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1. Basic concepts

Group actions on manifolds, algebraic varieties and other sets, and geometric
objects have played an important role in geometry, analysis, representation theory,
and physics for a long time. The book by D. A. Timashev is a welcome survey of old
and new results on actions of algebraic groups on algebraic varieties. Basic facts on
algebraic groups, homogeneous spaces, and equivariant embeddings are presented.
Then the discussion concentrates more on a detailed description of special and
interesting classes where deeper results can be obtained. Those cases include sym-
metric spaces, weakly symmetric spaces, spherical varieties, spaces of lower rank
and complexity, and so-called wonderful varieties. Classification of several cate-
gories of homogeneous spaces are given. The book is about the algebraic side of
group actions, but to complement the book, we take a more analytic viewpoint.

Let us start by recalling some basic concepts. Let G be a group, and let X be a
set. A G-action on X is a map GˆX Ñ X, often written as pa, xq ÞÑ a ¨x “ �apxq,
such that a ÞÑ �a is a group homomorphism from G into the group of bijections
on X. If a G-action on X is given, then X is said to be a G-set. For a fixed
x P X the map a ÞÑ a ¨ x is the orbit map and G ¨ x is a G-orbit. The subgroup
Gx “ ta P G | a ¨ x “ xu is the stabilizer of x in G. We say that X is homogeneous
if X “ G ¨ x for some point, x P X. In that case X “ G ¨ x for all points x in
X. If X and Y are two G-sets, then a map ϕ : X Ñ Y is G-equivariant, or a
G-map, if ϕpa ¨ xq “ a ¨ϕpxq for all a P G and all x P X. If X is homogeneous, then
gGx ÞÑ g ¨x defines a G-equivariant bijection G{Gx » X. If G is a Lie group acting
smoothly on a manifold X (always assumed separable), then Gx is closed for all
x P X and G{Gx is a manifold. The group G acts smoothly on G{Gx and G{Gx

is isomorphic to X as a manifold and as a G-space. In the algebraic category, the
variety G{Gx » X if the map aGx ÞÑ a ¨ xo is separable. To explain the title of the

book we can now say that G{H
ϕ

ãÑ X is an equivariant embedding if X is a normal
variety with a G-action and ϕ is G-equivariant map with an open image in X. In
that case it is common to identify G{H with ϕpG{Hq Ă X. Finally, if τ : G Ñ G
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is a group homomorphism, then we set Gτ “ ta P G | τ paq “ au and if H is a
subgroup of G, then XH “ tx P X | p@h P Hq h ¨ x “ xu.

2. Early history

The connection between geometry and groups was the focus point of Felix Klein’s
famous Erlanger Program in 1872. Loosely interpreted, the program states that a
geometric structure is determined by its symmetry group. The Euclidean (metric)
geometry corresponds to the group of rigid motions G “ Opnq ˙ Rn where pa, bq
acts on R

n by v ÞÑ apvq ` b. It is also the invariance group of classical Newtonian
physics. The invariance group for the Lorentzian geometry and Einstein’s theory
of special relativity is the Poincaré group Op1, dq` ˙ R1,d, where in general Opp, qq

stands for the invariance group of the symmetric form βp,qppx1, . . . , xp`qqq “ x2
1 `

¨ ¨ ¨ ` x2
p ´ x2

p`1 ´ ¨ ¨ ¨ ´ x2
p`q. The ` in Op1, dq` indicates the subgroup mapping

the forward light cone into itself. We refer to [BH07] for detailed exposition of the
role of symmetries in geometry.

Felix Klein left Leipzig in 1886 and was replaced by his friend Sophus Lie.
who, in collaboration F. Engel, was creating what later became known as the
theory of Lie groups. The three volumes on transformation groups [L88] were
published in the years 1888 to 1893. This work was mostly local with the ex-
ception of some results related to classical groups. The global theory was de-
veloped later, in particular by H. Weyl [PW27,W24,W25,W26] and É. Cartan
[C13,C23,C26,C27a,C29,C30,C32,C35]. Particularly noteworthy is Cartan’s clas-
sification of Riemannian symmetric spaces, first local in [C27a] and then global in
[C27b]. The modern geometric presentation of Cartan’s work was first published
in 1962 as the original version of [H78]. An excellent presentation of this history
from the point of view of representation theory can be found in [B98] and [M92].
Other good references to learn about the subject include [CC52,B01,W11].

