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Mathematical billiards is a popular object of study: many hundreds of papers
devoted to billiards have appeared in mathematical and physical journals over
the years. A lesser-known dynamical system, outer billiards—also known as dual
billiards and antibilliards—has attracted a substantial attention in the last two
decades. The book under review is the first research monograph devoted to the
subject; it provides an in-depth analysis of outer billiards on a class of quadrilater-
als called kites. The complexity and beauty of the emerging picture is stunning!

The outer billiard table is a convex domain in the plane bounded by a closed
curve -y, oriented clockwise. Unlike conventional, or inner, billiards, the game is
played outside of the table. Pick a point x in the exterior of v, draw the tangent
line to v that agrees with the orientation, and reflect z in the tangency point to
obtain a new point, y. The map T : = — y is the outer billiard map; see Figure [1l

FIGURE 1. The outer billiard transformation

If the tangency point is not unique, that is, the tangent line has a whole interval
in common with the table, the outer billiard map is not defined. This shortcoming
is akin to the fact that one cannot consistently define the billiard reflection in a
corner of a billiard table. Fortunately, the set of points where T is not defined has
zero measure, so one still has plenty of room to play the game. In particular, this
concerns polygonal outer billiards, the subject of the book [15] of R. Schwartz.
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An immediate consequence of the definition is that the outer billiard system
commutes with affine transformations of the plane. For example, from the point
of view of outer billiards, there is no difference between a circle and an ellipse.
This greater symmetry group, compared to the group of similarities in the case
of inner billiards, sometimes simplifies the study of outer billiards. For example,
it is an outstanding open problem whether every polygonal billiard has a periodic
orbit (the world record again belongs to R. Schwartz who proved that every obtuse
triangle with its obtuse angle not greater than 100° has a periodic billiard trajectory
[12, [14]); for polygonal outer billiards, this is a relatively simple, albeit recent,
theorem [21I]. Another example: it is known that the complexity (in the sense of
symbolic dynamics) of polygonal billiards is subexponential [I], but it is unknown
whether it is polynomial; in contrast, the polygonal outer billiard complexity is
known to be polynomial [6].

Note that the definition of outer billiards makes sense in other classical geome-
tries: the spherical and the hyperbolic ones. In the spherical world, the system is
dual to the conventional, inner, billiards with respect to the spherical duality that
interchanges great circles with their poles (this explains the name “dual billiards”).
Outer billiards in the hyperbolic plane remain largely unexplored. The reader may
wonder whether outer billiards can be also defined in a multidimensionall setting;
the answer is yes, in even-dimensional spaces, and the outer billiard map is sym-
plectic. For this and other aspects of outer billiards, we refer to the survey article
[2] and the respective chapters of the books [19] 20].

Outer billiards were introduced by B. Neumann [II]. In particular, Neumann
asked whether the orbits of the outer billiard map can escape to infinity. The
subject owes its popularity to J. Moser who realized that the outer billiard map is
area preserving and hence can be studied by the methods of Kolmogorov-Arnold-
Moser (KAM) theory. In his classic book [9], Moser outlined a proof of the theorem
that gives a partial answer to Neumann’s question: if the outer billiard curve ~ is
strictly convex and sufficiently smooth, then the outer billiard map has invariant
curves arbitrarily far away from the table, and therefore all orbits of the map stay
bounded. Moser returned to outer billiards in his expository article [10] where he
treated this system as a crude model for planetary motion. Moser reiterated the
problem: can polygonal outer billiard orbits escape to infinity?

The first step toward solution was made in three papers by five authors [22 7, [5].
To explain the result, we need to say a few words about the behavior of the second
iteration of the outer billiard map far away from the table. Imagine a bird’s eye
view of outer billiards: the table is almost a point (the origin), the map T is almost
a reflection in the origin. However, the second iteration of the map, T2, takes
one almost back to the starting point, and the iteration of the map T2 appears
a continuous motion along a centrally symmetric closed curve. To continue with
the astronomical analogy, this continuous motion satisfies Kepler’s second law: the
area swept by the position vector of a point depends linearly on time.

This asymptotic motion is especially easy to understand if the outer billiard curve
v is an n-gon. The outer billiard map is a reflection in a vertex, and its second
iteration is a parallel translation through a vector that equals twice a diagonal of
7. The discontinuities of T2 are 2n rays: the counterclockwise extensions of the
sides of v and the reflections of these rays in the opposite vertices of v (a vertex
opposite to a side is the one farthest from it). The lines containing these 2n rays
form n strips whose intersection contains ~; see Figure 2l In this figure, an origin
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FIGURE 2. Polygonal outer billiard trajectory “at infinity”

is chosen inside «y, and the asymptotic trajectory at infinity is an origin symmetric
octagon I' with the vectors of translation along the sides indicated. This octagon
is defined up to a dilation.

