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POINCARÉ RECURRENCE AND NUMBER THEORY:

THIRTY YEARS LATER

BRYNA KRA

Immediately following the commentary below, this previously pub-
lished article is reprinted in its entirety: H. Furstenberg, Poincaré
recurrence and number theory, Bull. Amer. Math. Soc. (N.S.) 5
(1981), no. 3, 211–234.

Hillel Furstenberg’s 1981 article in the Bulletin of the American Mathematical
Society gives an elegant introduction to the interplay between dynamics and number
theory, summarizing the major developments that occurred in the few years after
his landmark paper [21]. The field has evolved over the past thirty years, with
major advances on the structural analysis of dynamical systems and new results in
combinatorics and number theory. Furstenberg’s article continues to be a beautiful
introduction to the subject, drawing together ideas from seemingly distant fields.

Furstenberg’s article [21] gave a general correspondence between regularity prop-
erties of subsets of the integers and recurrence properties in dynamical systems, now
dubbed the Furstenberg Correspondence Principle. He then showed that such re-
currence properties always hold, proving what is now referred to as the Multiple
Recurrence Theorem. Combined, these results gave a new proof of Szemerédi’s
Theorem [45]: if S ⊂ Z has positive upper density, then S contains arbitrarily long
arithmetic progressions. This proof led to an explosion of activity in ergodic theory
and topological dynamics, beginning with new proofs of classic results of Ramsey
Theory and ultimately leading to significant new combinatorial and number theo-
retic results. The full implications of these connections have yet to be understood.

The approach harks back to the earliest results on recurrence, in the measurable
setting and in the topological setting. A measure preserving system is a quadruple
(X,B, μ, T ), where X denotes a set, B is a σ-algebra on X, μ is a probability
measure on (X,B), and T : X → X is a measurable transformation such that
μ(T−1(A)) = μ(A) for all A ∈ B. Poincaré Recurrence states that if (X,B, μ, T ) is
a measure preserving system and A ∈ B with μ(A) > 0, there exists n ∈ N such
that μ(A ∩ T−nA) > 0. A (topological) dynamical system is a pair (X,T ), where
X is a compact metric space and T : X → X is a continuous map. One can show
that any such topological space admits a Borel probability measure that preserves
T . In particular, Poincaré Recurrence implies recurrence in the topological setting.
Birkhoff [13] gave a direct proof of this, showing that in any dynamical system
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(X,T ), there exists x ∈ X such that Tnkx → x for some sequence of integers
nk → ∞.

Birkhoff’s recurrence was generalized by Furstenberg and Weiss [26], who showed
that given a dynamical system (X,T ) and an integer � ≥ 1, there exists x ∈ X such
that Tnkx → x, T 2nkx → x, . . . , T �nkx → x for some sequence of integers nk → ∞.
Using an analog of the Furstenberg Correspondence Principle adapted to topo-
logical dynamical systems, this in turn implies van der Waerden’s Theorem: in
any finite partition of the integers, some piece contains arbitrarily long arithmetic
progressions. Topological methods were then used to prove numerous other par-
tition results, including Schur’s Theorem, a multidimensional version of van der
Waerden’s Theorem, and the Hales-Jewett Theorem. As a sample of these tech-
niques, Furstenberg gives a proof of a polynomial result, shown independently by
Sàrkőzy [44]: in any finite partition of the integers, some piece contains two integers
which differ by a square. Vast generalizations of such polynomial results were given
by Bergelson and Leibman ([7] and [8]).

In the measure theoretic setting, Furstenberg proved a far-reaching generaliza-
tion of the Poincaré Recurrence Theorem in his Multiple Recurrence Theorem: if
(X,B, μ, T ) is a measure preserving system, � ≥ 1 is an integer, and A ∈ B has
positive measure, then there exists n ∈ N such that

(1) μ(A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−�nA) > 0.

The study of which iterates n are possible has received significant attention (poly-
nomial iterates [7], generalized polynomials [12], sequences arising from Hardy-
Fields [17], shifts of the primes [7] and [18]), and this result has been generalized
in numerous other ways (see for example [25] and [40]). Many of these results have
yet to be proved using methods that do not rely on dynamics.

Via the Furstenberg Correspondence Principle, the analog of equation (1) with
the transformations T, T 2, . . . , T � replaced by commuting transformations T1, T2,
. . . , T� leads to a multidimensional Szemerédi Theorem, and this and generaliza-
tions were proven by Furstenberg and Katznelson ([23] and [24]). This too has
been studied further, including restrictions on iterates (see [7], [11], and [19]) and
generalizations to other groups (for example [41]). Again, many of these results
have yet to be proven via combinatorial methods.

Using ergodic theory, the natural approach to prove positivity of an expression
such as that in equation (1) is to take the average for 1 ≤ n ≤ N and show that
the lim inf of this average is positive as N → ∞. More generally, one can consider
convergence of averages

(2)
1

N

N∑

n=1

f1(T
a1(n)
1 x)f2(T

a2(n)
2 x) · · · f�(T a�(n)

� x),

where (X,B, μ) is a probability space; T1, T2, . . . , T� : X → X are commuting,
measure preserving transformations; f1, f2, . . . , f� ∈ L∞(μ); and the exponents
a1(n), a2(n), . . . , a�(n) are sequences of integers. The existence of the limit in
L2(μ) and the study of the structures controlling the limiting behavior of such
averages have received much attention within ergodic theory and have more re-
cently led to new number theoretic results. The case when all the transformations
Ti are equal with linear exponents is fully understood, with partial results (for
example in [21] and [15]) and the complete convergence (in [32]). These results
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have been generalized and viewed in other ways, with further studies of the linear
case [49], polynomial iterates ([27], [33] and [41]), commuting transformations ([16]
and [46]), restrictions on the iterates for commuting transformations (see for exam-
ple [36], [14], [1], and [2]), nilpotent group actions [9], and the corresponding average
for flows (see [43], [10] and [3]). For a single transformation, we have a complete
understanding in [32] of the structures controlling convergence (with a topological
analog in [35]). The general convergence and associated structures controlling such
averages are yet to be understood.

The connections to number theoretic and combinatorial problems continue to
grow, particularly with the spectacular breakthrough of Green and Tao [28] showing
that the primes contain arbitrarily long arithmetic progressions. While there is
no explicit use of ergodic theory in Green and Tao’s proof, the methods used by
Furstenberg [21] influence the approach. In more recent work on asymptotics of the
number of progressions in the primes ([29], [30], and [31]) and other connections
between ergodic theory and number theory (see, for example [6], [34], and [20]),
the structures controlling the averages of the form in equation (2) play a prominent
role.

This is only a brief overview of current areas of research with origins in the
work surveyed in Furstenberg’s 1981 Bulletin article. An extensive introduction to
the field is contained in Furstenberg’s book [22]. There are more recent surveys
on recurrence, ergodic Ramsey Theory, convergence problems, and connections to
number theory (see for example [4], [5], [42], [37], [38], [39], [47], and [48]) that are
natural continuations of the topics reviewed in Furstenberg’s 1981 article.
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