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The use of geometry to study and explain the properties of finite groups has a
long history, going back at least to the construction by Tits in the 1950s of ge-
ometries associated to Chevalley groups. The book being reviewed [BS] is centered
around the connections between the sporadic simple groups and associated geomet-
ric structures, with a particular focus on applying such structures to compute the
cohomology of those groups.

1. Incidence geometries. The idea of an incidence geometry, and of associating
such geometries to simple groups, was first formulated by Tits in the 1950’s [Ti].
Fix a finite set I. A geometry over I is a triple (Γ, τ, ∗), where Γ is a set (the
objects in the geometry), τ : Γ −−−→ I is a map, and ∗ is a symmetric, reflexive
incidence relation on Γ. The only condition these must satisfy is that for x, y ∈ Γ,
τ (x) = τ (y) and x ∗ y imply x = y. One thinks of I as the set of types of objects
in the geometry, and the condition says that two distinct objects of the same type
cannot be incident.

A flag in a geometry (Γ, τ, ∗) over I is a set of pairwise incident objects. For
∅ �= J ⊆ I, a flag of type J is a flag which contains one object of type j for each
j ∈ J .

We give two of the motivating examples of geometries. First, fix a field K
and a finite dimensional K-vector space V with dim(V ) = n < ∞. Set I =
{1, 2, . . . , n− 1}. Let Γ be the set of all proper nonzero vector subspaces of V , and
define τ : Γ −−−→ I by setting τ (W ) = dim(W ). For a pair of subspaces W,X ⊆ V ,
W ∗X if W ⊆ X or X ⊆ W .

Thus the objects in the geometry are the (linear) lines, planes, 3-spaces, etc., in
V , or equivalently, the points, lines, planes, etc., in the projective space P (V ). A
flag is a sequence of subspaces each contained in the next. The projective linear
group P AutK(V ) ∼= PGLn(K) acts on this geometry by acting on the set of objects
while preserving type and incidence.

As a second example, let G be any group, and fix a set of nontrivial proper
subgroups {G1, . . . , Gk}, no two of which are G-conjugate. To make it more inter-
esting, we also assume that for i �= j, Gi is not G-conjugate to a subgroup of Gj .
Let Γ be the disjoint union of the sets G/Gi of left cosets gGi. Set I = {1, . . . , k}
and τ (gGi) = i. Two objects (cosets) X,Y ∈ Γ are incident if X ∩ Y �= ∅. The
group G acts on this geometry via the usual left action on each G/Gi. A flag in
the geometry is a set of cosets any two of which have nonempty intersection.

In fact, the first example is (isomorphic to) a special case of the second. For
any given V as above, fix a maximal flag 0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vn−1 ⊆ V ,
where dim(Vi) = i. Set G = P AutK(V ) ∼= PGLn(K), and let Gi ≤ G be the
subgroup of all classes of automorphisms which send Vi to itself (not necessarily
by the identity). Then for g ∈ G, gGi is the set of all elements of G which send
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Vi to g(Vi) (where automorphisms are composed from right to left). This defines

a bijection between the nontrivial proper subspaces V and
∐k

i=1 G/Gi: a bijection
which clearly preserves types and which also preserves the incidence relations.

2. Geometries for finite simple groups. By a geometry for a group G, we mean
a geometry Γ upon which G acts by permuting its objects, and in a way which
preserves types and incidence. The geometry is p-local if the stabilizer subgroups
of the objects in Γ are all p-local subgroups of G; i.e., normalizers of nontrivial
p-subgroups of G. Sometimes one also requires that G act transitively on the set
of all flags of a given type J .

To each geometry Γ, one associates a simplicial complex |Γ|—the geometric real-
ization of Γ—whose vertices are the objects of Γ, and where a set of vertices spans
a simplex if and only if the corresponding objects are pairwise incident. As will
be described below, the properties of this space |Γ| (such as connectivity, homol-
ogy, fundamental group) play an important role when using the geometry to get
information about the group.

