations by Korteweg [99] (for a review of some further results see [32]).
Such terms appear naturally in theories of the phase transitions, such as van der
Waals liquids [I31], Ginzburg-Landau [I], and Cahn-Hilliard equations [16][17],
and phase fields models [25]. Surprisingly, such terms are also found in the ideal
gas dynamics as a consequence of the Chapman—Enskog expansion [I32,[133]. In
higher-order approximations, the viscosity is reduced by the terms which are similar
to Korteweg’s capillarity. Finally, in the energy formula for the exact sum of the
Chapman-Enskog expansion, we see terms of the same form: the viscous dissipation
is decreased and the additional term appears in the energy (3.7), (3.8]).

3.4. Algebraic invariant manifold in Fourier representation. It is conve-
nient to work with the pseudodifferential operators like ([B.2]) in Fourier space. Let
us denote pg, ug, and, oy, where k is the “wave vector” (space frequency).

The Fourier-transformed kinetic equation (6] takes the form (e = 1):

5
atpk = —glkUk,
(3.12) Oruy, = —ikpy, — ikoy,
4
8t0'k = —gikuk — O0k-

We know already that the result of the reduction should be a function oy (ug, px, k)
of the following form:

(3.13) or(ug, pr, k) = ikA(k*)ug — k*B(E*)py,

where A and B are unknown real-valued functions of k2.

The question of the summation of the Chapman—Enskog series amounts to find-
ing the two functions A(k?) and B(k?). Let us write the invariance equation for
unknown functions A and B. We can compute the time derivative of oy (ug, pk, k)
in two different ways. First, we use the right-hand side of the third equation in
BI2). We find the microscopic time derivative,

. 4
(3.14) L (g + A> ug + k*Bpy.
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Secondly, let us use the chain rule and the first two equations in (BI2). We find
the macroscopic time derivative:

g
o oy, = 8_ukatuk + 8—pkatpk

(3.15) = ikA (—ikpy — ikoy) — k*B <—gzkjuk>
=ik (ngB + k2A> U + k> (A — k‘QB) Pk-

The microscopic time derivative should coincide with the macroscopic time de-
rivative for all values of u, and pg. This is the invariance equation:

(316) atmacm(fk — atmicroo_k.

For the kinetic system (B12), it reduces to a system of two quadratic equations for
functions A(k?) and B(k?):

F(A,B,k) = A <§B+A2) =0
(3.17) 3 3

G(A,B,k)=-B+A(1-kB)=0.

The Taylor series for A(k?), B(k?) correspond exactly to the Chapman—Enskog
series: if we look for these functions in the form A(y) = > 5, ay' and B(y) =
> 150 biy', then from BI7) we find immediately ag = by = —3 (these are exactly
the Navier—Stokes and Burnett terms) and the recurrence equation for a;41, bit1:

5 n
An+1 = gbn + Z_:Oan—mamv

(3.18) "
bn—i—l = an41 + Z Ap—mbm.

m=0

The initial condition for this set of equations are the Navier—Stokes and the Burnett

terms ag = by = —%.

The Newton method for the invariance equation ([BIT) generates the sequence
Ai(kz), Bz(kQ), where the differences, 5Ai+1 = Ai+1 - A,L' and 5Bi+1 = Bi+1 - Bz
satisfy the system of linear equations

OF(A,B,k? dF(A,B k>
PG sy S5 0Aii1 \ [ F(AuBik?) ) _
G (A.B,k?) | k?) | 0B, G(A;, B, k?)
A (Aq,B;) OB (Ai,By)

Rewrite this system in the explicit form:

—(1+2K%A;) Lo §Ai11 N F(A;, Bi,k?) \ _ 0
1— k2Bi —(1 + k2Ai) 0B;+1 G(Ai, B;, kz) e

Let us start from the zeroth-order term of the Chapman—Enskog expansion (Euler’s
approximation), Ay = By = 0. Then, the first Newton iteration gives

4

3.19 Ay=B =
(8.19) PN T3k
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The second Newton iteration also gives the negative rational functions
4(27 + 63k% + 153k2k? + 125k%k2k?)
© 3(3+ 5k2)(9 + 9k2 + 67k2k2 + T5k2k2k2)’
4(9 + 33k% + 115k%k? + 75k2k%k?)
(3 + 5k2)(9 + 9k2 + 67k2k? + THk2k2k2) "
The corresponding attenuation rates are shown in Figure Bl They are stable and

converge fast to the exact solutions. At the infinity, k> — oo, the second iteration
has the same limit, as the exact solution: k*As — —% and k2By — —% (compare

to Section [3.6]).

Thus, we made three steps:

Ay =

(3.20)

By =—

(1) We used the invariance equation, the Chapman—Enskog procedure, and
the symmetry properties to find a linear space where the hydrodynamic
invariant manifold is located. This space is parametrized by two functions
of one variable (3I3)).

(2) We used the invariance equation and defined an algebraic manifold in this
space. For the simple kinetic system (L8), (312) this manifold is given by
the system of two quadratic equations which depends linearly on k? ([3.17).

(3) We found that the Newton iterations for the invariant manifold demon-
strate much better approximation properties than the truncated Chapman-—
Enskog procedure.

3.5. Stability of the exact hydrodynamic system and saturation of dissi-
pation for short waves. Stability is one of the first questions to analyze. There
exists a series of simple general statements about the preservation of stability, well-
posedness, and hyperbolicity in the exact hydrodynamics. Indeed, any solution of
the exact hydrodynamics is a projection of a solution of the initial equation from
the invariant manifold onto the hydrodynamic moments (Figures [l and ) and the
projection of a bounded solution is bounded. (In infinite dimension we have to as-
sume that the projection is continuous with respect to the chosen norms.) Several
statements of this type are discussed in Section [l Nevertheless, a direct analysis
of dispersion relations and attenuation rates is instructive. Knowing A(k?) and
B(k?), the dispersion relation for the hydrodynamic modes can be derived:

_ KA
2

It is convenient to reduce the consideration to a single function. Solving the system
@B.I17) for B, and introducing a new function, X (k%) = k?B(k?), we obtain an
equivalent cubic equation:

(3.21) Wy + i%\/?(l — k2B) — k2A2.

5 9 4 X

(3.22) —5(X -1 <X+g> =
Since the hydrodynamic manifold should be represented by the real-valued functions
A(k?) and B(k?) BI3), we are only interested in the real-valued roots of ([3.22)).

An elementary analysis gives that the real-valued root X (k?) of [3.22)) is unique
and negative for all finite values k2. Moreover, the function X (k%) is a monotonic
function of k2. The limiting values are
(3.23) lim X(k*) =0, lim X (k%) = —-0.8.

k k|—o00

|k|—0 ||
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Under the conditions just mentioned, the function under the root in @.2I)) is
negative for all values of the wave vector k, including the limits, and we come to
the dispersion law,

X k 5X2 — 16X + 20
(3.24) wy = = z|7|\/ +

2(1 - X 3 ’
where X = X (k?) is the real-valued root of equation [3.22). Since 0 > X (k?) > —1
for all |k| > 0, the attenuation rate, Re(wy), is negative for all |k| > 0, and the

exact acoustic spectrum of the Chapman—Enskog procedure is stable for arbitrary
wave lengths (Figure Bl solid line). In the short-wave limit, from ([B.24]) we obtain

2 Imwy
3.25 lim Rews = —=, i = +v/3.
(3.25) \k\lE)noo e 9’ |k\1£>noo k| V3

3.6. Expansion at k? = co and matched asymptotics. For large values of k2,
a version of the Chapman—FEnskog expansion at an infinitely distant point is useful.
Let us rewrite the algebraic equation for the invariant manifold ([BI7) in the form

5 4

CB+A2=—c¢(-+A

(3.26) 37 F A,
AB =¢(A - B),

where ¢ = 1/k2. For the analytic solutions near the point ¢ = 0, the Taylor series is
A= Z?il Oél(l, B = Z?il Blgla where a1 = _%7 51 = _%; g = %375 ﬂQ = 24_7a T
The first term gives for the frequency ([B.21]) the same limit,

2
(3.27) wp=-—5+ il k[V/3,

and the higher terms give some corrections.
Let us match the Navier-Stokes term and the first term in the 1/k? expansion.
We get

4 4
3.28 A ——  Ba——
( ) 34+ 9k2’ 3+ 5k2
and
4ik 4k2
.2 =ik A(k>)u, — B>B(k*)pp ~ — .
(3.29) ok = IRA(Ru (K)pk % =3 g + 37 5l

This simplest nonlocality captures the main effects: the asymptotics for short waves
(large k%) and the Navier-Stokes approximation for hydrodynamics for
smooth solutions with bounded derivatives and small Knudsen and Mach numbers
(small £2).

The saturation of dissipation at large k2 is a universal effect, and hydrodynamics
that do not take this effect into account cannot pretend to be a universal asymptotic
equation.

This section demonstrates that for the simple kinetic model ([L.6]):

e The Chapman—Enskog series amounts to an algebraic invariant manifold,
and the “smallness” of the Knudsen number € used to develop the Chap-
man-Enskog procedure is no longer necessary.

e The exact dispersion relation ([3.24]) on the algebraic invariant manifold s
stable for all wave lengths.
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e The exact result of the Chapman—Enskog procedure has a clear nonpoly-
nomial character. The resulting exact hydrodynamics are essentially non-
local in space. For this reason, even if the hydrodynamic equations of a
certain level of the approximation are stable, they cannot reproduce the
nonpolynomial behavior for sufficiently short waves.

e The Newton iterations for the invariance equations provide much better
results than the Chapman—Enskog expansion. The first iteration gives the
Navier—Stokes asymptotics for long waves and the qualitatively correct be-
havior with saturation for short waves. The second iteration gives the
proper higher-order approximation in the long wave limit and the quanti-
tatively proper asymptotic for short waves.

In the next section we extend these results to a general linear kinetic equation.

