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1. INTRODUCTION

Unless you, the reader, work in signal processing or in probability theory, it
is likely that you have never heard the term filtering or the rather strange and
sophisticated probabilistic adjective stochastic.

Nowadays, the term stochastic is often reduced to reflect the uncertainty or the
randomness of a given object or probabilistic model. In fact, this term is derived
from the ancient Greek word o7éyos (stékhos) which means aim, guess, target, or
able to conjecture. In this sense, stochastic models are better defined as random
processes or strategies based on random guesses used to predict, to infer, or to
capture the unknown evolution of some physical or biological quantities.

In this interpretation, stochastic filtering can be defined as a natural online and
automated probabilistic or statistical inference technique based on learning, using
predictions, the information encapsulated in a series of noisy and partial observa-
tions delivered by some sensor. For instance, in signal processing, filtering a given
process consists in removing some unwanted components, such as noisy inaccura-
cies coming from sensor perturbations. As an example of an application, consider
the problem of determining the precise trajectory and the kinetic parameters of a
noncooperative aircraft target given a series of noisy distance measurements deliv-
ered by some radar type sensor. In this situation, the filtering problem consists in
estimating the true trajectory, including the velocity and the acceleration of the
target, given these noisy and partial observations.

This book is one of the few books dealing with both the theoretical foundations
and modern stochastic particle techniques in stochastic filtering through the en-
tire text. It also provides a rather complete historical account of the origins of
filtering, starting with the celebrated works of famous researchers, such as Wiener,
Stratonovich, Kolmogorov, Krein, Kushner, Kalman, and Bucy in the 1950s and
the mid-1960s, on discrete and continuous time estimation problems of dynamical
systems in the presence of noisy and partial observations. These pioneering works
were followed from the late-1960s to the late 1970s by a series of theoretical works
by another series of famous mathematicians, including Shiryaev, Kailath, Fujisaki,
Kunita, Zakai, Krylov, Rosovskii, Pardoux, Duncan, Clark, and Davis, on the rig-
orous derivations of the optimal filtering equations in terms of stochastic partial
differential equations or by functional representation of conditional expectations of
stochastic processes.

Unfortunately, there are only very few examples of filtering problems for which
the optimal filter is finite dimensional, in the sense that the optimal solution can be
solved by a computer. To name a few, finite state space filters, the Kalman-Bucy
filter discussed above, the Benes filter. More precisely, in the mid-1980s, the work
of two French probabilists, Chaleyat-Maurel and Michel, shows that it was hopeless
to try to find a finite-dimensional representation of the optimal filter! Generically,
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and apart from a few exceptions, the filtering problem is infinite dimensional and
it cannot be solved without approximations on a real-world computer.

Much of the work carried out since the 1990s has focused on numerical solutions
of the filtering problem. Six important classes of numerical methods are nowadays
available: the extended Kalman filter based on local linearization methods, ap-
proximations by the exact finite-dimensional filters, projection techniques and the
moment methods, spectral approximations, partial differential equation methods,
and the more recent and advanced stochastic particle interpretation models.

2. STOCHASTIC FILTERING AND BAYESIAN INFERENCE

To better understand these models and the numerical problems discussed in this
book, let us present more formally these probabilistic models. The central filtering
problem is to compute recursively in time the conditional distributions of the ran-
dom possible trajectories of a given target signal given the series of observations
delivered by some measurement sensor. Of course, the rigorous mathematical de-
scription of these conditional distributions requires that we identify precisely the
different sources of randomness in these physical and engineering models. This
modeling strategy is well known in Bayesian statistics. Firstly, before estimating
the realization of some random state variable, say X, we need to have some exist-
ing prior belief on the possible random values it may take. Given some correlated
observation random variable, say Y, these prior distributions p(z) are updated to
give conditional distributions p(z|y), also called posterior distributions. Up to some
normalizing constant, this updating step amounts to multiplying the prior distri-
bution by some likelihood function p(y|x) that measures the adequacy of the prior
first guesses w.r.t. the observations; that is, we have that p(z|y) « p(y|z)p(z). This
elementary formula is sometimes called the Bayes’ theorem or the Bayes’ rule. Of
course, this heuristic type rule is intuitively convincing, but its rigorous derivation
requires a little more probabilistic technicalities.

In signal processing and stochastic filtering, these prior distributions and the
observation likelihood functions are dictated by the physical model at hand. The
sources of randomness in the target evolution probabilistic model comes from both
the unknown control strategies driving the target and the mathematical model un-
certainties. In much the same way, the random sources in the observation model
mainly come from the probabilistic model uncertainties, the environmental pertur-
bations as well as internal sensor perturbations, such as thermic noise in electronic
type sensor devices.

Now, the reader should be convinced of the huge potential range of applications
of stochastic filtering. To name a few traditional and some more recent applications,
this stochastic learning technique plays a central role in the following scientific fields:
object tracking and vehicle positioning using radar, sonar, or GPS sensors, satellite
navigation systems, volatility estimation in financial markets, weather forecasting
and turbulent fluid motion tracking, speech recognition, computer vision and pat-
tern recognition, time series estimations in econometrics, and many others.

3. THE KALMAN FILTER

Due to the applicability of stochastic filtering in such a diverse range of applica-
tions, this subject has been the focus of enormous amount of research in the last
fifty years. The origins of this research can be traced back to the pioneering and
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famous article of Rudolf E. Kalman, A new approach to linear filtering and predic-
tion problems, published in 1960 in the Journal of Basic Engineering 82 (1): 35-45.
Briefly speaking, the central idea is to conduct inductively the following fact.

Suppose that X is a Gaussian state variable with mean XJ and covariance
matrix 130_. We also assume that the associated observation has the form, Yy =
C Xg+ Vg, for some independent Gaussian perturbation V and some given matrix
C. In this case, the conditional distribution of X, given Y; is again Gaussian with
a mean )/(\'0 and a covariance matrix ﬁo that can be explicitly computed in terms of
Yy and the pair of parameters ()A(O_ , ﬁo_ ). This first step is often called the updating
stage with respect to the current observation Yj.

In the same way, if the state variable X, changes into a new random state

= AXy+BWh, for some pair of matrices (A, B), and some independent Gaussian
perturbatlon Wl, then the conditional dlstrlbutlon of X7 given Y} is again Gaussian
with a mean X and a covariance matrix P that can be explicitly computed in
terms of Y7 and the previous pair of parameters (XO, PO). This second step is named
the prediction stage in the sense that we estimate the current state X; using the
last observation Y. Iterating this updating-prediction learning transition, in this
linear Gaussian world we easily derive the Kalman filter recursion.

This rather simple algorithm is surprisingly extremely powerful. For instance, it
has been applied by NASA to the problem of trajectory estimation for the Apollo
program to get the missions off the ground and on the moon. It is still nowadays
the subject of extensive research projects and applications, particularly in the area
of autonomous or assisted navigation systems, as well as in tracking problems us-
ing GPS, radar, or sonar measurements. Now, a series of important and natural
questions arise:

e What can we do if the random states and/or the observation sensors are
neither linear nor Gaussian? Can we solve numerically on some computer
the filtering problem for more general models?

e How do we choose in practice the initial parameters of the recursion? What
happens if we start with some erroneous initial condition?

e Is there some continuous time version of the above filtering models?

e Are all of these stochastic filtering models stable and robust w.r.t. the
observation measurements?

Most of the answers to these central questions can be found in this book, includ-
ing a rather detailed historical account on the main scientists that contributed to
this research project since the mid-1990s.

4. DISCRETE TIME FILTERS

In the first part of the book, the authors give a theoretical presentation of both
the discrete time filtering equation as well as the continuous time filtering equation
for general diffusion type stochastic processes.

The discrete time probabilistic model can be described rather easily. Suppose
we are given a pair signal-observation Markov chain (X, Y;)n>0 on some product
space, with some initial distribution and Markov transitions of the form

P((Xo,Yo) € d(z,y)) = mnoldz) go(z,y) Ao(dy),
P((X’Vl-‘rlayn-'rl) € d(a?,y)\(Xn,Yn)) Mn-&-l(Xnadx) gn-i-l(mvy) )‘n-‘rl(dy)
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with some reference probability measures A, on the observation state space. The
prototype stochastic model is the one given by the R2-recursive formula

Xn - anfl(anl) + Wnu

with some regular functions (a,, b,) and some independent and centered Gaussian
random variables (W,,, V;,) with unit variance. In this elementary case, we have

1
Mn+1(Xn7dl‘) = e*%(zfan(X"))de

5

and

(4.1) gn(z,y) = ebn(@y=3b1(®)  with An(dy) =

! e_%yzdy.
™
For a given sequence of observations Y = y, the optimal one step predictor 7,

and the optimal filter 7),, are defined by

M = LaW(XnD/O =Y0,---s Yn-1 = yn—l)a
(4.2) Tin

LaW(XnD/O =Y0,---, Y1 = yn—17Yn = yn)

For n = 0, we use the convention 79 = Law(Xy). The updating of the measure g
w.r.t. the current observation Y = yg is simply given by the Bayes’ formula

~ L go(, yo) -
ol de) = fﬂo(dfﬂl) 9o (', y0) moldz).

Notice that the probability mass variation is dictated here by the so-called likelihood
function go and the observation data 9. During the prediction transition, we
predict the new value of the random state X; using the following linear transport
equation dictated by the a priori Markov transitions M; of the signal

n1(dx’) ::/ No(dx) My (z,dz’).

Iterating these two procedures, we update the measure 7; w.r.t. the current obser-
vation Y7 = y; (using again the Bayes’ formula), and we predict the next value X5
using the linear transport equation (dictated by Ms), and so on.

For linear models (with a Gaussian initial distribution ng), these distributions
are Gaussian and these recursive formulae can be solved explicitly by the Kalman
filter discussed above. Also notice that for finite state spaces, the above updating-
prediction transitions reduce to elementary finite sums and multiplication operators
on finite-dimensional vectors.

Finally, it is worth mentioning that the conditional distributions 7,, and 7),, have a
natural functional Feynman—Kac representation. For instance, the one step optimal
predictors are given by the formula
(4.3)

() =220 i () = / F@ ) =By [ £1(X0) T 90(Xpr00)

0<p<n
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In the above displayed formula, E,(.) stands for the expectation w.r.t. the law of
X, with a fixed observation process Y = y. That is, we have that

Y (f) = / fn(xn) H gp(xpa yp) no(dxo) My (zo, dxy) - - - Mn(xn—la dxn)'

0<p<n

On the other hand, the unnormalized measures -, can be expressed in terms of the
flow of measures (1,)o<p<n, with the multiplicative formula

(4.4) Ynt1(1) = Ynlgn (- yn)) = M (gn (- yn)) X 1 (1) = H (9 (-5 Yp))-
0<p<n

These abstract formulations have a natural interpretation in terms of Bayesian
posterior densities. More precisely, in a formal way we have

Pn(yo,-~-,yn|$o,-~-,$n): H gp(xpvyp) and Pn(yo,~~~,yn):7n+1(1)~

0<p<n

The multiplicative formula (4] can be used to approximate the unnormalized
measures in terms of approximations of the normalized probability measures.

5. CONTINUOUS TIME FILTERS

The rigorous mathematical derivation of continuous time filtering equations is
technically much more involved. As shown in the book, two different approaches
can be used: the change of measure method and the innovation process technique.

Roughly speaking, the first one can be thought of as a sophisticated extension of
the Bayes rule for discrete stochastic processes to continuous time signal-observation
models. The corresponding conditioning principle is known as the Kallianpur—
Striebel formula. In theory, at least, this formula provides a method for solving
the filtering problem. As in the Bayes’ identity, it represents the optimal filter as a
functional normalized ratio of a weighted unnormalised distribution.

The second approach isolates the diffusion term of the signal and the correspond-
ing linear heat type transport term, and then identifies the nonlinear observation
mass variations in the Doob—Meyer decomposition of the optimal filter. This ap-
proach shows that the conditional distribution of the signal is a solution of a non-
linear (quadratic type) stochastic and parabolic type partial differential equation
often called the Kushner—Stratonovich equation. Its unnormalised weighted ver-
sion discussed above satisfies a linear equation often called the Zakai equation. The
developments around these two probabilistic approaches rely on sophisticated and
advanced stochastic calculus.

As in the discrete time case, the prototype continuous filtering model is given
by the R2-valued diffusion

dXt = Q¢ (Xt)dt + th,
dY, = b(Xy)dt + dV,

with some regular functions (at,b:) and some independent Brownian motions
(W4, