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MR0082103(18,498d) 55.0X

Milnor, John

On manifolds homeomorphic to the 7-sphere.
Annals of Mathematics. Second Series 64 (1956), 399-405.

Until the appearance of this paper by Milnor it was thought probable that a given
topological manifold might possess at most one differentiable structure. Now it is
seen that a manifold as simple as the seven sphere S” possesses several inequivalent
differentiable structures.

Milnor starts out by considering the class of compact oriented differentiable
7-manifolds M7 such that the third and fourth cohomology groups with integer
coefficients H3(M7) and H*(MT), are zero. For every such manifold he defines an
invariant A(M7) which is an integer modulo 7. He then defines several differentiable
structures on the 7-sphere and proves that his invariant A is not the same for all of
these structures.

The definition of the invariant A(M7) rests on Thom’s theory of “cobordisme”
[Comment. Math. Helv. 28 (1954), 17-86; MR0061823|(15,890a)], where it is proved
that every compact 7-manifold M7 is the boundary of an 8-manifold B®. Let
p € H7(M7) be an orientation, and v € Hg(B® M7) an orientation such that
Ov = p. Define 7(B®) to be the index of the quadratic form on H*(B®, M7) given
by the formula o — (v,a). Let p; € H*(B®) be the first Pontrjagin class, and
p1 € H*(B8, M7) the unique class which maps into p;(H*(M7) = H*(M7) = 0).
Define a Pontrjagin number ¢(B®) to be (v,p;2).

Milnor’s first theorem may now be stated. Theorem: The residue class of
2q(B®) — 7(B®) modulo seven does not depend on the choice of the manifold BS.

Having proved the preceding, he defines the invariant A(M7) to be the residue
class of 2q(B®) — 7(B®), and it remains to consider examples of 7-manifolds. The
examples in question are 3-sphere bundles over the 4-sphere with the rotation group
SO(4) as structural group. Let R* be 4-dimensional euclidean space, and consider
it as the space of quaternions. Define f, ;: S* — SO(4) by fp ;(u)v = uMvu |, where
the multiplication on the right is that of the quaternions. For each odd integer k,
let M} be the total space of the 3-sphere bundle over S* determined by f3, ;, where
h+j=1,h—j5=k.

The following theorem is now proved.

Theorem: The manifold M;” is homeomorphic with the seven sphere, and the
invariant A(M}7) is the residue class module 7 of k2 —1, and consequently if k2 —1 #
0 mod 7 the manifold M;,” carries a differentiable structure which is not equivalent
to the usual one on the sphere S7.

It is also proved by the author that either (a) there exists a closed topological 8-
manifold which does not possess any differentiable structure, or (b) the Pontrjagin
class p, of an open 8-manifold is not a topological invariant.

J. C. Moore
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MRO0110107 (22 #990) 57.00

Milnor, John

Differentiable structures on spheres.

American Journal of Mathematics 81 (1959), 962-972.

In a previous paper [Ann. of Math. (2) 64 (1956), 399-405; MR0082103(18,498d)]
the author produced differentiable manifolds which are homeomorphic but not dif-
feomorphic to the 7-sphere S”. Use was made of the fact that S3 is parallelizable.
Thus it was not clear a priori that similar examples could be produced in dimensions
#7,15.

In this paper a general method of constructing differentiable manifolds which
are topological spheres is exhibited. The method consists in matching D™+! x S
with S™ x D™+ by a suitable diffeomorphism f: ™ x 8™ — S™ x S™ of the
boundaries. (DY is the ¢-disk in euclidean g-space.) An important special case
of such diffeomorphisms f is obtained from differentiable maps fi: S™ — SO,41,
f2: 8™ — SO,,11 of spheres into rotation groups by setting ¥’ = fi(z) - y and
x = fo(y') - o/, where (2',y') = f(z,y). The resulting differentiable (m + n + 1)-
manifold is denoted by M(f1, f2), and a simple sufficient condition on f1, fa is given
for M(f1, f2) to be homeomorphic to S™+n+t,

An invariant A (of the J-equivalence class) of M (fi, f2) is constructed and turns
out to be of interest for dimensions of the form m = 4r — 1, n = 4(k —r) — 1.
(Hence, m +n + 1 = 4k — 1.) The value A(M(f1, f2)) is computed explicitly in
terms of the Pontryagin classes of the SOy(;_,)-, resp. SOy,.—, bundles over S4r,
resp. S**=7) defined by fi, resp. fa, as characteristic maps. These Pontryagin
classes in turn are known by a theorem of R. Bott [Bull. Amer. Math. Soc. 64
(1958), 87-89; MR0102804 (21 #1590)]. If M(f, f2) is diffeomorphic to S*~1
then A(M(f1, f2)) = 0. Thus every (4k — 1)-dimensional M (f1, f2) homeomorphic
to S*~1 with a A different from zero yields a non-standard differentiable structure
on S4—1,