4. ALGEBRAIC INVARIANT MANIFOLD
FOR GENERAL LINEAR KINETICS IN ONE DIMENSION

4.1. General form of the invariance equation for one-dimensional linear
kinetics. For linearized kinetic equations, it is convenient to start directly with
the Fourier transformed system.

Let us consider two sets of variables: macroscopic variables M and microscopic
variables p. The corresponding vector spaces are Eyy (M € Ey) and E, (p € E,,),
k is the wave vector, and the initial kinetic system in the Fourier space for functions
My, (t) and py(t) has the following form:

Oe My, = ikLnrar My + ik L i,

4.1 . .
(4.1) Opore = tkLyng My, + kL pen + Crg,

where LMM : EM — E’]\/[7 LMHEH — E’]\/[7 LuM : EM — EIM LHH : EH — El“ and
C: E, — E, are constant linear operators (matrices).

The only requirement for the following algebra is the operator C : E,, — E,, is
invertible. (Of course, for further properties such as stability of reduced equations,
we need more assumptions such as stability of the whole system ([@1]) and negative
definiteness of C.)

We look for a hydrodynamic invariant manifold in the form

(4.2) pe = X (k) Mg,

where X (k) : Epp — E,, is a linear map for all k.
The corresponding exact hydrodynamic equation is

(4.3) ‘ath — ik[Laras + LasuX (k)| M. ‘

Calculate the micro- and macroscopic derivatives of p, (2] exactly as in (314)
and (B.13):
ofiero . = [ikLyar + ik Ly, X (k) + CX (k)| My,

4.4
( ) aénacroluk — [ZkX(k)LMM =+ Zk}X(k)LMMX(k)}Mk

The invariance equation for X (k) is again a system of algebraic equations (a qua-
dratic matrix equation):

(4.5) X(k) = ikC™ [~ Lyar + (X(k)Larar — Lup X (k)) + X (k) L, X (K)).
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This is a general invariance equation for linear kinetic systems (£.1]). The Chapman—
Enskog series is a Taylor expansion for the solution of this equation at k = 0. Thus,
immediately we get the first terms:

X(0) =0, X'(0) = —iC 'L, X7(0) =2C"(C ' LyneLaans — LppC ' Lyns ).
The sequence of the Fuler, Navier—Stokes, and Burnett approximations is
O¢ My, =ikLpsp My, (Euler),
Oy My, =ik Lasn My, + k*Lag,, O~ L My, (Navier—Stokes),
O My, =ik Larn My + k*Lag,, C Lyas My,
+ik* L, C (O Ly Laear — Ly C ™ Lyag) My, (Burnett).

(4.6)

Let us use the identity X'(0) = 0 and the fact that the functions in the z-space are
real valued. We can separate odd and even parts of X' (k) and write

(4.7) X (k) = ik A(k?) + E*B(k?),

where A(y) and B(y) are real-valued matrices. For these unknowns, the invariance
equation is even closer to the simple example [B.I7):

A(k?) =C7 =Ly + k*(B(k*) Lasns — Ly B(K?))
— K2A(K?) Las A(K?) + E*B(K*) L, B(k?)],
B(k?) = — CH(AMK*) Larar — Ly A(K?))
+ k2 A(K?) LarB(k?) + E*B(k?) Lar, A(K?)].

(4.8)

4.2. Hyperbolicity of exact hydrodynamics. Hyperbolicity is an important
property of the exact hydrodynamics. Let us recall that the linear system repre-
sented in Fourier space by the equation

&guk = —iA(k)uk

is hyperbolic if for every t > 0 the operator exp(—itA(k)) is uniformly bounded as
a function of k (it is sufficient to take ¢ = 1). This means that the Cauchy problem
for this system is well-posed forward in time.

This system is strongly hyperbolic if for every t € R the operator exp(—itA(k)) is
uniformly bounded as a function of k (it is sufficient to take ¢ = £1). This means
that the Cauchy problem for this system is well-posed both forward and backward
in time.

Proposition 4.1 (Preservation of hyperbolicity). Let the original system ([@I) be
(strongly) hyperbolic. Then the reduced system ([3) is also (strongly) hyperbolic if
the lifting operator X (k) [@2) is a bounded function of k.

Proof. Hyperbolicity (strong hyperbolicity) is just a requirement of the uniform
boundedness in k of the solutions of (£.1]) for each ¢ > 0 (or for all ¢) with uniformly
bounded in k initial conditions. For the exact hydrodynamics, solutions of the
projected equations are projections of the solutions of the original system. Let
the original system () be (strongly) hyperbolic. If the lifting operator X' (k)
is a bounded function of k, then for the uniformly bounded initial condition M}
the corresponding initial value pp = X' (k)Mj is also bounded and, due to the
hyperbolicity of (£1]), the projection of the solution is uniformly bounded in & for
all £ > 0. In the following commutative diagram, the upper horizontal arrow and
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the vertical arrows are the bounded operators; hence, the lower horizontal arrow is
also a bounded operator.

Time shift (initial eq.)

(M (0), nx(0)) (M (t), pe(t))
(4.9) LiftingT lProjection

Exact hydrodynamics
M, (0) Y y

M;(t) O

To analyze the boundedness of the lifting operator, we have to study the asymp-
totics of the solution of the invariance equation at the infinitely distant point
k? = oo. If this is a regular point, then we can find the Taylor expansion in
powers of ¢ = kl—g, A=, a4, and B =Y, Bisl. For the boundedness of X (k)
[#0), we should take in these series ag = 5o = 0. If the solution of the invariance
equation is a real analytic function for 0 > k% > oo, then the condition is sufficient
for the hyperbolicity of the projected equation [@3). If X(k) is an exact solution
of the algebraic invariance equation (&3H]), then the hydrodynamic equation (£3)
gives the exact reduction of ([@I]). Various approximations give the approximate
reduction like the Chapman—Enskog approximations (Z.6]).

The expansion near an infinitely distant point is useful but may be not so
straightforward. Nevertheless, if such an expansion exists, then we can immedi-
ately produce the matched asymptotics.

Thus, as we can see, the summation of the Chapman—Enskog series to an alge-
braic manifold is not just a coincidence but a typical effect for kinetic equations.
For a specific kinetic system we have to make use of all the existing symmetries such
as parity and rotation symmetry in order to reduce the dimension of the invariance
equation and to select the proper physical solution. Another simple but important
condition is that all the kinetic and hydrodynamic variables should be real valued.
The third selection rule is the behavior of the spectrum near k = 0: the attenuation
rate should go to zero when k& — 0.

The Chapman—Enskog expansion is a Taylor series (in k) for the solution of the
invariance equation. In general, there is no reason to believe that the first few
terms of the Taylor series at k& = 0 properly describe the asymptotic behavior of
the solutions of the invariance equation (&3] for all k. Already the simple examples
such as [BI2)) reveal that the exact hydrodynamic is essentially nonlocal and the
behavior of the attenuation rate at k¥ — oo does not correspond to any truncation
of the Chapman—FEnskog series.

Of course, for a numerical solution of (£3]), the Taylor series expansion is not
the best approach. The Newton method gives much better results, and even the
first approximation may be very close to the solution [20].

In the next section we show that for more complex kinetic equations, the situation
may be even more involved, and both the truncation and the summation of the
whole series may become meaningless for sufficiently large k. In these cases, the
hydrodynamic solution of the invariance equations does not exist for large k, and
the whole problem of hydrodynamic reduction has no solution. We will see how
the hydrodynamic description is destroyed and the coupling between hydrodynamic
and nonhydrodynamic modes becomes permanent and indestructible. Perhaps, the
only advice in this situation may be to change the set of variables or to modify the
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projector onto these variables: if hydrodynamics exist, then the set of hydrodynamic
variables or the projection on these variables should be different.

4.3. Destruction of hydrodynamic invariant manifold for short waves in
moment equations. In this section we study the one-dimensional version of the
Grad equations ([2)) and (L3)) in the k-representation:

8tpk = _Zkukv
(9tuk = —ikpk - ik‘Tk - ikak,

2 2
0T}, = —=ikuy — ik
(410) t1k 3Z Uk 3Z qk

4. 8 .
ooy, = —gzk‘uk — szqk — Ok,

2
8tqk = —;Zk}Tk - ikO’k — qu.

The Grad system (I0) provides the simplest coupling of the hydrodynamic vari-
ables pg, ug, and T to the nonhydrodynamic variables, o and g, the latter is the
heat flux. We need to reduce the Grad system (£I0) to the three hydrodynamic
equations with respect to the variables pg, ur, and Tx. That is, in the general no-
tations of the previous section, M = pg, ug, Tk, = 0k, qx, and we have to express
the functions oy, and g in terms of px, ug, and Tj:

ok = ok(pr ke, Thy k), ak = qr(prs ke, Thy k).

The derivation of the invariance equation for the system (IO goes along the
same lines as in the previous sections. The quantities p and T are scalars, u and
q are (one-dimensional) vectors, and the (one-dimensional) stress “tensor” o is
again a scalar. The vectors and scalars transform differently under the parity
transformation x — —z, kK — —k. We use this symmetry property and find the

representation ([€2) of o, ¢ similar to (.13):
O = ik;A(k;Q)uk — kJQB(]{J2)pk — kQC(kz)Tk,

(4.11) ) 9 ) ) 59

qr = kX (k%) pr + kY (k°)Ty, — k*Z (k%) uy,
where the functions A,...,Z are the unknowns in the invariance equation. By
the nature of the CE recurrence procedure for the real-valued in x-space kinetic
equations, A, ..., Z are real-valued functions.