In general, one assigns the “time” to each side of the trajectory at infinity I,
the ratio of the length of this side to the magnitude of the respective translation
vector. One obtains a collection of times (¢1, . .., t,), defined up to a common factor.
The polygon is called quasi-rational if all these numbers are rational multiples of
each other. In particular, lattice polygons are quasi-rational, and so are regular
polygons. The theorem, proved in [22, [7, 5] in three different ways, asserts that the
orbits of quasi-rational polygonal outer billiards stay bounded. As a consequence,
if the outer billiard table is a lattice polygon then all orbits are periodic (being
discrete and bounded). An elementary proof of this seemingly simple result is not
known.

Let us emphasize that the outer billiard dynamics on quasi-rational polygons is
far from trivial and, so far, is very poorly understood, even in the case of affine-
regular polygons. There are two exceptions: the regular pentagon and octagon.
The former was studied by the author in [I8], and the latter, very recently and in
much more depth, by R. Schwartz [I7]. See Figure B for infinite orbits in these
systems shown as a black “web”, the white polygons are periodic domains.

Let us mention other results on outer billiard orbits escaping to infinity. It was
independently proved in [4] and [§] that the outer billiard orbits for trapezoids
always stay bounded. It was observed in computer experiments in the early 1990s
that escaping orbits exist for the outer billiard on a semicircle: in fact, there is an
open set that systematically spirals away to infinity. This was proved only recently
by Dolgopyat and Fayad [3], and their techniques also apply to the regions obtained
from a disk by nearly cutting it in half with a straight line. As we shall see, the
mode of escape to infinity for kites is much more complicated.

Before describing the content of Schwartz’s book, a few words about his approach
to the problem. The work is a fine example of experimental mathematics: most
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of the phenomena were discovered through computer experimentation with the
computer program Billiard King created by Schwartz for this purpose. This heavily
documented program is available at www.math.brown.edu/ res/BilliardKing/
index.html; one can download it or use it online. Using this program is highly
recommended in conjunction with reading the book. Some of the proofs in the book
are also computer assisted, but everything can be verified by hand. To quote from

[15],

One could do these calculations by hand in the same way that one
could count all the coins filling up a bathtub. One could do it, but
it is better left to a machine.

I would like to add that such a monumental task as counting coins in a bathtub by
hand is prone to produce errors. The fact that the results in the book are directly
observable via Billiard King is kind of a certificate of the validity of the proofs.
Schwartz is a rare master of computer-inspired research; an interested reader is
invited to visit his web site and to explore about 60 Java applets available therein.

A Fkite is a convex quadrilateral, one of whose diagonals is its axis of symmetry
(rhombi do not count as kites). Any kite is affinely equivalent to the one with the
vertices at (—1,0), (0,1), (0, —1), (A4,0) with A € (0,1). The number A is a param-
eter; a kite is irrational if so is A. The best known of all kites is the Penrose Kkite,
with A = v/5—2, which appears in the famous Penrose kite-and-dart quasi-periodic
tiling. Schwartz studies outer billiards on the Penrose kite in [13], a predecessor of
the book under review.

Although outer billiards on kites are 2-dimensional maps, the book concerns
the restriction on the invariant countable union of horizontal lines R x Z,4q where
Zoqq is the set of odd integers. The restriction of the map on this invariant set
is an exchange of an infinite collection of intervals. An orbit is called special if it
belongs to this invariant set. An orbit is forward (backward) erratic if the forward
(backward) orbit is unbounded but also returns to every neighborhood of a vertex
of the kite. An orbit is erratic if it is both forward and backward erratic.

Theorem 0.1 (Erratic Orbits). For any irrational kite,

1. there are uncountably many erratic special orbits;
2. every special orbit is either periodic or unbounded in both directions;

FIGURE 3. Outer billiards on a regular pentagon and an octagon


www.math.brown.edu/~res/BilliardKing/index.html
www.math.brown.edu/~res/BilliardKing/index.html

BOOK REVIEWS 289

3. the set of periodic special orbits is open and dense in R X Zyqq.-

As a consequence, outer billiards on a kite has an unbounded orbit if and only
if the kite is irrational.

The main result of the book is a theorem that Schwartz calls the Comet Theorem
(once again, using a celestial analogy). This theorem is too technical to formulate
here; it describes a renormalization scheme closely related to continued fractions.
We formulate some consequences of the Comet Theorem that considerably sharpen
the Erratic Orbits Theorem.

Let I =[0,2] x {—1}; this is a subinterval of the invariant set. Let Ua denote
the set of unbounded special orbits relative to the kite parameter A. For a Cantor
set C on a line L, let C# be the set obtained from C by deleting the endpoints of
the components of L — C'; this is called a trimmed Cantor set.

Theorem 0.2. For any irrational A € (0,1),

1. Uy is minimal: every orbit in Uy is dense in Ug and all but at most two
orbits in Uy are both forward and backward dense in Ux;

2. Uy 1is locally homogeneous: every two points in U have arbitrarily small
isometric neighborhoods;

3. UaNI = Cﬁ for some Cantor set Cy.

The Comet Theorem describes the Cantor set C'4 explicitly.

Let pa be the first return map to U, N I. To describe the dynamics of pa, we
need a couple of definitions.

For j = 1,2, let f; : X; — X, be a map such that f; and fj_l are defined
everywhere, except possibly a finite set. Then f; and fo are called essentially
conjugate if there exist countable sets C'; C X, each contained in a finite union of
orbits, and a homeomorphism h : X; — C7 — X3 — (5 that conjugates f1 to fo.

An odometer is the map x +— x + 1 on the inverse limit of the system

Z/d3—>Z/d2—>Z/d1, where dk|dk+1.
The universal odometer corresponds to di = k!.

Theorem 0.3. 1. For any irrational A € (0,1), the map pa is defined on all
but at most one point and is essentially conjugate to an odometer Z4.
2. Any odometer is essentially conjugate to pa for uncountably many different
choices of A.
3. pa is essentially conjugate to the universal odometer for almost all A.

The Comet Theorem describes the odometer Z4 explicitly.

The next result describes a surprising connection between outer billiards on kites
and the modular group. Let T' be the (2, 00, 00)-triangle group, that is, the group
of isometries of the hyperbolic plane (in the upper half-plane model) generated by
reflections in the sides of the triangle with vertices (0, 1,7). In the next theorem,
the kite parameter is interpreted as belonging to the ideal boundary of H2. Let
S =10,1 — Q, and let u(A) be the Hausdorff dimension of Ug.

Theorem 0.4. 1. For all A € S, the set Us has length 0: almost all points
i R X Zoqq have periodic points relative to A.
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2. if A and A’ are in the same I'-orbit then Uy and Uys are locally similar,
and hence u(A) = u(A’).

3. if A € S is quadratic irrational then every point of Ua lies in an interval
that intersects Uy is a self-similar trimmed Cantor set.

4. the function u is almost everywhere equal to some constant and yet maps
every open subset of S onto [0, 1].

Let us say a few words about the central construction in the book, the arithmetic
graph. This is a 2-dimensional representation of the first return map to the set
= =Ry x{—1,1}. Denote this first return map by ¥; this is also an infinite interval
exchange map. For ease of explanation, assume that A is a rational number p/q.
Define the map F : Z? — 2Z[A] x {—1,1} by the formula

F(m,n) = (2Am +2n + 1/q, (—1)PTth),

The graph I'(p/q) is formed by joining the points (my,n;) and (mg,ns) if they are
sufficiently close to each other and F(my,n;) = U F(mg,ny). The main interest is
in the component that contains (0,0) which is denoted by I'(p/q). When both p and
q are odd, I'(p/q) is an infinite periodic polygonal arc, invariant under translation
by the vector (g, —p). Here are some structural results about the arithmetic graph,
formulated informally:

1. The Embedding Theorem: f(p/q) is a disjoint union of embedded poly-
gons and infinite embedded polygonal arcs. Every edge has length at most v/2.

2. The Hexagrid Theorem: the structure of f‘(p/ q) is controlled by six infinite
families of parallel lines.

3. The Copy Theorem: if A; and A, are two rationals that are close in the
sense of Diophantine approximation, then the corresponding arithmetic graphs I'y
and I's have substantial agreement.

See Figure [l

The analysis of the arithmetic graph goes by way of the following result.

Theorem 0.5 (Master Picture). For every A,

1. there is a locally affine map p from = to the union = of two 3-dimensional
tori;
2. there is a polyhedron exchange map U:=2 52 defined relative to a partition
of E into 28 polyhedra;
3. the map u s a semiconjugacy between ¥ and 0.
There is a unifying 4-dimensional master picture, a union of two convex lattice

polytopes partitioned into 28 smaller convex lattice polytopes; for each parameter
A, one obtains the 3-dimensional picture as a section. Schwartz says that his study

FIGURE 4. The graphs I'(1/3),T(3/7),T(13/31), and T'(29/69)
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the Master Picture Theorem is just starting, and that a version of this result

should hold in much more generality. See [16] for a generalization to other polygons

of

one of the results from the book, the Pinwheel Lemma, that concern strip maps

such as the one depicted in Figure

Let me conclude with a general impression of the research presented in the book.

Its main feature is a spirit of exploration. One enters empty-handed, with only a
vague idea of what one might encounter, and one exits, after a long expedition,
with a fulfilling detailed picture of a highly structured and beautiful world, full of
surprises and the previously unseen.
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