The problem of evaluating the possible values of A (for a given k) is
shown to amount to solving the following number-theoretic problem. Let s =
22k (22k=1 _ 1) B, /(2k)!, where B, is the kth Bernoulli number. Does there exist
an integer r satisfying

k/3<r<k/2,
such that the greatest odd factor di, in the denominator of
2r — D2k —r) — D!spskp—_r/sk

is > 17 If such an r exists, the number dj, , is shown by the author to be a lower
bound for the number of distinct differentiable structures on S%*~1. The author
has checked that the answer to the above question is affirmative for £ = 2 and
4 < k < 14. For instance, ds 2 = 73, showing that S19 has at least 73 distinct
differentiable structures. Similarly, S3' is shown to possess at least 16,931,177
distinct differentiable structures.

As usual the author’s exposition is excellent.

{Reviewer’s note: The above number-theoretic formulation is obtained by sup-
plementing Lemma 5 of the paper under review with the statement on lines 9 and
8 from the bottom of page 348 of the paper by A. Borel and F. Hirzebruch, #988
above. }

M. A. Kervaire
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MRO0119209 (22 #9975) 55.00

Milnor, J.

On the cobordism ring Q* and a complex analogue. I.
American Journal of Mathematics 82 (1960), 505-521.

In this paper the author proves that the cobordism groups ¢ defined by Thom
[Comment. Math. Helv. 28 (1954), 17-86; MR0061823|(15,890a)] have no odd
torsion. Thom proved that the cobordism groups §2; are isomorphic to the stable
homotopy groups 7;+, (M (SO,,)) of certain “Thom spaces” M(SO,,), and it is these
stable homotopy groups which the author handles. Analogous Thom spaces M (U,,)
can be defined starting from the unitary group; the author’s methods apply equally
well to the stable homotopy groups m;12,(M (U,)); we are promised that in part II
of this paper these groups will be interpreted as “complex cobordism groups”. For
the moment he shows that they have no torsion and determines their structure.

The author handles his stable homotopy groups by using a spectral sequence
due to the reviewer [ibid. 32 (1958), 180-214; Bull. Soc. Math. France 87 (1959),
277-280; MRO0096219| (20 #2711); 22 #8500]. If X and Y are two finite CW-
complexes, then this spectral sequence serves to relate the stable track groups
{X,Y}, to the Ext groups Exts**(H*(Y;Z,), H*(X;Z,)). Here A denotes the
mod p Steenrod algebra, and the cohomology groups H* are regarded as modules
over A. More generally, it is possible to replace Y by an object in a suitable category
of stable objects. This is convenient here, because it enables one to replace the
sequence of Thom spaces M (SO,,) by a single “stable Thom object” M(SO). The
cobordism group Q" is then isomorphic to the stable track group {S° M(SO)},,
and in principle this can be computed by the spectral sequence, taking X to be the
sphere S°.

In an earlier draft of this paper this computation was actually carried through.
However, conclusions about the absence of torsion follow more easily from the
following. Theorem 1: If H*(Y; Z,) is a free A/(Qo)-module with even-dimensional
generators, and if C,(Y; Z) satisfies a finiteness condition, then the stable groups
{S°,Y},, contain no p-torsion. In this theorem, (Qo) denotes the two-sided ideal in
A generated by the Bockstein boundary 3,. This theorem is proved very elegantly
by taking X to consist of a circle with a 2-cell attached by a map of degree d. In
this case everything in the spectral sequence is even-dimensional, and consequently
{X, Y} is zero for m odd. On the other hand, if some {S° Y},, contained p-
torsion, then {X, Y}, would have to be non-trivial for two consecutive values of n;
this follows from the universal coefficient theorem for expressing {X, Y },, in terms
of {S% Y},.

It remains, of course, to show that H*(M(SO); Z,) and H*(M(U); Z,) are free
A/(Qp)-modules with even-dimensional generators. This is done by adapting the
argument which Thom used in the case p = 2 to show that H*(M(O); Z») is a free
A-module.