Let us find the microscopic and macroscopic time derivatives ([@4)). Computing
the microscopic time derivative of the functions [@ITl), due to the two last equations
of the Grad system ([{I0) we derive

gmicrog = ik <§ — %]@Z + A) ug
+M(§X+B)%+H<§Y+C>H,
15 15
atmicrOQk — k2 <A+ ;Z) uy + 1k (]{723 - §X> Pk

5 2
—ik = —kK2C -2V | T..
’L<2 03>k
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On the other hand, computing the macroscopic time derivative of the functions
([@I1)), due to the first three equations of the system ({I0), we obtain

oo oo Oo
0oy, = —katuk + —katp =+ —katTk
Uk k 8Tk

2 2
=ik <k2A2 + kB + §k2C — §k2k20Z> ug

2
+ (k2A — k*k*AB — §k2k20X> m
+ <k—2A — K’ k2 AC — §k2k20Y> Ty,

Oqx, Iqx Iqr
aInaCrO — 6 a a T
t dk —auk g + —apk Uk + —5Tk i L g

2 2

= <—k2k22A + KX + ngY - §k2k2Y2> m
2

+ ik (kZZ — k*k*ZB + §k2yx> Dk

2
+ ik <k2Z —KK2ZC + ngYQ) T.

The invariance equation (LX) for this case is a system of six coupled quadratic
equations with quadratic in k2 coefficients:

4 82 2C 2

Fl=—— —A—KkK(A2+B-2 + 21+ 2k0z =0
1= "3 A+ B-Tr+3)+3 ’
Fz:%X+B—A+k:2AB+§kQCX:0,

8 2
F3=—Y +C—A+KkAC + ZK*CY =0,

(4.12) 15 3

2 2 2
F4:A+§Z+kQZA—X—§Y+§k2YZ:O,

2 2
Fs=k’B — gx —k’Z+k'ZB - gYX =0,

5 2 2
Fo=—5—3V+ k2 (C - Z)+k*ZC — gszz =0.
There are several approaches to deal with this system. One can easily calculate the
Taylor series for A, B,C,X,Y, Z in powers of k2 at the point k = 0. In application
to (@II) this is exactly the Chapman—Enskog series (the Taylor series for o and
q). To find the linear and quadratic in k terms in ({ITl), we need just a zeroth

approximation for A, B,C, X,Y, Z from ([@I2]):

4 2 15 7
4.13 A=B=——,C=-,X=0,Y=—,7=—.
( ) 3’7 3 ’ 4’ 4
This is the Burnett approximation:
4. 4 2
O = —glkUk + §k2pk — §k2Tk,

15 7
qr = —Zika—Zkzuk.
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The dispersion relation for this Burnett approximation coincides with the one ob-
tained by Bobylév [9] from the Boltzmann equation for Maxwell molecules, and the
short waves are unstable in this approximation.

Direct Newton iterations produce more sensible results. Thus, starting from
A=B=C=X=Y =7 =0, we get the first iteration

141k2% + 20
867k2k2 + 2105k2 + 300’
0 459k2k? 4 810k2 + 100
3468k2k2k2 + 12755k2k2 + 11725k2 + 1500’
512k — 4852 — 100
3468k2k2k2 + 12755k2k2 + 11725k2 + 1500’
375k%(21k% — 5)

A = -20

By = -2

¢, = -10

X, = -
! 2(3468k2k2k? + 12755k2k2 + 11725k2 + 1500)
v - 225(394k%*k? + 685k% + 100)
YT T 4(3468k2k2k2 + 12755k2k2 + 11725k + 1500)
153k2
2 — 15 53k 4 35

867k2k2 + 2105k2 + 300

The corresponding hydrodynamics are nonlocal but stable and were first obtained
by a partial summation (regularization) of the Chapman—Enskog series [49].

A numerical solution of the invariance equation [@I2]) is also straightforward and
does not produce any serious problem. Selection of the proper (Chapman—Enskog)
branch of the solution is set by the asymptotics, w — 0 when k& — 0.

The dispersion equation for frequency w is

W — k2 <§Y—|—A> w?

2 2 2 2
(4.14) + k2 <g - §k2z - §k2c —k’B+ ngAY + gkszOZ) w

2
+ ng(iﬁx — kY + K*K*BY — K*kK*XC) = 0.

The real-valued solution to the invariance equation [€I2) does not exist for suf-
ficiently large k. (A telling simple example of such a behavior of real algebraic
sets gives the equation k?(1 — k?) + A% = 0.) Above a critical value k. ~ 0.3023,
the Chapman—Enskog branch in (£12)) disappears and two complex conjugated so-
lutions emerge. This situation becomes clear if we look at the dispersion curves
(Figure ). For k < k., the Chapman—Enskog branch of the dispersion relation
consists of three hydrodynamic modes starting from 0 at £k = 0. Two nonhydro-
dynamic modes start from strictly negative values at k¥ = 0 and are real-valued.
They describe the relaxation to the hydrodynamic invariant manifold from the
initial conditions outside this manifold. (This is, in other words, relaxation of
the nonhydrodynamic variables, o and gk, to their values o (px, uk, Tk, k) and
qr(pr,uk, Ti, k).) For k < k., the nonhydrodynamic modes are real valued, the
relaxation goes exponentially, without damped oscillations. At k = k., one root
from the nonhydrodynamic branch crosses a real-valued root of the hydrodynamic
branch, and they together transform into a couple of complex conjugated roots when
k > k.. Tt is impossible to capture two pairs of complex modes by an equation for
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Rew
0.1 k.~0.3023 k

FIGURE 4. The dispersion relation for the linearized one-
dimensional Grad system (@I0). The solution for the whole ki-
netic system (I0) features five w’s, while the motions on the
hydrodynamic invariant manifold has three w’s for each k < k.
and destroys for k > k.. The bold solid line shows the hydrody-
namic acoustic mode (two complex conjugated roots). The bold
dashed line for k < k. is the hydrodynamic diffusion mode (a real
root). At k = k. this line meets a real root of nonhydrodynamic
mode (thin dash-dot line) and for k > k., they turn into a couple
of complex conjugated roots (bold double-dashed line at k > k.).
The four-point stars correspond to the third Newton iteration for
the diffusion mode. A dash-and-dot line at the bottom of the plot
shows the isolated nonhydrodynamic mode (single real root of

2.13)).

three macroscopic variables, and at the same time it is impossible to separate two
complex conjugated modes between two systems of real-valued equations.

For small k£, when the separation of time between the “fast” collision term and
the “not-so-fast” advection is significant, there is an essential difference between
the relaxation of hydrodynamic and nonhydrodynamic variables: p and u do not
change in collision and their relaxation is relatively slow, but ¢ and ¢ are directly
affected by collisions and their relaxation to oy (pg, ug, Tk, k) and qx(pk, vk, Tk, k)
is fast. Nevertheless, when k grows and achieves k., the difference between the
hydrodynamic and nonhydrodynamic variables becomes less pronounced. In such
a case, the four-dimensional invariant manifold may describe the relaxation better.
For this purpose, we can create the invariance equation for an extended list of four
“hydrodynamic variables” and repeat the construction. Instead of the selection of
the Chapman—Enskog branch only, we have to select a continuous branch which
includes the roots with w — 0 when k£ — 0.

The two-dimensional algebraic manifold given by the dispersion equation (E.I4)
and the invariance equation ([{I2) represents the important properties of the hy-
drodynamic invariant manifold (see Figure H]). In particular, the crucial question is
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the existence of the Chapman—Enskog branch and the description of the connected
component of this curve which includes the germ of the Chapman—Enskog branch
near k = 0.

Iterations of the Newton method for the invariance equation converge fast to
the solution with singularity. For k < k. the corresponding attenuation rates
converge to the exact solution and for k > k. the real part of the diffusion mode
Rew — —oo with Newton’s iterations (Figure H)). The corresponding limit system
has the infinitely fast decay of the diffusion mode when k > k.. This regularization
of singularities by infinite dissipation is quite typical for the application of the
Newton method to the solution of the invariance equation. The “solid jet” limit for
the extremely fast compressions gives us another example [55] (see also Section [(2)).

4.4. Invariant manifolds, entanglement of hydrodynamic and nonhydro-
dynamic modes, and saturation of dissipation for the three-dimensional
13-moment Grad system. The 13-moment linear Grad system consists of 13
linearized PDE’s (L2)), (L3) giving the time evolution of the hydrodynamic fields
(density p, velocity vector field u, and temperature T') and of higher-order dis-
tinguished moments: five components of the symmetric traceless stress tensor o
and three components of the heat flux g [68]. With this example, we conclude the
presentation of exact hydrodynamic manifolds for linearized Grad models.

A point of departure is the Fourier transform of the linearized three-dimensional
13-moment Grad system:

8tpk = —ik- U,
8tuk = —ikpk — ika — ik - O,
2,
T, = —§Zk~ (ur + qy,),
4
oo, = —2ikuy — giqu — Ok,

5) 2
—§Zka — ik - O — =g,

atqk: 3

where k is the wave vector; pg, ur and T}, are the Fourier images for density, velocity,
and temperature, respectively; and o, and g, are the nonequilibrium traceless
symmetric stress tensor (& = o) and heat flux vector components, respectively.
Decompose the vectors and tensors into the parallel (longitudinal) and orthog-
onal (lateral) parts with respect to the wave vector k, because the fields are rota-
tionally symmetric around any chosen direction k. A unit vector in the direction

of the wave vector is e = k/k, k = |k|, and the corresponding decomposition is

up = ulle—ﬁ—u,i-, q, = q,!e—i—qf;, and o = %J,Ll@—i—QU,J;, where e'u,i- =0,

e~qé- =0, and ee:aé-zo.
In these variables, the linearized three-dimensional 13-moment Grad system de-

composes into two closed sets of equations: one for the longitudinal and another

for the lateral modes. The equations for py, ull, Ty, UL‘, and q,ll coincide with the

one-dimensional Grad system (£.I0]) from the previous section (the difference is just
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0.1 k.=0.3023 k

FiGURE 5. The dispersion relation for the linearized three-
dimensional 13-moment Grad system ([2), (I3). The bold solid
line shows the hydrodynamic acoustic mode (two complex con-
jugated roots). The bold dotted line represents the shear mode
(double degenerated real-valued root). The bold dashed line for
k < k. is the hydrodynamic diffusion mode (a real-valued root).
At k = k. this line meets a real-valued root of nonhydrodynamic
mode (thin dash-and-dot line), and for k& > k. they turn into a
couple of complex conjugated roots (bold double-dashed line at
k > k.). Dash-and-dot lines at the bottom of the plot show the
separated nonhydrodynamic modes. All the modes demonstrate
the saturation of dissipation.

in the superscript ”). For the lateral modes we get

(4.15)

duy = —ike - oy,
_ 2 —
ooy = —ikeu;- — gik;eqkl —or,
. 2
orqyr = —ike oy — gq,i
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The hydrodynamic invariant manifold for these decoupled systems is a direct prod-
uct of the invariant manifolds for (£10) and for ({I5). The parametrization (@I,
the invariance equation ([£I2]), the dispersion equation for exact hydrodynamics
(£14), and the plots of the attenuation rates (Figure d) for (£I0) are presented in
the previous section.