Cartan’s work was analytic in nature, and even if some work was done earlier,
at this point the algebraic viewpoint was less the focus of the development than it
was later. As turning points one can mention the work of Chevalley [CT46,C47],
A. Borel [B56], and A. Weil [W55a,W55b], just to name a few. Today this is a
blooming field of active research.

3. Symmetric spaces

We will always assume that G is a real Lie group, in most cases contained in a
complexification GC. One of the interesting aspects that opens up as we consider
real homogeneous spaces is that one can study different real forms of the same
complex homogeneous space or open G-orbits in a complex homogeneous space
GC{PC. We concentrate our discussion on the important class of symmetric spaces
and spherical, or multiplicity-free, spaces.

The best understood multiplicity-free spaces, both with respect to structure
theory as well as representation theory and analysis, are the Riemannian symmetric
spaces. Let H be a closed subgroup of G. Then pG,Hq is a symmetric pair,
and H is a symmetric subgroup, if there is an involution τ : G Ñ G such that
pGτ qo Ď H Ď Gτ where the index o indicates the connected component containing
the identity element. If H Ă G is symmetric, then we say that X “ G{H is a
symmetric space. If G is semisimple without compact factors and Gτ is a maximal
compact subgroup of G, then τ is called a Cartan involution of G and we usually
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write θ instead of τ and K “ Gθ. In this case K is always connected if G is
connected and G{K is simply connected. It is a Riemannian symmetric space of
the noncompact type.

A simple example of a symmetric space is the group itself. Let H be a Lie group,
and let G “ HˆH. Identify H with the diagonal subgroup tpa, aq | a P Hu “ Gτ Ă

G, where the involution τ is given by τ pa, bq “ pb, aq. The map pa, bqH ÞÑ ab´1

defines a G isomorphism G{H » H intertwining the action of G on G{H with the
right-left action pa, bq ¨ x “ axb´1 on H.

Another well-known example is the upper half-plane C` “ tz P C | Im z ą 0u.
In this case G “ SLp2,Rq acts by fractional linear transformations

ˆ

a b
c d

˙

¨ z “
az ` b

cz ` d
.

The stabilizer of i “
?

´1 is the subgroup SOp2q and C` » SLp2,Rq{SOp2q.
The Cayley transform z ÞÑ pz ´ iq{pz ` iq identifies C` with the unit disc D
“ tz P C | |z| ă 1u giving us a simple example of a bounded symmetric domain or a
hermitian symmetric space. Finally the open cone of positive-definite nˆn-matrices
is symmetric and isomorphic to GLpn,Rq{Opnq under the map aOpnq ÞÑ aaT .

It is often convenient to realize G{Gτ as a closed submanifold of G using the
smooth map ηpaGτ q “ aτ paq´1. The image of η is contained in the set ta P G |

τ paq “ a´1u and if G{Gτ is connected, then the image is exactly the connected
component containing the unit element e. The G-action on G{Gτ is transformed
into the action a ¨ b “ abτ paq´1. As an example, if τ : GLpn,Rq Ñ GLpn,Rq is
the involution a ÞÑ pa´1qT , then ηpGLpd,Rq{Opdqq is the above realization of the
positive definite matrices with the GLpn,Rq-action a ¨ x “ axaT .

On the Lie algebra level, we say that pg, hq is a symmetric pair if there exists
a nontrivial involutive Lie algebra homomorphism dτ : g Ñ g such that h “ gdτ .
If pG,Hq is a symmetric pair corresponding to the involution τ , then the derived
involution dτ : g Ñ g is an involution on g and g “ h ‘ s where h “ gdτ and s is
the p´1q-eigenspace of dτ . Furthermore, h is the Lie algebra of H, T pXq » GˆH s,
and T˚pXq » G ˆH s˚ as homogeneous vector bundles. If G is semisimple, then
the Killing form restricted to s defines an H-invariant nondegenerate bilinear form
on s and hence a pseudo-Riemannian structure on X. It is Riemannian if and only
if H{ZpGq, ZpGq the center of G, is compact.

Let xo “ eH, and let X “ G{H. Then X is a globally symmetric space with
symmetry given by sb¨xo

pa ¨ xoq “ ηpbq ¨ pτ paq ¨ xoq. In the realization of G{Gτ

inside G we have the simpler expression sxpyq “ xτ pyqx. As dτ |s “ ´id we have
pdsxqx “ ´idTxX for all x P X.

Symmetric spaces always come—at least locally—in pairs. To see this, we note
that pg, hq is a symmetric pair if and only if there exists an h-invariant complement
s of h in g such that rs, ss Ď h. Define gc “ h ‘ is. Then gc is a Lie algebra and
pgc, hq is a symmetric pair. Denote by Gc the simply connected Lie group with Lie
algebra gc and note that τ defines an involution on Gc. As Gc is simply connected
it follows that pGcqτ “ H̃ is connected ([L69, Thm. IV.3.4]) and Xc “ Gc{H̃ is
simply connected. If X is a Riemannian symmetric spaces of the noncompact type,
then the dual space Xc is a simply connected symmetric space of the compact type.
In the case where G is contained in a complex Lie group GC with Lie algebra gC

such that τ defines an involution on GC, there is a more “natural” way to define
Xc. Assume that H “ Gτ , and let HC “ Gτ

C
. Let Gc be the analytic subgroup
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of GC corresponding to gc, and let H̃ “ pGcqτ “ Gc X HC “ Gc X G. Then X

and Xc “ Gc{H̃ are two transversal real forms of the complex symmetric space
XC “ GC{HC.

As mentioned earlier, the Riemannian symmetric spaces were classified by E.
Cartan in 1927. As a step toward this classification, one proves the following
theorem:

Theorem. Assume that X is a Riemannian symmetric space. Denote by IpXq the
group of isometries of X, G “ IpXqo and K a stabilizer of a point x in X. Then,
in the compact-open topology, G is a finite-dimensional Lie group, K is a compact
subgroup and pG,Kq is a symmetric pair.

‚ If X is of noncompact type, then K is a connected maximal compact sub-
group of G, X is simply connected, and s Ñ X, X ÞÑ ExppXq “ exppXq ¨x
is an analytic diffeomorphism. All maximal compact subgroups of G are
conjugated by elements in G.

‚ If X is of the compact type, then K is not necessarily connected and hence
there might be several locally isomorphic spaces corresponding to the sym-
metric pair pg, kq.

‚ The space X is of noncompact type if and only if Xc is of compact type.

An important class of irreducible Riemannian symmetric spaces are bounded
symmetric domains or symmetric spaces of hermitian type classified by É. Cartan
in [C35]. They are characterized by k not being semisimple or, equivalently, sC
not irreducible as a K-representation. In fact the center z of k is one dimensional
and there exists an element z P z such that adpzq|s defines a G-invariant complex
structure on X. Let s` denote the `i-eigenspace of adpzq in sC. Then s` is abelian,
KCS` (S` “ exp s`) is a maximal parabolic subgroup in GC, and G{K is an open
G-orbit in GC{KCS`. It can also be realized as a bounded symmetric domain in
s`.

Those spaces play important role in both geometry and representation theory.
They were studied by A. Borel [B52] and A. Borel and Lichnerowicz [BL52], but
the realization as bounded domain was later given by Harish-Chandra [HC55]; see
also [H78], Chapter VI. For more information, in particular on the orbit structure
of the closure, see [KW65a,KW65b,S80,W69,W72].

The semisimple symmetric spaces were classified by M. Berger [B57] who also
described the natural representation of H on s.

4. Examples

For n P N and 1 ď p ď d{2, let U “ SOpnq and q “ n ´ p. Define

τ paq “ Ip,qaIp,q , where Ip,q “

ˆ

Ip 0
0 ´Iq

˙

.

The derived involution dτ is given by the same formula. We have

(4.1) Uτ
“ SpOppq ˆ Opqqq “

"ˆ

a 0
0 b

˙ ˇ

ˇ

ˇ

ˇ

a P Oppq, b P Opqq and det a det b “ 1

*

and U{Uτ “ GrppRnq, the space of p-dimensional subspaces of Rn. We note that
Ko “ SOppq ˆ SOpqq ­“ K so U{Ko and GrppRnq are two locally isomorphic, but
not diffeomorphic, symmetric spaces both corresponding to the same symmetric
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pair psopnq, soppq ˆ sopqqq. For p “ 1 this corresponds to the double covering
Sn´1 Ñ PpRnq.

The noncompact dual of U is locally isomorphic to G “ SOopp, qq “ Oopp, qq.
Let X be the set of x in GrppRnq such that βp,q is positive definite on x. The group
G acts transitively on X, the stabilizer of the point xo “ tpx1, . . . , xp, 0, . . . , 0qT |

x1, . . . , xp P Ru is Ko, and X “ G{Ko. The closure X of X in GrppRnq is a

compactification of X and X ãÑ X is a G-equivariant embedding.
The spaces GrppRnq and SOopp, qq{SOppqˆSOpqq are hermitian symmetric spaces

if and only if p “ 2. On the other hand the complex analogues GrppCnq “

SUpnq{SpUppq ˆ Upqqq and

Y “ SUpp, qq{SpUppq ˆ Upqqq » tz P Mpp ˆ q,Cq | Iq ´ z˚z ą 0u

are always hermitian symmetric spaces.
Denote by σ : Y Ñ Y the complex conjugation. Then Yσ “ X realizing X as

the bounded real domain tx P Mppˆ q,Rq | Iq ´ xTx ą 0u. The closure in Mp,qpRq

is a compactification of X. It is a fact that all classical Riemannian symmetric
spaces, sometimes extended by R`, and some exceptional symmetric spaces can be
compactified in this way [Ó00]. There are several other natural compactifications of
symmetric spaces. We will give examples of wonderful compactifications in Section
6. For good references on compactifications of symmetric spaces, see [BJ06,O78,
Sa60] or Chapter 4 in [S84].

The above mentioned Grassmanians GrppKdq, K “ R,C, fits into other interest-
ing classes of homogeneous spaces. The group SLpn,Kq acts transitively on GrppKdq

and the stabilizer of the basepoint xo is the maximal parabolic subgroup

P “

"ˆ

a x
0 b

˙ ˇ

ˇ

ˇ

ˇ

a P GLp, b P GLq, det a det b “ 1 and x P Mpˆq

*

» SpGLpp,Kq ˆ GLpq,Kqq
loooooooooooooomoooooooooooooon

L

˙ K
pq

loomoon

N

.

Thus, GrppKdq is an example of a symmetric R-space [KN64]. All the compact
symmetric R-spaces U{K have the property that the noncompact dual G{Ko can
be realized as open orbits in U{K.

The R-spaces are closely related to other classes of symmetric spaces. There
exists an involution τ on G such that L “ Gτ . The symmetric space G{L is an
example of a para-hermitian symmetric space studied in detail by S. Kaneyuki
[K85,K03]. The para-hermitian structure is given by an element x P s such that
adpxq has the eigenvalues 0, ˘1, the group L is the centralizer of x in G, and dτ “

eπiadpxq and G{L » Ad pGqx Ă g » g˚ is a coadjoint orbit. The symmetric space
G{Gθτ has a G-invariant partial ordering and is sometimes called a noncompactly

causal symmetric space [HÓ97,Ó91]. Finally, taking the c-dual with respect to the
involution τθ gives a symmetric space of hermitian type Gc{Kc such that Kc

C
S` X

G “ P and Kc
C

“ LC.

5. Commutative spaces

In the category of Riemannian homogeneous spaces, multiplicity-free spaces go
under several different names in the literature, such as weakly symmetric spaces
(introduced in 1956 by A. Selberg [S56]) or commutative spaces. A good source of
information is [W07].



354 BOOK REVIEWS

A Riemannian space X is said to be weakly symmetric if for every x P X and
every nonzero ξ P TxX there exists an isometry sx,ξ : X Ñ X, which might depend
on ξ and not only the point x, such that

(5.1) sx,ξpxq “ x and pdsx,ξqxpξq “ ´ξ .

In particular, every symmetric space is weakly symmetric. Denote again by IpXq

the group of isometries of X, G “ IpXqo and K “ Gx the stabilizer of x P X. Then
K is compact and X » G{K.

If the group G acts on a setY, then G acts on functions on Y by a¨fpyq “ fpa´1 ¨

yq. For an algebraist, the important space of functions would be the space of regular
functions or algebraically defined sheaves of functions onY. Invariant measures and
hence L2-spaces, are not algebraic objects because algebraic groups are in general
not even Hausdorff in the Zariski topology. In analysis the topology starts to play a
role, and the representations are realized in locally convex topological vector spaces
often constructed using invariant or quasi-invariant measures. It could be a long
section by itself to discuss some of the aspects of this interesting field, but the
only thing we need to know here is that if H Ă G is reductive, then there always
exists a G-invariant measure on X. Hence the left translation defines a unitary
representation on L2pXq. Harmonic analysis on general weakly symmetric spaces
is not as well developed as in the case of Riemannian symmetric spaces, and several
natural questions, including the explicit form of the Plancherel density, are open in
general.

If K is compact, then pG,Kq is said to be a Gelfand pair, or X “ G{K is
a commutative space, if the Banach convolution algebra L1pXqK is commutative
(or equivalently the algebra C8

c pXqK is commutative). There are other equiva-
lent definitions; one of the more algebraic definitions is that the action of G on
CrXs is multiplicity-free. The corresponding analytic definition is that the unitary
representation of G in L2pXq is multiplicity-free.

Assume that G Ă GC, H Ă G a compact subgroup, B Ă GC is a Borel subgroup,
and pπ, V q is an irreducible finite-dimensional representation of GC. We have the
following equivalent conditions for X to be commutative (see [T11] for the algebraic
side and [W07] for the analytic part):

Theorem. Let the notation be as above. Then the following are equivalent:

p1q X is a commutative space.
p2q X is weakly symmetric.
p3q The representation of G in CcpXq is multiplicity-free.
p4q The representation of G in CrXCs is multiplicity-free.
p5q XC is spherical.
p6q dimV HC ď 1.
p7q If χ : HC Ñ C˚ a homomorphism, then

dimtv P V | p@h P HCq πphqv “ χphqvu ď 1 .

p8q CrXsB “ C.
p9q HC has an open orbit in GC{B.

p10q There exists a g P GC such that gC “ Ad pgqhC ‘ b.

p11q There exists a Borel subalgebra rb in gC such that gC “ hC ‘ rb.
p12q For any GC variety Y and y P YHC , the closure of the GC orbit GC ¨ y has

finitely many GC-orbits.
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p13q For any GC variety Y and y P YHC , the closure of the GC orbit GC ¨ y has
finitely many B-orbits.

Examples of weakly symmetric spaces that are not symmetric include some circle
bundles over hermitian symmetric space; see [M71,N97] and [W07, Section 12.3].
The classification of reductive weakly symmetric spaces was completed by Yakimova
[Y02]; see also [Y05]. This history and individual contributions are well documented
in both [T11] and [W07].

6. The Book

In the following we assume for simplicity that G is a complex semisimple or
reductive algebraic group or a Lie group, although the book treats algebraic groups
over more general fields. Let B Ă G be a Borel subgroup (a maximal solvable
subgroup), and assume that X is an algebraic G-variety.

Basic definitions and results on algebraic homogeneous spaces can be found in
Chapter 1. In the second chapter the rank and the complexity are introduced. The
rank of a homogenous space G{H is zero if and only if H is a parabolic subgroup
or, equivalently, G{H is projective. The complexity is the minimal codimension of
B-orbits in X. In particular, X is of complexity zero, or a spherical variety, if and
only if X contains an open B orbit or, equivalently, such that G{B contains an
open H-orbit. Horospherical varieties, symmetric varieties, and toroidal varieties
are examples of spherical varieties.

Let pπ, V q be a finite-dimensional representation of G. Denote by PpV q the
projective space of lines in V . Then G acts on PpV q by g ¨ rvs “ rπpgqvs, where
v ÞÑ rvs denotes the canonical projection V Ñ P pV q. For example, SLp2,Cq acts
transitively on PpC2q and the the stabilizer of r1, 0s P PpCq is the Borel subgroup B
of upper-triangular matrices. Thus the rank of PpC2q is zero. The B-orbit through
the point r0, 1s is trz, ws | z, w P C w ­“ 0u, which is open and dense. Thus the
complexity is zero. Similar arguments hold for SLpn,Cq acting on PpCnq.

The two invariants, the rank and the complexity of X, are described in terms
of the geometry of the cotangential bundle T˚X. General methods for calculating
complexity and ranks, developed by Knop [K90] and Panyushev [P99], are dis-
cussed. The classification of homogeneous spaces of complexity ď 1 is given in the
case where X “ G{H with H reductive. A different approach to the classification
is given later in the book.

Two important problems related to equivariant embeddings ϕ : G{H Ñ X are
(a) the classification of possible embeddings and (b) the description of the or-

bit structure of the boundary ϕpG{HqzϕpG{Hq. The most important embeddings
are those where the boundary has finitely many orbits. In analysis on homoge-
neous spaces, one prefers embeddings where ϕpG{Hq is compact. One then studies
boundary value maps defined on natural function spaces on G{H and Poission-
type transforms from function spaces on the boundary to function spaces on G{H,
[KMOT78,O78,O83,OS80] and [S84, Ch. 6].

In Chapter 3 the important Luna–Vust theory of embeddings [LV83] is discussed.
The chapter includes an extension of this theory by D. A. Timashev [T97]. A very
readable introduction to the theory based on embeddings of spherical varieties can
be found in [K91]. The chapter ends with an overview on intersection theory. In the
next chapter the theory of G-invariant valuations of the function field of a G-variety
X is developed.
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Chapter 5 is devoted to homogeneous spaces and spherical varieties. Several spe-
cial cases like weakly symmetric spaces, symmetric spaces, and Gelfand pairs are
discussed. Various characterizations of spherical homogeneous spaces are proven,
and the importance of those space in representation theory is well presented. This
chapter contains a detailed discussion on toroidal embeddings, wonderful varieties,
the Demazure embedding (or wonderful compactification), and combinatorial clas-
sification of spherical subgroups and wonderful varieties.

As an example of a wonderful compactification, let H be a semisimple Lie group
and let G “ HˆH as in Section 3. Let pπ, V q be a representation ofH. Then G acts
on EndpV q by pa, bq ¨ T “ πpaqTπpbq´1. The operator T is H-invariant if and only
if T is an H-intertwining operator. Furthermore, an irreducible representation of
G has an H-fixed vector if and only if it is of the form EndpV q for some irreducible
representation of H. In that case, Schur’s Lemma implies that EndpV qH “ C id,
where id is the identity operator. Thus we have an embedding G{H ãÑ PpEndpV qq

given by gH ÞÑ rg ¨ ids. The variety X “ G ¨ rids is compact and contains H as an
open dense orbit. It is the wonderful compactification of H; see [EJ08].

For another example of a wonderful compactification, assume that X “ G{H is
spherical and that H “ NGpHq. Let k “ dim h. Then we have a G-equivariant map
ϕ : X Ñ Grkpgq given by aH ÞÑ Ad paqh. The closure of ϕpXq is the Demazure
embedding ([T11, Prop. 30.7]).

The book is well and clearly written. Sometimes the explanation is quite short
for a nonexpert, but then the reader can always find exact references to the origi-
nal work. The book includes several important classifications of special classes of
homogeneous spaces and equivariant embeddings. The material is often clarified
by well-chosen examples.

Representation theory of reductive groups plays an important role throughout
the book, which makes it a good source for spherical representations, decomposi-
tions of tensor products, and restrictions. This is a book on algebraic groups, so
the representations are usually finite dimensional or on spaces of regular functions
on G-varieties. Unitarity and L2-spaces, important in analysis, play no role here.

The choice of topics is motivated by the author’s interest and work, but the book
discusses extensively the work of others, including Brion, Knop, Luna, Vinberg,
Vust, and Yakimova. The book contains an extensive list of references, both to
original research articles as well as to books and monographs. It is surely a welcome
guide for nonexperts who want to enter the subject and a good reference for the
specialist.
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(1983), no. 2, 186–245, DOI 10.1007/BF02564633 (French). MR705534 (85a:14035)

[M92] George W. Mackey, The scope and history of commutative and noncommutative har-
monic analysis, History of Mathematics, vol. 5, American Mathematical Society, Prov-
idence, RI, 1992. MR1171011 (93g:22006)

[M71] Hans Maaß, Siegel’s modular forms and Dirichlet series, Lecture Notes in Mathemat-
ics, vol. 216, Springer-Verlag, Berlin, 1971. MR0344198 (49 #8938)

[N97] Hiêú Nguyêñ, Weakly symmetric spaces and bounded symmetric domains, Transform.
Groups 2 (1997), no. 4, 351–374, DOI 10.1007/BF01234540. MR1486036 (98k:53067)
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