For example, when G is a finite group of Lie type in characteristic p, then the
Tits building for G is associated to a natural p-local geometry for G. The objects
of the geometry are the maximal parabolic subgroups—the maximal subgroups
which contain Borel subgroups—where two such subgroups are incident if their
intersection contains a Borel subgroup. The flags in the geometry correspond to
the simplices in the building.

As one example of how this is used, we mention the Solomon–Tits theorem. In
the form shown in [So, Theorems 1–2], this says that the building (or geometric
realization of the geometry) associated to a group G with BN pair of rank ≥ 2 has
a unique nonzero reduced homology group (over Z), and that after tensoring with
Q, this is isomorphic to the Steinberg representation for G.

The systematic study of geometries for sporadic simple groups was begun by
Buekenhout [Bu], and continued by Ronan and Smith [RS] and Ivanov [Iv1], among
others. Ronan and Smith gave examples of 2-local geometries for twelve of the
groups, including M22, M24, the Conway groups Co2 and Co1, and the monster and
baby monster. These authors also showed how Dynkin diagrams can be associated
to geometries for sporadic groups, by analogy with those for Lie groups.

Geometries of certain sporadic groups played an important role in constructing
computer-free uniqueness proofs of several of the sporadic groups. A general frame-
work for doing this was set up by Aschbacher and Segev [AS1, AS2]. Their general
result (cf. [AS2, Theorem 1]) is stated in terms of graphs, but in the applications
(cf. [AS2, § 7–8], the graphs they use are mostly associated to geometries. Part
of their procedure involves the fundamental group of the geometric realization of
this graph or geometry; for example, showing it is simply connected. (See, e.g.,
Theorem 1 and Section 8 in [AS2]. A graph is triangulable in their terminology
if its clique complex—the largest simplicial complex with the same 1-skeleton—is
simply connected.)

The geometries studied by Benson and Smith [BS] all have the following form.
Let I be a finite set of indices, fix Hi ≤ G for each i ∈ I, and set HJ =

⋂
j∈J Hj

for each ∅ �= J ⊆ I. Let ΔHI
be the geometry whose objects are the subgroups

G-conjugate to some Hi, and where a subgroup of type i (i.e., conjugate to Hi)
is incident to a subgroup of type j if their intersection is G-conjugate to Hij . In
all cases, they also assume that the geometry is flag transitive: if J ⊆ I, Kj is
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G-conjugate to Hj for each j ∈ J , and the Kj are pairwise incident, then there
is g ∈ G such that gKjg

−1 = Hj for each j ∈ J . (So in particular,
⋂

j∈J Kj is

G-conjugate to HJ in this case.)
In some cases, a geometry for G can be described in terms of structures on which

G acts. For example, a geometry for the Matthieu group M24 can be defined whose
objects consist of the octads, trios, and sextets in the Steiner system for G, with
incidence defined in a natural way.

3. Posets of p-subgroups of a group. Let Sp(G) be the poset of all nontrivial
p-subgroups of a given finite group G. Let |Sp(G)| be its geometric realization:
the simplicial complex with one vertex for each element 1 �= P ≤ G in Sp(G), one
edge for each pair P < Q of elements (connecting the vertices corresponding to
P and Q), and more generally one n-simplex for each strictly increasing sequence
P0 < P1 < · · · < Pn of elements in Sp(G).

This poset, and the homotopy properties of its geometric realization, was first
investigated in detail by Quillen [Q]. He showed that if Ap(G) ⊆ Sp(G) denotes
the subposet of nontrivial elementary abelian p-subgroups of G, then |Ap(G)| is a
strong deformation retract of |Sp(G)|. He also showed [Q, § 3] that when G is a
Chevalley group over a finite field of characteristic p, then |Ap(G)| � |Sp(G)| has
the homotopy type of the Tits building for G, thus providing a link (at least in this
special case) between the poset Sp(G) and the p-local geometry for G which had
already been studied.

Among other things, Quillen also proved that |Ap(G)| is contractible if Op(G) �=
1; i.e., if G has a nontrivial normal p-subgroup. He also conjectured that the
converse should hold [Q, Conjecture 2.9], and proved his conjecture when G is
solvable. This conjecture has since been proven in many other cases, but it is still
unknown whether it holds in general.