For the lateral modes the hydrodynamic variables consist of the two-dimensional
vector uj-. We use the general expression (7)) and take into account the rotational
symmetry for the parametrization of the nonhydrodynamic variables of and qﬁ
by the hydrodynamic ones:

(4.16)

or = ikD(K*)eui, qr = —k*U(k*)ug.
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There are two unknown scalar real-valued functions here: D(k?) and U(k?). We
equate the microscopic and macroscopic time derivatives of the nonhydrodynamic
variables and get the invariance conditions:

ook — 2.
Lﬁ - (—ike - al) = —ikeuﬁ — —ikeqﬁ — akL,
Ouy,; 5

(4.17) ol )
Gur (ke ai) = ike o — Zai.

We substitute here o and gi- by the expressions ([@I06) and derive the algebraic

invariance equation for D and U, which can be transformed into the form

15k* D3 4 25k? D? + (10 + 21k*)D + 10 = 0,
(4.18) 3D

T 243k2D°

The solution of the cubic equation (£I8) with the additional condition D(0) = —1
matches the Navier—Stokes asymptotics and is real valued for all k2 [20]. The dis-
persion equation gives twice-degenerated real-valued shear mode. All 13 modes for
the three-dimensional 13-moment linearized Grad system are presented in Figure
with five hydrodynamic and eight nonhydrodynamic modes. This plot includes
also eight modes (three hydrodynamic and five nonhydrodynamic ones) for the
one-dimensional system (£I0). Entanglement between hydrodynamic and nonhy-
drodynamics modes appears at the same critical value of k£ =~ 0.3023, and the exact
hydrodynamics does not exist for larger k.

4.5. Algebraic hydrodynamic invariant manifold for the linearized Boltz-
mann and BGK equations: separation of hydrodynamic and nonhydro-
dynamic modes. The entanglement of the hydrodynamic and nonhydrodynamic
modes at large wave vectors k destroys the exact hydrodynamic for the Grad mo-
ment equations. We conjecture that this is the catastrophe of the applicability
of the moment equations, and the hydrodynamic manifolds are destroyed together
with the Grad approximation. It is plausible that if the linearized collision operator
has a spectral gap (see a review in [I18]) between the five-time degenerated zero
and other eigenvalues, then the algebraic hydrodynamic invariant manifold exists
for all k. This remains an open question but the numerical calculations of the
hydrodynamic invariant manifold available for the linearized kinetic equation (L))
with the BGK collision operator [7,[54] support this conjecture [87].

The incompressible hydrodynamic limit for the scaled solutions of the BGK
equation was proven in 2003 [125].

The linearized kinetic equation (ILI)) has the form

where f(t,v,x) is the deviation of the distribution function from its equilibrium
value f*(v), L is the linearized kinetic operator. Operator L is symmetric with
respect to the entropic inner product

@(U)¢(U) d3’U.

(4.20) ) = [ 28
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In the Ly space with this inner product, ker L = (imL)' is a finite-dimensional
subspace. It is spanned by five functions:

fr (), vf*(v),0*f*(v).
The hydrodynamic variables (for the given ¢ and x) are the inner products of these
functions on f(¢,x,v), but it is more convenient to use the orthonormal basis with
respect to the product (-,-) ¢, ¢1(v),...,¢5(v). The macroscopic variables are
M; = (pi, f)g- (i=1,2,...,5).
It is convenient to represent f in the form of the direct sum of the macroscopic
and microscopic components

f = Pmacrof + Pmicrof7
where

Pmacrof = Z @i<§0ia f>f*a Pmicrof = (f - Z @i(‘/)ia f>f*)
i i
After the Fourier transformation the linearized kinetic equation is

(421) Dufe = —ilk,v) i + Lfs.
The lifting operation X (k) : My — fr ({2) should have the form

X (k) (M) = Z Mipi(v) + ZMikwi(k7 v),

where (@;,¢;)p» = 0 for all 4,5 = 1,2,...,5. We equate the microscopic and
macroscopic time derivatives (L4 of f and get the invariance equation ([@3):

L'(/)j =ik - [Pmicm(vgoj) + Pmicro(ij)
(4.22) = "l ve) e = > il vig) -
l l

For the solution of this equation, it is important that imL = imPpjcro and the both
operators L and L~! are defined and bounded on this microscopic subspace. The
linearized BGK collision integral is simply L = —Ppicro (the relaxation parameter
e = 1) and the invariance equation has in this case an especially simple form.

In [87] the form of this equation has been analyzed further, and it has been
solved numerically by several methods: the Newton iterations and continuation in
parameter k. The attenuation rates for the Chapman—Enskog branch have been
analyzed. All the methods have produced the same results:

(i) the real-valued hydrodynamic invariant manifold exists for all range of k,
from zero to large values;
(ii) hydrodynamic modes are always separated from the nonhydrodynamic
modes (no entanglement effects); and
(iii) the saturation of dissipation exists for large k.

5. HYDRODYNAMIC INVARIANT MANIFOLDS FOR NONLINEAR KINETICS

5.1. One-dimensional nonlinear Grad equation and nonlinear viscosity.
In the preceding sections we represented the hydrodynamic invariant manifolds for
linear kinetic equations. The algebraic equations for these manifolds in k-space have
a relatively simple closed form and can be studied both analytically and numerically.
For nonlinear kinetics, the situation is more difficult for a simple reason: it is
impossible to cast the problem of the invariant manifold in the form of a system
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of decoupled finite-dimensional problems by the Fourier transform. The equations
for the invariant manifolds for the finite-dimensional nonlinear dynamics have been
published by Lyapunov in 1892 [IT1], but even for ODEs this is a nonlinear and
rather nonstandard system of PDEs.

There are several ways to study the hydrodynamic invariant manifolds for non-
linear kinetics. In addition to the classical Chapman—Enskog series expansion, we
can solve the invariance equation numerically or semi-analytically, for example, by
the iterations instead of the power series. In the next section, we demonstrate this
method for the Boltzmann equation. In this section, we follow the strategy that
seems to be promising: to evaluate the asymptotics of the hydrodynamic invariant
manifolds at large gradients and frequencies, and to match these asymptotics with
the first Chapman—FEnskog terms. For this purpose, we use exact summation of the
“leading terms” in the Chapman—Enskog series.

The starting point is the set of the one-dimensional nonlinear Grad equations
for the hydrodynamic variables p, w and T, coupled with the nonhydrodynamic
variable o, where o is the xz-component of the stress tensor:

(5.1) dhp = —0s(pu),

(5.2) Ou = —udyu—p t0up—p to,0,

(5.3) T = —ud,T —(2/3)T0,u— (2/3)p tod,u;
(5.4) 0o = —u0yo — (4/3)poyu — (7/3)00,u — L

u(T)

Here p = pT and u(T) is the temperature-dependent viscosity coefficient. We adopt
the form u(T") = oI, where «y varies from v = 1 (Maxwell’s molecules) to v = 1/2
(hard spheres) [24].

Our goal is to compute the correction to the Navier—Stokes approximation of
the hydrodynamic invariant manifold, ong = —(4/3)u0,u, for high values of the
velocity. Let us consider first the Burnett correction from (G.1)—(E4):

78(29 20,0 guzp”@x(p’l@xp)-

Each further nth term of the Chapman—Enskog expansion contributes, among oth-
ers, a nonlinear term proportional to (9,u)"*!. Such terms can be named the
high-speed terms since they dominate the rest of the contributions in each order of
the Chapman—Enskog expansion when the characteristic average velocity is compa-
rable to the thermal speed. Indeed, let U be the characteristic velocity (the Mach
number). Consider the scaling v = Uu, where & = O(1). This velocity scaling
is instrumental to the selection of the leading large gradient terms, and the result
below is manifestly Galilean-invariant.

The term (9,u)"*! includes the factor U1, which is the highest possible order
of U among the terms available in the nth order of the Chapman—Enskog expansion.
Simple dimensional analysis leads to the conclusion that such terms are of the form

4
(5.5) op = —g,uaxu +

p(p~ p0zu) " Opu = pug™ dyu,
where ¢ = p~'ud,u is dimensionless. Therefore, the Chapman-Enskog expansion

for the function o may be formally rewritten as

4 82—
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The series in the brackets is the collection of the high-speed contributions of interest,
coming from all orders of the Chapman—Enskog expansion, while the dots outside
the brackets stand for the terms of other natures. Thus after summation the series
of the high-speed corrections to the Navier—Stokes approximation for the Grad
equations (5I) takes the form

(57) Onl = _MR(9)8JCU7

where R(g) is a yet unknown function represented by a formal subsequence of
Chapman-Enskog terms in the expansion (5:6). The function R can be considered
as a dynamic modification of the viscosity p due to the gradient of the average
velocity.