The paper is arranged as follows. After an introduction, § 1 contains necessary
lemmas concerning the structure of the Steenrod algebra A, of A/(Qo), and of
modules over these. These lemmas are based on the author’s earlier work in Ann.
of Math. (2) 67 (1958), 150-171 [ MR0099653 /(20 #6092)]. § 2 is about stable
objects, the spectral sequence, and Theorem 1. § 3 treats the particular stable
object M(U), its cohomology and stable homotopy groups. § 4 indicates how
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M(SO) can be treated by trivial amendments of the details in § 3. The paper
concludes with applications and suggestions for further research.
One regrets that this significant paper could not have appeared earlier, in some

form; but one can only applaud the elegance and clarity of the final version.
J. F. Adams

MR0148075|/(26 #5584) 57.10

Milnor, John W.

Groups of homotopy spheres. 1.

Annals of Mathematics. Second Series 77 (1963), 504-537.

The authors aim to study the set of h-cobordism classes of smooth homotopy
n-spheres; they call this set ©,,. They remark that for n # 3,4 the set 9,, can
also be described as the set of diffeomorphism classes of differentiable structures on
S™; but this observation rests on the “higher-dimensional Poincaré conjecture” plus
work of Smale [Amer. J. Math. 84 (1962), 387-399], and it does not really form
part of the logical structure of the paper. The authors show (Theorem 1.1) that
O,, is an abelian group under the connected sum operation. (In § 2, the authors
give a careful treatment of the connected sum and of the lemmas necessary to prove
Theorem 1.1.)

The main task of the present paper, Part I, is to set up methods for use in Part
I1, and to prove that for n # 3 the group ©,, is finite (Theorem 1.2). (For n = 3 the
authors’” methods break down; but the Poincaré conjecture for n = 3 would imply
that ©3 = 0.) We are promised more detailed information about the groups ©,, in
Part II.

The authors’ method depends on introducing a subgroup bP,, 11 C 0,; a smooth
homotopy n-sphere qualifies for bP,, 11 if it is the boundary of a parallelizable man-
ifold. The authors prove in § 4 that the quotient group ©,,/bP, 1 is finite (Theo-
rem 4.1). More precisely, they prove that bP, 1, is the kernel of a homomorphism
p': ©, — II,,/ImJ, where II,, is the stable group m,;%(S*) and ImJ is the im-
age of the classical J-homomorphism. § 4 ends by giving (explicitly) the groups
©,,/bPy 1 for n < 8 and the groups bP,, 1 for n < 19, referring the reader to Part
IT for details.

The proof given in § 4 depends on results in § 3. In this section, Theorem 3.1
states that every homotopy sphere is S-parallelizable, that is, its tangent bundle
is stably trivial. The proof uses previous work of the same authors, and involves
quoting information about the J-homomorphism. The remaining lemmas in § 3
concern the stability of bundles.

It remains to prove that the groups bP,; are finite. The authors divide two
cases. If n is even they prove that the groups bP, 1 are zero. That is, in §§ 5, 6
they prove (Theorem 5.1): If a smooth homotopy sphere of dimension 2k bounds
an S-parallelizable manifold M, then it bounds a contractible manifold. The proof
consists of simplifying M by surgery [J. Milnor, Proc. Sympos. Pure Math., Vol. II1,
pp. 39-55, Amer. Math. Soc., Providence, R.I., 1961; MR0130696| (24 #A556)].
The details are technical, and appear to be comparable with work of C. T. C. Wall,
which also results in a proof of the same theorem [Trans. Amer. Math. Soc. 103
(1962), 421-433; MR0139185//(25 #2621)]. § 5 completes the proof for k even; the
case in which k is odd is treated in § 6. Here the authors introduce the notion of
a “framed manifold”, that is, a smooth manifold M plus a given trivialisation of
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the stable tangent bundle of M. The authors arrange to carry this extra structure
through the technique of surgery, making use of it as they go.

The case in which n is odd is treated in §§ 7, 8. It is shown that the groups
bPyy, are finite cyclic, and for k odd they are either 0 or Zy (Corollary 7.6; Theorem
8.5). The case in which k is even is dealt with in § 7. Here the only obstruction
to performing surgery on M is the signature or index o(M) (Lemma 7.3). This
leads to the following result (Theorem 7.5). Let ¥; and X5 be homotopy spheres
of dimension 4m — 1 (m > 1) which bound S-parallelizable manifolds M; and M.
Then ¥; and Y9 and h-cobordant if and only if o(M;) = o(Ms) mod o,,. Here o,,
is a certain positive integer. § 7 concludes by giving explicit information about the
integer o, and the order of the groups bPy,, and O4,,_1. The reader is referred to
Part II for details.

The cases k = 1,3, 7 are exceptional; the group bPsy, is then zero (Lemma 7.2).
The case “k odd# 1,3,7” is studied in § 8. In this case the only obstruction to
performing surgery on M is an “Arf invariant” lying in Z5. The authors conjecture
that in this case the group bPsy is always Z5 rather than 0; but this is known only
for K =5,9.

J. F. Adams

MRO0161345 (28 #4553a)| 57.30; 57.20
Milnor, J.
Topological manifolds and smooth manifolds.

Proc. Internat. Congr. Mathematicians (Stockholm, 1962), 132138,
Inst. Mittag-Leffler, Djursholm, 1964.

MRO0161346 (28 #4553b) 57.30; 57.20

Milnor, J.

Microbundles. 1.

Topology. An International Journal of Mathematics 3 (1964), 53—-80.

In this paper the author proves the results stated in his lecture to the Inter-
national Congress of Mathematicians, 1962 [#4553a]. We refer to this lecture as
[L].

The notion of a “microbundle” (§§ 1, 2) is essentially obtained from that of a
vector bundle by (i) restricting attention to a neighbourhood of the zero cross-
section, and (ii) abandoning all conditions of “linearity”, so that one uses only
topological conditions. This notion is introduced so that one may assign (§ 2) to
each topological manifold a tangent microbundle, analogous to the tangent bundle
of a smooth manifold. Suppose given a smooth manifold M; then on the one
hand we can first take its tangent vector bundle £, and then take the microbundle
underlying &; on the other hand we can first take the topological manifold |M|
underlying M, and then take the tangent microbundle of |M|. Tt is proved that the
two results agree (Theorem 2.2 = Theorem 1 of [L]).

Much of the theory of vector bundles carries over to microbundles. Thus, we have
induced microbundles (§ 3) and Whitney sums (§ 4). It is stated in § 3 that if two
maps are homotopic, then the corresponding induced microbundles are isomorphic
(Theorem 3.1 = Theorem 3 of [L]). The proof, which requires some work, is given
in § 6.
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One can introduce a factor kr,p based on microbundles, analogous to the factor
ko = K based on vector bundles, and one has a natural transformation ko — krop
(§ 4; Corollary 4.3 = Theorem 4 of [L]). For this purpose the key result (Theorem
4.1) is that any microbundle z over a finite-dimensional simplicial complex B admits
an “inverse” y such that the Whitney sum x4y is trivial. The proof, which requires
some work, is given in §§ 4, 7.

Next, one tries to introduce normal microbundles. If we have topological man-
ifolds M C N, then in general M does not have a normal microbundle. However,
M has a normal microbundle in N x R? for sufficiently large ¢ (Theorem 5.8). The
proof takes some work (§ 5). A normal bundle n is related in the usual way to the
two tangent bundles: ty; +n = ty.

This leads to results on the smoothing problem. Theorem 5.12, which corre-
sponds to Theorem 2 of [L], is sharpened to give Theorem 5.13: Let ¢ be a vec-
tor bundle over the topological manifold M; then some product M x R? can be
smoothed so as to have tangent bundle isomorphic to £ plus a trivial bundle if and
only if the homomorphism ko (M) — krop(M) carries the class of € to the class of
the tangent microbundle ¢;.

It is therefore interesting to examine the difference between ko (X) and krop(X).
The fact is that the natural transformation ko (X) — krop(X) need be neither mono
nor epi (Lemmas 9.1 and 9.4 = Theorem 5 of [L]). The key result (Theorem 8.1)
states that the image in krop(S7) of the generator in ko(S%") is divisible by a
certain integer (whose definition involves the Bernoulli numbers). Heavy hammers
are needed for the proof (§ 8); the author uses the methods of Milnor and Kervaire
[“Groups of homotopy spheres”, I, in preparation] and Wall [Ann. of Math. (2) 75
(1962), 163-189; MR0145540 (26 #3071)]; he also quotes results from Hirsch, from
Smale and from the reviewer.

Finally, the following results are proved in § 9 by exploiting the fact that ko and
krop are different. (i) The tangent vector bundle of a manifold is not a topological
invariant (Theorem 9.2 = Corollary 1 of [L]). (ii) The Pontryagin classes of an
open manifold are not topological invariants (Corollary 9.3). (iii) There exists a
topological manifold M such that no product M x M’ can be smoothed (Theorem
9.5 = Corollary 2 of [L]).

This paper is clearly required reading for any worker in the field.

J. F. Adams

MRO0196736 (33 #4922) 55.40; 55.25

Milnor, J.

Whitehead torsion.

Bulletin of the American Mathematical Society 72 (1966), 358—426.

This excellent reworking and exposition will earn the gratitude of many topolo-
gists.

The author begins with a brief historical introduction to “torsion” in the sense
of Reidemeister, Franz and de Rham, and in the sense of J. H. C. Whitehead. The
actual work begins with algebra. In § 1 the group K;(A) is defined for any associa-
tive ring A with unit [following Bass, same Bull. 70 (1964), 429-433; MR0160825
(28 #4035); Inst. Hautes Etudes Sci. Publ. Math. No. 22 (1964), 5-60; MR0174604
(30 #4805)]. The author also gives examples and a survey of theorems. This sort of
algebra continues in § 6 and two appendices. In § 6 the Whitehead group Wh(r) is
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defined for any multiplicative group , as a quotient of K;(Zx). Again, the author
gives examples and a survey of theorems. The first appendix shows the relationship
between the groups Kj(A) and the “congruence subgroup theorem”, that is, the
proposition proved for the case A = Z by Bass, Lazard and Serre [ibid. 70 (1964),
385-392; MR0161913||(28 #5117)]. The second appendix is intended to motivate
the notation K7 (A); it introduces the groups Ky(A) and gives the usual examples,
with a survey of theorems.

The object of §§ 2-5 is to define the torsion invariant for suitable chain complexes.
Suppose given a chain complex C' of A-modules such that each chain group C; and
each homology group H; is A-free with a given base; suppose, also, that each group
of boundaries B; is free. Then, in § 3, the torsion 7(C) of C is defined; it is an
element of K;(A). (To define K(A), observe that the element -1 in A gives an
element of order 2 in K;(A); then K;(A) is the corresponding quotient of K;(A).)
The definition requires some elementary constructions with bases in free modules,
and these are provided in § 2. § 3 also contains the following property of 7(C):
Ifo— C" — C — C” — 0 is an exact sequence of chain complexes (as above),
then 7(C) = 7(C")+7(C")+7(H), where H is the usual exact homology sequence,
considered as a chain complex.

The object of § 4 is to remove the assumption that each group of boundaries
B is free. This is done by observing that B; is at least “stably free”. (A module
M is “stably free” if M @ F is free for some F.) The notion of “stable base” is
introduced, and it is observed that the construction and results of § 2 generalise to
this case. Hence, the constructions and results of § 4 also generalise.

The object of § 5 is to prove an algebraic theorem which can later be applied to
show that torsion is invariant under subdivision of a complex. The situation is the
analogue, for torsion, of the computation of homology from “simplex blocks”.

At this point, the author passes from algebra to geometry. In § 7 he defines
the Whitehead torsion 7(f) whenever f: X — Y is a homotopy equivalence be-
tween finite CW-complexes. He also obtains properties of the torsion, for example,
7(gf) = 7(g9) + ¢g*7(f). The case of a general equivalence f: X — Y is handled by
reducing it to the case in which f is an inclusion map; so, one has to consider a
CW-pair K, L. One takes the universal covering pair K , L and applies §§ 3, 4 to
its chain complex. (The ring A becomes the group ring of the fundamental group
7.) It is proved that the resulting torsion 7(K, L) is invariant under subdivision of
(K, L).

In § 8 the author discusses variants of the definition. First return to the algebraic
context, and suppose given a homomorphism h: A — A’ of rings and a chain
complex C over A. Then one can form a chain complex C' = A’ ® C over A’. It
may happen that C’ is acyclic, although C' is not. In this case one can define the
torsion 7(C") starting from a preferred base in C, without needing any preferred
base in homology. When this remark is applied to the topological context, it enables
one to dispense with the assumption that i: L. — K is a homotopy equivalence, at
the price of introducing h. In the first variant of the method, & is a one-dimensional
complex representation of 7. This yields the original Reidemeister-Franz torsion;
examples are given. In the second variant, h is an n-dimensional real representation
of m. A third variant is given in § 12.

In § 9 the author moves on to smooth manifolds, and defines the torsion 7(W, M)
of an h-cobordism W between M and M’. In § 10 he quotes the thoerem that in
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dimensions > 6, such an h-cobordism is a product if and only if 7(W, M) = 0.
This motivates the duality formula relating 7(W, M) and 7(W, M’), which is then
proved. In § 11 he quotes and reproves the theorem that in dimensions > 6, any
element 7 in Wh(m;(M)) can be realised as the torsion of some h-cobordism. It
follows that h-cobordisms of dimension > 6 are classified by their torsion (11.3).
Applications are given.

Finally, in § 12 the author gives an extensive survey of results on lens spaces.
J. F. Adams