We now list some of the other posets which play an important role in the discus-
sion which follows. A p-subgroup P of a finite group G is radical if Op(NG(P )/P ) =
1, and it is p-centric if Z(P ) ∈ Sylp(CG(P )) (equivalently, CG(P ) = Z(P )×C ′

G(P )
for some C ′

G(P ) of order prime to p). Let Bp(G) and Cep(G) denote the sets
of nontrivial radical p-subgroups, and p-centric subgroups, respectively, and set
Bcen
p (G) = Bp(G) ∩ Cep(G). The inclusion of |Bp(G)| into |Sp(G)| was shown by

Bouc [Bc] to be a homotopy equivalence.
One more family of p-subgroups plays an important role in [BS]. Let E0 denote

the smallest set of elements of order p in G such that

• E0 is closed under G-conjugacy and contains all central elements of order p
in each Sylow p-subgroup of G; and

• the product of any two commuting elements of E0 lies in E0 ∪ {1}.
Let Ep(G) ⊆ Ap(G) be the set of elementary abelian p-subgroups all of whose
elements lie in E0 ∪ {1}.

4. Decompositions of group cohomology and of classifying spaces. The use
of geometries and posets of p-subgroups for constructing decompositions of group
cohomology H∗(G;Fp) is most easily explained with reference to a classifying space
for G.

A classifying space of a discrete group G is a space BG whose fundamental group
is isomorphic to G, and whose universal covering space is contractible. Usually,
one also requires that the space be “nice” in some sense; e.g., a cell complex.



310 BOOK REVIEWS

More explicitly, one can construct “the” classifying space BG to be the geometric
realization of the category which has one object, with endomorphism group G. It is
thus a cell complex with one vertex, one edge for each element of G, one 2-simplex
(triangle) for each pair (g, h) of elements of G (a triangle with edges corresponding
to g, h, and hg), etc. We refer to [Be, § 2.2, 2.4] for a more detailed (but still
succinct) description of these spaces (and note that BG is an Eilenberg–MacLane
space of type K(G, 1)).

Let EG denote the universal covering space of a classifying space BG. The deck
transformations of EG—the group of self maps which cover the identity on BG—
define a free action of G on EG, which for convenience we will assume to be a right
action. (Any action on the left can be regarded as a right action by replacing the
left action of g by a right action of g−1.)

One of the key properties of a classifying space BG is that for any abelian group
M of coefficients (in fact, for any Z[G]-module M), H∗(BG;M) ∼= H∗(G;M). This
is seen upon noting that the homology chain complex C∗(EG;Z), with the linear
action of G induced by its action on EG, is a free Z[G]-resolution of Z = H0(EG;Z).
In other words, the cohomology of the topological space BG is isomorphic to the
algebraically defined cohomology of the group G. We again refer to Benson’s book
[Be, Theorem 2.2.3] for more detail.

When X is any topological space with (continuous) left G-action, the Borel
construction for X is the space

EG×G X
def
=

(
EG×X

)/
∼,

where (ag, x) = (a, gx) for each a ∈ EG, g ∈ G, and x ∈ X. For example, when
X = ∗ is a point, then EG×G ∗ ∼= EG/G ∼= BG.

Assume X = |Δ| for some simplicial complex Δ upon which G acts simplicially,
and with the additional assumption that the vertices of each simplex lie in distinct
orbits. For each i ≥ 0, let Δi be the set of i-simplices in Δ, and for each simplex
σ ∈ Δi, let Gσ ≤ G be its stabilizer under the G-action. Then for any p, the
filtration of H∗(EG×G |Δ|;Fp) via the skeleta of Δ defines a spectral sequence

(1) Eij
1 =

∏

[σ]∈Δi/G

Hj(Gσ;Fp) =⇒ Hi+j(EG×G |Δ|;Fp).

For a fixed prime p, a G-simplicial complex Δ is defined to be ample if the
natural map EG×G |Δ| −−−→ BG, induced by sending |Δ| to a point, induces an
isomorphism in mod p (co)homology. Thus the spectral sequence (1) converges to
H∗(BG;Fp) ∼= H∗(G;Fp) in this case. When Δ is ample, Δ is called normalizer

sharp if in addition, the spectral sequence (1) collapses in the sense that Eij
2 = 0

for all i > 0 and all j.
When Δ is normalizer sharp and dim(Δ) = n < ∞, then for each j, there is an

exact sequence

0 −−−→ Hj(G;Fp) −−−−→ E0j
1

d0j
1−−−−→ E1j

1

d1j
1−−−−→ · · · dn−1,j

1−−−−→ Enj
1 −−−→ 0 ,

where the dij1 are differentials in the spectral sequence (1). This can be expressed
by saying that

(2) H∗(G;Fp) ∼=
⊕

σ∈Δ/G

(−1)dim(σ)−1H∗(Gσ;Fp).



BOOK REVIEWS 311

Formula (2) can be regarded simply as a tool for computing dimFp
(Hj(G;Fp)) for

each j, but there are also ways of making it more precise.
When Δ is the geometric realization of a poset C of p-subgroups of G (with

G-action defined by conjugation), then C is called ample or normalizer sharp if
Δ is. (The term “normalizer sharp” is used because in that case, the stabilizer
subgroups of vertices are the normalizers of the corresponding subgroups.) For
example, the posets Sp(G), Bp(G), Bcen

p (G), and Cep(G) are all ample by results of
Dwyer [Dw1, 1.16–1.18]. They are all normalizer sharp: this holds for Sp(G) and
Bp(G) by a result of Webb [Wb, Corollary 2.5.1] (together with [Bc] and the fact
that nontrivial p-subgroups have a contractible fixed point set on |Sp(G)|); and for
all four of the posets by Grodal’s theorem [Gr, Theorem 7.3]. The poset Ep(G) is
ample and normalizer sharp: the sharpness was shown in [GS, Theorem 1.2].

From the topological point of view, when Δ is ample, the mod p equivalence
of EG ×G |Δ| with BG leads to a p-local decomposition of BG as a homotopy
colimit of the spaces EG ×G (G/Gσ) � BGσ for simplices σ ∈ Δ0. (See, e.g.,
[BS, § 4.5–7] for more on decompositions via homotopy colimits.) It was in the
context of decompositions of classifying spaces with respect to certain families of
subgroups that Dwyer [Dw1, Dw2] first used the terms “ample” and “sharp”, to
systematize the different ways of decomposing a classifying space. In addition to
the “normalizer decomposition”, Dwyer also defined a subgroup decomposition and
a centralizer decomposition for any ample family of subgroups, and corresponding
notions of sharpness. See also [GS] for a later survey of the different types of
decompositions and the corresponding ampleness and sharpness properties.

5. Contents of the book. The main result in this book is the construction of
an explicit 2-local geometry ΔHI

for each sporadic group G, which is shown to be
normalizer sharp by comparison to some poset of p-subgroups of G. In many cases,
lists of radical p-subgroups made by various authors are used to help compare the
chosen geometry for G with Bcen

2 (G). This then leads, via (2), to an additive decom-
position of H∗(G;F2) as an alternating sum of the cohomology groups H∗(HJ ;F2)
for ∅ �= J ⊆ I. It also leads to a 2-local decomposition of BG itself as a homotopy
colimit of the classifying spaces BHJ for subsets ∅ �= J ⊆ I.

Many of these decompositions were already known. The importance of this work
is that the authors carry out this procedure systematically, for all of the sporadic
simple groups.

To illustrate this better, we sketch their results for two of the groups. When
G = M12, they fix two subgroups H1

∼= Q8 � Aut(Q8) (21+4
+ : Σ3), and H2

∼=
C2

4 � D12. These are chosen so that H1 = NG(A1) and H2 = NG(A2), where
A1 ≤ A2 and Ai

∼= Ci
2; this determines the Hi as a pair up to G-conjugacy. Thus

I = {1, 2}, and the geometry they study for M12 is ΔHI
. They then consider the

poset E−
2 ⊆ E2(G) containing only the subgroups G-conjugate to A1 or A2, and

show that the inclusion of |E−
2 | in |E2| is a homotopy equivalence. Thus by [BS,

5.8.11] (but see the remarks below), E−
2

∼= ΔHI
is normalizer sharp since E2(G) is.

This leads to an exact sequence

0 −−−→ H∗(G;F2) −−−−→ H∗(H1;F2)⊕H∗(H2;F2) −−−−→ H∗(H12;F2) −−−→ 0

and to their description of H∗(G;F2) as a formal difference of the other two terms.
As a second example, we take the case G = Co1, with I = {1, 2, 4, 11},

and Hi = NG(Ai) for a certain choice of elementary abelian 2-subgroups
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A1 < A2 < A4 < A11 with rk(Ai) = i. The resulting geometry ΔHI
is that already

studied in [RS]. The radical 2-subgroups of G were listed by Sawabe [Sw1], who
showed that there are 27 conjugacy classes in Bcen

2 (G). Sawabe had also showed
(in [Sw2]) that if Bcen−

2 ⊆ Bcen
2 (G) denotes the subposet of those conjugate to one

of the 15 subgroups O2(HJ) for ∅ �= J ⊆ I, then the inclusion |Bcen−
2 | ⊆ |Bcen

2 (G)|
is a homotopy equivalence. Thus ΔHI

and Bcen−
2 are both normalizer sharp, giving

a rank four decomposition of H∗(G;F2).
The other examples are mostly similar in style. But many of them contain

subtleties which are impossible to describe in a brief description such as this one.
This book provides a very good introduction for group theorists to some struc-

tures in homotopy theory, such as classifying spaces and p-completion. It also
provides a good introduction for homotopy theorists to the geometries of finite
simple groups and to some of the properties of sporadic simple groups. For both
groups of researchers, it will be an excellent reference for many of the properties of
the sporadic simple groups.

We note that the results 5.1.16, 5.1.17, 5.6.7, 5.8.4 in the book are incorrect
as stated. One way to fix them is to add the additional hypothesis in each case
that the orbit space |Δ|/G be contractible (or that it have the mod p-cohomology
of a point). Alternatively, one can add the assumption that the stabilizer of each
point in |Δ| have order a multiple of p. The error(s) arose because the results of
Webb which they cite are stated by him in terms of Tate cohomology, rather than
ordinary cohomology—and are not true in degree zero.

Theorem 5.8.11 requires the additional assumption that the complexes Δ and Δ′

be finite dimensional. Even in this form, we do not know any published reference,
although it does follow from Smith theory and Webb’s result ([BS, Theorem 5.1.16]
corrected).

Tables 1–3 give a very brief (in many cases oversimplified) overview of the meth-
ods used to handle each group. We include it only as a guide for readers who want
to choose a few specific examples to look at. For each G, the second line gives the
rank of the geometry used (i.e., the order of I), and the third line gives the poset(s)
of p-subgroups with which it was compared. A superscript “−” means that they
use an explicitly defined subset of the standard poset; e.g., Bcen−

2 is a (G-invariant)
subset of Bcen

2 (G).

Table 1

G M11 M12 M22 M23 M24 J1 J2 J3 J4

rk 2 2 3 3 3 1 2 3∗ 4

poset A2 E−
2 , Bcen

2 A2 A2 A2 A2 E2, Bcen
2 A−

2 B−
2

Table 2

G Co3 Co2 Co1 HS McL Suz He Ru O′N

rk 3 4 4 3 3 3 3 3 2

poset E−
2 B2 = Bcen

2 Bcen−
2 E−

2 A−
2 E−

2 , Bcen
2 Bcen−

2 E−
2 , Bcen

2 [Bcen
2 ]
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Table 3

G Ly Fi22 Fi23 Fi′24 F5 = HN F3 = Th F2 = B F1 = M

rk 4 4 4 5 3 2 5 5

poset A−
2 Bcen

2 Bcen
2 Bcen

2 Bcen−
2 B−

2 Bcen
2 Bcen−

2
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