Let us write the invariance equation for the representation (5.7). We first com-
pute the microscopic derivative of the function oy by substituting (57 into the
right-hand side of (5.4):

. 4
atmlcroo.nl — _uaxo'nl — gpaxu — go'nlagcu — ﬁ(fnl
(5.8) 47
_ {_§+§gR+R}p5xu+"' )

where the dots denote the terms irrelevant to the high-speed approximation (&.7).
Second, computing the macroscopic derivative of oy, due to (&1)), (E2), and

[E3), we obtain
dR
(5.9) 0" oy = —[0pp(T)|ROzu — u(T)d—g[atg]awu — w(T)RO,[Oru].

In the latter expression, the time derivatives of the hydrodynamic variables should
be replaced with the right-hand sides of (5.1l), (52)), and (53]), where, in turn, o
should be replaced by oy, (B1). We find

2 dR
(5.10) 9oy = {gR + 5(1 —gR) x (’ng +(y— 1)92d_g> } pOgu+ -+ .

Again we omit the terms irrelevant to the analysis of the leading terms.
Equating the relevant terms in (B.8) and (EI0), we obtain the approximate
invariance equation for the function R:

dR 3
(5.11) (1—-7)g% (1 —gR) a +~v¢*R? + {5 +g(2 - 7)} R—2=0.

It is approximate because in the microscopic derivative many terms are omitted,
and it becomes more accurate when the velocities are multiplied by a large factor.
When g — oo, then the viscosity factor (511) R — 0.

For Maxwell’s molecules (v = 1), (511)) simplifies considerably, and it becomes
the algebraic equation

(5.12) G°R* + <;+g> R—-2=0.

The solution recovers the Navier—Stokes relation in the limit of small g, and for an
arbitrary ¢ it reads

=3 —2g+3\/1+ (4/3)g + 4g?

5.13 R
( ) MM 4¢2
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FIGURE 6. Viscosity factor R(g) (GII): solid line is R(g) for
Maxwell molecules; dash is the Burnett approximation of R(g)
for Maxwell molecules; dots are the Navier—Stokes approximation;
dash-dots are viscosity factor R(g) for hard spheres, the first ap-

proximation (E.14).

The function Ry (B13) is plotted in Figure [l Note that Ry is positive for all
values of its argument g, as is appropriate for the viscosity factor, while the Burnett
approximation to the function Ry violates positivity.

For other models (v # 1), the invariance equation ([.I1)) is a nonlinear ODE
with the initial condition R(0) = 4/3 (the Navier—Stokes condition). Several ways
to derive analytic results are possible. One possibility is to expand the function R
into powers of g, around the point g = 0. This brings us back to the original sub-
series of the Chapman—Enskog expansion (5.6). Instead, we take advantage of the
opportunity offered by the parameter . Introduce another parameter § = 1 — v,
and consider the expansion

R(B,9) = Ro(g) + BRu(g) + B°Ra(g) +--- .
Substituting this expansion into the invariance equation (5.I1]), we derive Ro(g) =
Rym(g),

(5.14) Ri(9) = —g(1 — gRy) Ry + g(dRo/dg)

29°Ro + g+ (3/2)’
etc. That is, the solution for models different from Maxwell’s molecules is con-
structed in the form of a series with the exact solution for the Maxwell molecules
as the leading term. For hard spheres (8 = 1/2), the result to the first-order
term reads Rps ~ Rym + (1/2)Ry. The resulting approximate viscosity factor is
shown in Figure [l (dash-dots line). The features of the approximation obtained are
qualitatively the same as in the case of Maxwell molecules.

Precisely the same result for the nonlinear elongational viscosity obtained first
from the Grad equations [88] was derived in [44l[128] from the solution to the BGK
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kinetic equation in the regime of so-called homo-energetic extension flow. This
remarkable fact gives more credit to the derivation of hydrodynamic manifolds
from nonlinear Grad equations.

The approximate invariance equation (G.I1]) defines the relevant physical solution
to the viscosity factor for all values of g. The hydrodynamic equations are now given
by 1), (£2), and (B3], where o is replaced by oy (B7). First, the correction
concerns the nonlinear regime, and, thus, the linearized form of the new equations
coincides with the linearized Navier—Stokes equations. Second, the solution (B3]
for Maxwell molecules and the result of the approximation (B.I14) for other models
and also the numerical solution [90] suggest that the modified viscosity pR vanishes
in the limit of very high values of the velocity gradients. However, a cautious remark
is in order since the original “kinetic” description is Grad’s equations (G.I))—(5.4)
and not the Boltzmann equation. The first Newton iteration for the Boltzmann
equation gives a singularity of viscosity at a large negative value of divergency (see
below, Section [5.2)).

5.2. Approximate invariant manifold for the Boltzmann equation.

5.2.1. Invariance equation. We begin with writing down the invariance condition
for the hydrodynamic manifold of the Boltzmann equation. A convenient point of
departure is the Boltzmann equation (L)) in a co-moving reference frame,

(5.15) Dif =—(v—u) -V.f+Q(f),
where D, is the material time derivative, D; = 0; + uw - V. The macroscopic
(hydrodynamic) variables are
3nkgT
M= {n;nu; B —|—nu2} =m[f] = /{1;1};1}2}fdv7

where n is number density, w is the flow velocity, and T is the temperature; u
is particle’s mass and kg is Boltzmann’s constant. These fields do not change in
collisions, hence, the projection of the Boltzmann equation on the hydrodynamic
variables is

(5.16) DM = —m|[(v —u) -V, f].

For the given hydrodynamic fields M, the local Maxwellian fiM (or just f&M)
is the only zero of the collision integral Q(f).

kT ~/? (v —u)?

The local Maxwellian depends on space through the hydrodynamic fields.

We are looking for the invariant manifold f,; in the space of distribution func-
tions parametrized by the hydrodynamic fields. Such a manifold is represented by a
lifting map M — fjs that maps the hydrodynamic fields in three-dimensional space,
three functions of the space variables, M = {n(x),u(x),T(x)}, into a function of
six variables f,,(x,v). The consistency condition should hold:

(5.18) m[fa) = M.

The differential of the lifting operator at the point M is a linear map (D f ) :
oM — 6f.
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It is straightforward to write down the invariance condition for the hydrodynamic
manifold: The microscopic time derivative of fj; is given by the right-hand side of
the Boltzmann equation on the manifold

D far = —(v —u) - Vo far + Q(fur),
while the macroscopic time derivative is defined by the chain rule
D fayr = —(Dar far)m[(v — u) - Vi fu].

The invariance equation requires that, for any M, the outcome of two ways of taking
the derivative should be the same:

(5190 |=Dufa)mlw —w) - Vofal = —(v—u)- Vofy +Q(Fu)-|

One more field plays a central role in the study of invariant manifolds: the defect
of invariance,

_ macro micro
Ay = D™ f oy — D f

(5.20) = —(Dyfa)m[(v—w)-Vofuyl+ (v —u)-Vifay.

It measures the “noninvariance” of a manifold f,,.

Let an approximation of the lifting operation M — f;, be given. The equation
of the first iteration for the unknown correction § f,, of f,, is obtained by the lin-
earization (we assume that the initial approximation, f,;, satisfies the consistency
condition and ml[d f] = 0):

(5.21) (Dyrfaml(v—w) Vol — (v —u)-Vudfa + Lof iy = A

Here, Ly is a linearization of Q at fiM. If f,, is local equilibrium, then the
integral operator L, at each point « is symmetric with respect to the entropic inner
product [@20). The equation of iteration (B.21]) is linear but with nonconstant in
space coefficients because both (Dysf,,) and Ly depend on .

It is necessary to stress that the standard Newton method does not work in
these settings. If f,, is not a local equilibria, then Lj; may be not symmetric and
we may lose such instruments as the Fredholm alternative. Therefore, we use in
the iterations the linearized operators Lj; at the local equilibrium and not at the
current approximate distribution f,; (the Newton—Kantorovich method). We also
do not include the differential of the term (Dysf)m in (B2ZI). The reason for
this incomplete linearization of the invariance equation (G.I9) is that it provides
convergence to the slowest invariant manifold (at least, for linear vector fields),
and other invariant manifolds are unstable in iteration dynamics. The complete
linearization does not have this property [53[60].

5.2.2. Invariance correction to the local Mazwellian. Let us choose the local Max-
wellian f,, = f*™M (5I7) as the initial approximation to the invariant manifold in
(B21). In order to find the right-hand side of this equation, we evaluate the defect
of invariance (5.20) Ay = AMM:

(5.22) AMM — LMD
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where
B u(v—u)2_§ S V.T
_|_kBLT{(v—u)®(v—u)—%l(v—u)2 : Vyu.

Note that there is no “smallness” parameter involved in the present consideration,
the defect of invariance of the local Maxwellian is neither “small” or “large” by
itself. We now proceed with finding a correction d f to the local Maxwellian on the
basis of the linearized equation (B.2I]) supplemented with the consistency condition,

(5.24) m[of] = 0.

Note that if we introduce the formal large parameter L < e 'L and look at the
leading-order correction df < ed f, disregarding all the rest in equation (B.21]), we
get a linear nonhomogeneous integral equation,

A/ = (MG - 5 ) - S

(5.25)
t eT

where
Ap = [ w(@' oifo,00) /M (@0le(e}) + 6(v) - p(0) - p(o1)]dvido’do,

is the linearized Boltzmann collision operator (w is the scattering kernel; standard
notation for the velocities before and after the binary encounter is used). It is readily
seen that (5.28)) is nothing but the standard equation of the first Chapman—Enskog
approximation, whereas the consistency condition (524]) results in the unique so-
lution (Fredholm alternative) to (B.28). This leads to the classical Navier—Stokes
Fourier equations of the Chapman—FEnskog method.

Thus, the first iteration (5.2I)) for the solution of the invariance equation (EI9)
with the local Maxwellian as the initial approximation is matched to the first
Chapman—Enskog correction to the local Maxwellian. However, equation (G.21])
is much more complicated than its Chapman—Enskog limit: equation (521 is lin-
ear but integro-differential (rather than just the linear integral equation (B:2H)),
with coefficients varying in space through both (D f*™) and L. We shall now
describe a microlocal approach for solving (521]).

5.2.3. Microlocal techniques for the invariance equation. Introducing 6f = fHM,
equation (B5.2I)) for the local Maxwellian initial approximation can be cast in the
form

(5.26) No—(V*-V)p=D,

where the enhanced linearized collision integral A* and the enhanced free flight
operator (V* V) act as follows. Let us denote II the projection operator (II? = II),

(5.27) Tg = (") Darf™Mm[f*Mg].
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Then in (526]) we have

Ao = Ap+ (II-1)(re),
_ Vo p :
r = (v—u) - + kBT(v u)® (v—u): Vyu
(v —u)? 3 B v,T
+ < T 2) W T

(V" V) = (1-1ID((v—u)- Vip).

The structure of the invariance equation (5.26]) suggests the way of inverting the
enhanced operator A* — (V* - V):

e Step I: Discard the enhanced free flight operator. The resulting local in
space linear integral equation, A*[p] = D, is similar to the Chapman—
Enskog equation (5:25)) and has a unique solution by Fredholm alternative:

(5.28) Ploc(x) = (A7) [D(@)].

Here we have explicitly indicated the space variables in order to stress the
fact of locality. (For a given @, both D(x) and ¢..(x) are functions of x
and v and A, is an integral in v operator.)

e Step 2: Fourier-transform the local solution,

(5.29) Ploc(k) = / e R oo (x)de.

e Step 3: Replace the Fourier-transformed enhanced free flight operator with
its main symbol and solve the linear integral equation,

(5.30) (AL +i(VE - k)|[¢(e, k)] = D(x, k),

where

(5.31) D(@, k) = Ay [Proc(K)]-

e Step 4: Back-transform the result

(5.32) p= (2#)_3/eik'w¢(a:,k)dk:;

the resulting ¢ is a function of  and v.

Several comments are in order here. The above approach to solving the invari-
ance equation is the realization of the Fourier integral operator and parametrix
expansion techniques [I30L[141]. The equation appearing in Step 3 is in fact the
first term of the parametrix expansion. At each step of the algorithm, one needs
to solve linear integral equations of the type familiar from the standard literature
on the Boltzmann equation. Solutions at each step are unique by the Fredholm
alternative. In practice, a good approximation for such linear integral equations is
achieved by a projection on a finite-dimensional basis. Even with these approxima-
tions, evaluation of the correction to the local Maxwellian remains rather involved.
Nevertheless, several results in limiting cases were obtained and are reviewed below.

For the unidirectional flow near the global equilibrium (n = ng,u = 0,7 = Tp)
for Maxwell’s molecules, the iteration gives the following expressions for the zx
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FIGURE 7. Acoustic dispersion curves for the frequency-response
nonlocal approximation (£.33]) (solid line) and for the Burnett ap-
proximation of the Chapman—Enskog expansion [9] (dashed line).
Arrows indicate the direction of increase of k2.

component of the stress tensor o and the x component of the heat flux ¢ for one-
dimensional solutions (in the corresponding dimensionless variables (I4)):

2 2 2 - 2
o= —gnOTO 1-— gax (20,u — 302T) ,
(5.33) »
5 32 2 8
g= —ZnOTO/ (1 - gag) <38rT - 3a§u> .

The corresponding dispersion curves are presented in Figure[7] where the saturation
effect is obvious.

Already at the first iteration, the nonlinear terms are strongly coupled with the
nonlocality in expressions for o in ¢ (see [53L[60]). Viscosity tends to positive infinity
for the high speed of compression (large negative divu). In other words, the flow
becomes “infinitely viscous” when J,u approaches the critical negative value —u.
This infinite viscosity threshold prevents a transfer of the flow into the nonphysical
region of negative viscosity if dyu < —u} because of the “infinitely strong damping”
at —uj,.

The large positive values of 0, u means that the gas diverges rapidly and the flow
becomes nonviscid because the particles retard to exchange their momentum. On
contrary, its negative values (near —u} ) describe an extremely strong compression
of the flow, which results in a “solid jet” limit with an infinite viscosity [55].
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As an example, we present the result of the above microlocal analysis for the
part of the stress tensor o which does not vanish when T and n are fixed:

o(x) = —n /m dy/m Ak exp(ik(x — ) 20,u(y)
« [(n(m))\3+1—918 u(w ) ( D) + 2 a Lz )) +%}1

s | <[l S o
%(()M 2T o, uly ) ~ u(y))*dru(a)

-1
-3 i(u(o) ~ )y (n<y>As n gayu@))
+0(0; InT(x),0; Inn(x)).

The answer in this form does not depend on the detailed collision model. Only
the general properties like conservation laws, H-theorem and Fredholm alternative
for the linearized collision integral are used. All the specific information about the
collision model is collected in the positive numbers A3 4. They are represented by
quadratures in [53L[60]. The “residual” terms describe the part of the stress tensor
governed by the temperature and density gradients.

The simplest local approximation to this singularity in ¢ has the form

(5.35) o = —po(T)n (1 + aﬂ—“) Dy

xT

For the viscosity factor R (5.7 this approximation gives (compare to (BI3) and
Figure [).

const

The approximations with singularities similar to (538) with «} = 3/7 have been
also obtained by the partial summation of the Chapman—Enskog series [49150].

As we can see, the invariance correction results in a strong coupling between
nonlocality and nonlinearity, and is far from the conventional Navier—Stokes and
Euler equation or other truncations of the Chapman—Enskog series. Results of the
microlocal correction to the local Maxwellian are quite similar to the summation
of the selected main terms of the Chapman-Enskog expansion. In general, the
question about the hydrodynamic invariant manifolds for the Boltzmann equation
remains less studied so far because the coupling between the nonlinearity and the
nonlocality brings about new challenges in calculations and proofs. There is hardly
a reason to expect that the invariant manifolds for the genuine Boltzmann equation
will have a nice analytic form similar to the exactly solvable reduction problem for
the linearized Grad equations. Nevertheless, some effects persist: the saturation
of dissipation for high frequencies and the nonlocal character of the hydrodynamic
equations.
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6. THE PROJECTION PROBLEM AND THE ENTROPY EQUATION

The exact invariant manifolds inherit many properties of the original systems:
conservation laws, dissipation inequalities (entropy growth), and hyperbolicity of
the exactly reduced system follow from these properties of the original system. The
reason for this inheritance is simple: the vector field of the original system is tangent
to the invariant manifold and if M (¢) is a solution to the exact hydrodynamic
equations then, after the lifting operation, fa;(;) is a solution to the original kinetic
equation.

In real-world applications, we very rarely meet the exact reduction from kinetics
to hydrodynamics, and we should work with the approximate invariant manifolds.
If f,; is not an exact invariant manifold, then a special projection problem arises
[G1LBIL120]: How should we define the projection of the vector field on the mani-
fold f,, in order to preserve the most important properties, the conservation laws
(first law of thermodynamics) and the positivity of entropy production (second law
of thermodynamics). For hydrodynamics, the existence of the “natural” moment
projection m (B516) masks the problem.

The problem of dissipativity preservation attracts much attention in the theory
of shock waves. For strong shocks it is necessary to use kinetic representation;
for rarefied gases the Boltzmann kinetic equation gives the framework for studying
the structure of strong shocks [26]. One of the common heuristic ways to use the
Boltzmann equation far from local equilibrium consists of three steps:

(1) construction of a specific ansatz for the distribution function for a given
physical problem;

(2) projection of the Boltzmann equation on the ansatz;

(3) estimation and correction of the ansatz (optional).

The first and, at the same time, the most successful ansatz for the distribution
function in the shock layer was invented in the middle of the twentieth century. It
is the bimodal Tamm-Mott-Smith approximation (see, for example, the book [26]):

(6.1) fo, @) = frus(v,2) = a_(2) /- (v) + ar(2) f1(v),

where z is the space coordinate in the direction of the shock wave motion, fi(v)
are the downstream and the upstream Maxwellian distributions, respectively. The
macroscopic variables for the Tamm—Mott-Smith approximation are the coefficients
a4 (2), the lifting operation is given by (B but it remains unclear how to project
the Boltzmann equation onto the linear manifold ([6.I) and create the macroscopic
equation.

To respect the second law of thermodynamics and provide positivity of entropy
production, Lampis [103] used the entropy density s as a new variable. The entropy
density is defined as a functional of f(v), s(x) = — [ f(z,v)In f(x,v) d®v. For each
distribution f the time derivative of s is defined by the Boltzmann equation and
the chain rule,

(6.2) Ois = — / In fO,f d3v = entropy flux + entropy production.

The distribution f in ([6.2]) is defined by the Tamm—-Mott-Smith approximation:
(1) calculate the density n and entropy density s on the Tamm-Mott-Smith
approximation ([G.I) as functions of ay, n = n(ay,a_), s = s(ay,a_);
(2) find the inverse transformation ay(n, s);
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(3) the lifting operation in the variables n and s is

fins) () = a—(n,8)f(v) + ay(n,s)f+(v).

This combination of the natural projection (2] and the Tamm—-Mott-Smith lifting
operation provides the approximate equations on the Tamm-Mott-Smith manifold
with positive entropy production. Several other projections have been tested com-
putationally [80]. All of them violate second law of thermodynamics because for
some initial conditions the entropy production for them becomes negative at some
points. Indeed, introduction of the entropy density as an independent variable with
the natural projection of the kinetic equation on this variable seems to be an at-
tractive and universal way to satisfy the second law of thermodynamics on smooth
solutions, but near the equilibria this change of variables becomes singular.

Another universal solution works near equilibria (and local equilibria). The
advection operator does not change entropy. Let us consider a linear approximation
to a space—uniform kinetic equation near equilibrium f*(v): 0,6f = Kf. The
second differential of entropy generates a positive quadratic form

(03 (@, ) g = =(D29) (. ) = f:ﬁ &,

The quadratic approximation to the entropy production is nonnegative:

(6.4) —(p, K¢ )y > 0.

Let T be a closed linear subspace in the space of distributions. There is a unique pro-
jector Pr onto this subspace which does not violate the positivity of entropy produc-
tion for any bounded operator K with property (6.4): if —(Pry, PrKPro)s- >0
for all ¢, ¢ and all bounded K with property (G.4]), then Pr is an orthogonal projec-
tor with respect to the entropic inner product (3] [58,59]. This projector acts on
functions of v. For a local equilibrium f*(x, v) the projector is constructed for each
x and acts on functions ¢(x,v) pointwise at each point . Liu and Yu [I09] also
used this projector in a vicinity of local equilibria for the micro-macro decomposi-
tion in the analysis of the shock profiles and for the study nonlinear stability of the
global Maxwellian states [I10]. Robertson studied the projection onto manifolds
constructed by the conditional maximization of the entropy and the micro-macro
decomposition in the vicinity of such manifolds [122]. He obtained the orthogonal
projectors with respect to the entropic inner product and called this result “the
equation of motion for the generalized canonical density operator”.

The general case can be considered as a “coupling” of the above two examples:
the introduction of the entropy density as a new variable, and the orthogonal pro-
jector with respect to entropic inner product. Let us consider all smooth vector
fields with nonnegative entropy production. The projector which preserves the non-
negativity of the entropy production for all such fields turns out to be unique. This
is the so-called thermodynamic projector [51,58-460]. Let us describe this projector
P for a given state f, closed subspace Ty = imPr, and the differential (DS); of
the entropy S at f. For each state f we use the entropic inner product ([G3]) at
f* = f. There exists a unique vector g(f) such that (g,¢); = (DS)s(p) for all
. This is nothing but the Riesz representation of the linear functional D,S with
respect to the entropic scalar product. If g # 0, then the thermodynamic projector
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Projection to

y macroscopic variables
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J(fm)
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F1GURE 8. The main geometrical structures of model reduction
with an approximate invariant manifold (the ansatz manifold):
J(f) is the vector field of the system under consideration, d;f =
J(f), the lifting map M — f,, maps a macroscopic field M into
the corresponding point f;, on the ansatz manifold, T, is the tan-
gent space to the ansatz manifold at point f,,, P is the thermody-
namic projector onto Ty at point f,,, PJ(f,,) is the projection of
the vector J(f,,;) onto tangent space Ty, the vector field dM/d¢
describes the induced dynamics on the space of macroscopic vari-
ables, Ay = (1 — P)J(f ) is the defect of invariance, the affine
subspace f,; +ker P is the plain of fast motions, and Ay, € ker P.
The invariance equation is Ay = 0.

of the vector field J is

gl

(6.5) Pr(J)=PH(J) + —+—
(glllgl) s

<gl‘<]>f’

where P is the orthogonal projector onto Ty with respect to the entropic scalar
product and the vector g is split onto tangent and orthogonal components:

g=gl +g*+ gl =Ptg; g+ = (1 - PhHg.

This projector is defined if gl # 0. If gll = 0 (the equilibrium point), then J = 0
and P(J) = P+(J) = 0.

The selection of the projector in the form (G.5]) guaranties preservation of entropy
production. The thermodynamic projector can be applied for the projection of the
kinetic equation onto the tangent space to the approximate invariant manifold if the
differential of the entropy does not annihilate the tangent space to this manifold.
(Compare to the relative entropy approach in [127].)
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Modification of the projector changes also the a simplistic picture of the sepa-
ration of motions (Figure [[l). The modified version is presented in Figure 8 The
main differences are as follows.

e The projection of the vector field J on the macroscopic variables M goes
in two steps:

J(Far) = PI(Far) = m(PI(f )

the first operation J(f,;) — PJ(f ;) projects J onto the tangent plane T,
to the ansatz manifold at point f,,, and the second is the standard projec-
tion onto macroscopic variables m. Therefore, the macroscopic equations
are O: M = m(PJ(f,,)) instead of 23).

e The plane of fast motion is now f,; + ker P instead of f,; + kerm from
Figure [l

e The entropy maximizer on f,; +ker P is f,,, exactly as the local Maxwel-
lians fIMM are the entropy maximizers on fIMM + kerm. Thus, the entropic
projector allows us to represent an ansatz manifold as a collection of the
conditional entropy maximizers.

For details of the thermodynamic projector construction, we refer to [59,[60].
Some examples with construction of the thermodynamic projector with preservation
of linear conservation laws are presented in [48].

Another possible modification is a modification of the entropy functional. Re-
cently, Grmela [T0,[7T] proposed to modify the entropy functional after each step of
the Chapman—Enskog expansion in order to transform the approximate invariant
manifold into the manifold of the conditional entropy maximizers. This idea is very
similar to the thermodynamic projector in the following sense: any point ¢ on the
approximate invariant manifold is the conditional entropy maximum on the linear
manifold ¢ + ker Pr, where T' = T, is the tangent subspace to the manifold at
point ¢. Both modifications represent the approximate invariant manifold as a set
of conditional maximizers of the entropy.

7. CONCLUSION

It is useful to solve the invariance equation. This is a particular case of
the Newton’s famous sentence: “It is useful to solve differential equations” (“Data
@quatione quotcunque fluentes quantite involvente fluriones invenire et vice versa”,
translation published by V. I. Arnold [5]). The importance of the invariance equa-
tion has been recognized in mechanics by Lyapunov in his thesis (1892) [I11]. The
problem of persistence and bifurcations of invariant manifolds under perturbations
is one of the most seminal problems in dynamics [2H4L[79L97.139].

Several approaches to computation of invariant manifolds have been developed:
Lyapunov series [I11], methods of geometric singular perturbation theory [36}37,
]3], and various power series expansions [8,241[35]. The graph transformation ap-
proach was invented by Hadamard in 1901 [74] and developed further by many
authors [4173}[79,98]. The Newton-type direct iteration methods in various forms
[61H531[1021124)] proved their efficiency for model reduction and calculation of slow
manifolds in kinetics. There is also a series of numerical methods based on the
analysis of motion of an embedded manifold along the trajectories with subtraction
of the motion of the manifold “parallel to themselves” [40L60L62LTT9].
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The Chapman—Enskog method [24][35] was proposed in 1916. This method aims
to construct the invariant manifold for the Boltzmann equation in the form of a
series in powers of a small parameter, the Knudsen number Kn. This invariant
manifold is parametrized by the hydrodynamic fields (density, velocity, tempera-
ture). The zeroth-order term of this series is the corresponding local equilibrium.
This form of the solution (the power series and the local equilibrium zeroth term)
is, at the same time, a selection rule that is necessary to choose the hydrodynamic
(or Chapman—Enskog) solution of the invariance equation.

If we truncate the Chapman—Enskog series at the zeroth term, then we get the
Euler hydrodynamic equations: the first term gives the Navier-Stokes hydrody-
namics but already the next term (Burnett) is singular and gives negative viscosity
for large divergence of the flow and instability of short waves. Nevertheless, if
we apply, for example, the Newton-Kantorovich method [53,[60,62], then all these
singularities vanish (Section [(.2)).

The Chapman—FEnskog expansion appears as the Taylor series for the solution
of the invariance equation. Truncation of this series may approximate the hydro-
dynamic invariant manifold in some limit cases, such as the long wave limit or a
vicinity of the global equilibrium. Of course, the results of the invariant manifold
approach should coincide with the proven hydrodynamic limits of the Boltzmann
kinetics [6,46,[108,126,127] “at the end of relaxation”.

In general, there is no reason to hope that a few first terms of the Taylor series
give an appropriate global approximation of solutions of the invariance equation
(@3). This is clearly demonstrated by the exact solutions (Sections Bl and HJ).

The invariant manifold idea was present implicitly in the original Enskog and
Chapman works and in most subsequent publications and textbooks. An explicit
formulation of the invariant manifold program for the derivation of fluid mechanics
and hydrodynamic limits from the Boltzmann equation was published by McKean
[114] (see Figure @ in Section [Z1]). At the same time, McKean noticed that the
problem of the invariant manifold for kinetic equations does not include the small
parameter because, by the rescaling of the space dependence of the initial condi-
tions, we can remove the coefficient in front of the collision integral: there is no
difference between the Boltzmann equations with different Kn. Now we know that
the formal “small” parameter is necessary for the selection of the hydrodynamic
branch of the solutions of the invariance equation because this equation can have
many more solutions. (For example, for this purpose Lyapunov used analyticity
of the invariant manifold and selected the zeroth approximation in the form of the
invariant subspace of the linear approximation.)

The simplest example of invariant manifold is a trajectory (invariant curve).
Therefore, the method of invariant manifold may be used for the construction and
analysis of the trajectories. This simple idea is useful and the method of invariant
manifold was applied for solution of the following problems:

e for analysis and correction of the Tamm-Mott-Smith approximation of
strong shock waves far from local equilibrium [5I], with the Newton it-
erations for corrections;

e for analysis of reaction kinetics [I8] and reaction-diffusion equations [I15];

e for lifting of shock waves from the piecewise solutions of the Euler equation
to the solutions of the Boltzmann equation near local equilibrium for small
Kn [109];
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e for analytical approximation of the relaxation trajectories [64] (the me-
thod is tested for the space-independent Boltzmann equation with various
collisional mechanisms).

The invariant manifold approach to the kinetic part of Hilbert’s 6th
Problem. This approach, as it concerns the limit transition from the Boltzmann
kinetics to mechanics of continua, was invented by Enskog almost a century ago,
in 1916 [35]. From a physical perspective, it remains the main method for the
construction of macroscopic dynamics from dissipative kinetic equations. Math-
ematicians, in general, pay less attention to this approach because usually in its
formulation the solution procedure (the algorithm for the construction of the bulky
and singular Chapman—Enskog series) is not separated from the problem statement
(the hydrodynamic invariant manifold). Nevertheless, since the 1960s the invariant
manifold statement of the problem has been clear for some researchers [53L[60L1T4].

Analysis of the simple kinetic models with algebraic hydrodynamic invariant
manifolds (Section B]) shows that the hydrodynamic invariant manifolds may exist
globally, and the divergence of the Chapman—Enskog series does not mean the
nonexistence or nonanalyticity of this manifold.

The invariance equation for the more complex Grad kinetic equations (linearized)
is also obtained in an algebraic form (see Section 3land [60,90] for one-dimensional
and Section 4 and [20] for three-dimensional space). An analysis of these polyno-
mial equations shows that the real-valued solution of the invariance equation in the
k-space may break down for very short waves. This effect is caused by the so-called
entanglement of hydrodynamic and nonhydrodynamic modes.

The linearized equation with the BGK collision model [7] includes the genuine
free flight advection operator and is closer to the Boltzmann equation in the hi-
erarchy of simplifications. For this equation, there are numerical indications that
the hydrodynamic modes are separated from the nonhydrodynamic ones and the
calculations show that the hydrodynamic invariant manifold may exist globally (for
all values of the wave vector k) [87].

It seems more difficult to find a nonlinear Boltzmann equation with an exactly
solvable invariance equation and to summarize the Chapman-Enskog series for a
nonlinear kinetic equation exactly. Instead of this, we select in each term of the
series the terms of the main order in the power of the Mach number Ma and
exactly summarize the resulting series for the simple nonlinear one-dimensional
Grad system (Section B.] [60,[00]). This expansion gives the dependence of the
viscosity on the velocity gradient (57), (E11), (GI3).

The exact hydrodynamics projected from the invariant manifolds inherits many
useful properties of the initial kinetics: conservation laws, dissipation inequalities,
and (for the bounded lifting operators) hyperbolicity (Section 2]). Also, the exis-
tence and uniqueness theorem may be valid in the projections if it is valid for the
original kinetics. In applications, for the approximate hydrodynamic invariant man-
ifolds, the projected equation may violate many important properties. In this case,
the change of the projector operator solves some of these problems (Section[d]). The
construction of the thermodynamic projector guarantees the positivity of entropy
production even in very rough approximations [51159].

At the present time, Hilbert’s 6th Problem is not completely solved
in its kinetic part. More precisely, there are several hypotheses we can prove or
refute. The Hilbert hypothesis has not been unambiguously formulated but following
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his own works in the Boltzmann kinetics we can guess that he expected to receive
the Euler and Navier—Stokes equations as an ultimate hydrodynamic limit of the
Boltzmann equation.

Now, the Euler limit is proven for the limit Kn, Ma — 0, Ma < Kn, and the
Navier—Stokes limit is proven for Kn, Ma — 0, Ma ~ Kn. In these limits, the
flux is extremely slow and the gradients are extremely small (the velocity, density,
and temperature do not change significantly over a long distance). The system is
close to the global equilibrium. Of course, after rescaling, these solutions restore
some dynamics but this rescaling erases some physically important effects. For
example, it is a simple exercise to transform an attenuation curve with saturation
from Figure Blinto a parable (Navier—Stokes) or even into a horizontal straight line
(no attenuation, the Euler limit) with arbitrary accuracy by the rescaling of space
and time.

We can state at present that beyond this limit, the Euler and Navier—Stokes
hydrodynamics do not provide the proper hydrodynamic limit of the Boltzmann
equation. A solution of the Boltzmann equation relaxes to the equilibrium [29] and,
on its way to equilibrium, the classical hydrodynamic limit will be achieved as an
intermediate asymptotic (after the proper rescaling). This recently proven result
fills an important gap in our knowledge about the Boltzmann equation but from
the physics perspective this is still the limit Kn, Ma — 0 (with the proof that this
limit will be achieved on the path to equilibrium).

The invariant manifold hypothesis was formulated clearly by McKean [114] (see
Section 211 Figure [2 and Section B]): the kinetic equation admits an invariant
manifold parametrized by the hydrodynamic fields, and the Chapman—Enskog se-
ries are the Taylor series for this manifold. Nothing is expected to be small, and
no rescaling is needed. After the publication of the McKean work (1965), this hy-
pothesis was supported by exactly solved reduction problems, explicitly calculated
algebraic forms of the invariance equation and direct numerical solutions of these
equations for some cases like the linearized BGK equation.

In addition to the existence of the hydrodynamic invariant manifold some sta-
bility conditions of this manifold are needed in practice. Roughly speaking, the
relaxation to this manifold should be faster than the motion along it. An example
of such a condition gives the separation of the hydrodynamic and nonhydrodynamic
modes for linear kinetic equations (see the examples in Sections @ and [B]). It should
be stressed that the strong separation of the relaxation times (Figure [I]) is impos-
sible without a small parameter. For the e = 1 approach, we can expect only some
dominance of the relaxation toward the hydrodynamic manifold over the relaxation
along it.

The capillarity hypothesis was proposed very recently by Slemrod [134,[135]. He
advocated the ¢ = 1 approach and studied the exact sum of the Chapman—Enskog
series obtained in [57,[090]. Slemrod demonstrated that in the balance of the kinetic
energy ([B7) a capillarity term appears (BI1)) and the saturation of dissipation can
be represented as the interplay between viscosity and capillarity (Section B3]).

On the basis of this idea and some heuristics about the relation between the
moment (Grad) equations and the genuine Boltzmann equation, Slemrod suggested
that the proper exact hydrodynamic equation should have the form of the Korteweg
hydrodynamics [32,[99,[133] rather than of Euler or Navier—Stokes ones.
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The capillarity-like terms appear, indeed, in the energy balance for all hydrody-
namic equations found as a projection of the kinetic equations onto the exact or
approximate invariant hydrodynamic manifolds. In that (“wide”) sense, the capil-
larity hypothesis is plausible. In the more narrow sense, as in the assumption about
the validity of the Korteweg hydrodynamics, the capillarity hypothesis requires
some efforts for reformulation. The interplay between nonlinearity and nonlocality
on the hydrodynamic manifolds seems to be much more complex than in the Kor-
teweg equations (see, for example, Section 5.2 equation (534), or [53L60]). For a
serious consideration of this hypothesis we have to find out for which asymptotic
assumption we expect it to be valid (if € = 1, then this question is nontrivial).

In the context of the exact solution of the invariance equations, three
problems become visible.

(1) Proving the existence of the hydrodynamic invariant manifold for the lin-
earized Boltzmann equation.

(2) Proving the existence of the analytic hydrodynamic invariant manifold for
the Boltzmann equation.

(3) Matching the low-frequency, small gradient asymptotics of the invariant
manifold with the high-frequency, large gradient asymptotics and proving
the universality of the matched asymptotics in some limits.

The first problem seems to be not extremely difficult. For its positive solution,
the linearized collision operator should be bounded and satisfy the spectral gap
condition.

For the nonlinear Boltzmann equation, the existence of the analytic invari-
ant manifold seems to be plausible, but the singularities in the first Newton—
Kantorovich approximation (Section [(.2)) may give a hint about the possible dif-
ficulties in the highly nonlinear regions. In this first approximation, flows with
very high negative divergence cannot appear in the evolution of flows with lower
divergence because the viscosity tends to infinity. This “solid jet” [55] effect can be
considered as a sort of phase transition.

The idea of an exact hydrodynamic invariant manifold is attractive, and the
approximate solutions of the invariance equation can be useful, but the possibility
of elegant asymptotic solution is very attractive too. Now we know that we do not
know how to state the proper problem. Can the observable hydrodynamic regimes
be considered as solutions of a simplified hydrodynamic equation? Here a new, yet
nonmathematical notion appears, “the observable hydrodynamic regimes”. We can
speculate now, that when the analytic invariant manifold exists, then together with
the low-frequency, low-gradient Chapman—Enskog asymptotics the high—frequency
and high—gradient asymptotics of the hydrodynamic equations are also achievable
in a constructive simple form (see examples in Sections and BI). The bold
hypothesis (3) means that in some asymptotic sense, only the extreme cases are
important and the behavior of the invariant manifold between them may be substi-
tuted by matching asymptotics. We still do not know an exact formulation of this
hypothesis and can only guess how the behaviour of the hydrodynamic solutions
becomes dependent only on the extreme cases. Some hints may be found in recent
works about the universal asymptotics of solutions of PDEs with small dissipation
[31] (which develop the ideas of I'in proposed in the analysis of boundary layers
[82]).



HILBERT’S 6TH PROBLEM: EXACT HYDRODYNAMICS 239

We hope that problem (1) about the existence of hydrodynamic invariant mani-
folds for the linearized Boltzmann equation will be solved soon; problem (2) about
the full nonlinear Boltzmann equation may be approached and solved after the first
one. We expect that the answer will be positive: hydrodynamic invariant manifolds
do exist under the spectral gap condition.

Once the first two problems are solved, then the entire object—the hydrodynamic
invariant manifold—will be outlined. For this manifold, the various asymptotic ex-
pansions could be produced, for low frequencies and gradients, for high frequencies,
and for large gradients. Matching of these expansions and analysis of the resulting
equations may give material for the exploration of hypothesis (3). Some guesses
about the resulting equations may be formulated now, on the basis of the known
results. For example we can expect that nonlocality may be reduced to the sub-
stitution of the time derivative 0; in the system of fluid dynamic equations by
(1 — WA)O;, where A is the Laplace operator and W is a positive definite matrix
(compare to Section B.6]). It seems interesting and attractive that the resulting
equations may be new and, at the same time, simple and beautiful hydrodynamic
equations.

From the mathematical perspective, the approach based on the invariance equa-
tion now creates more questions than answers. It changes the problem statement
and the exact solutions give us some hints about the possible answers.
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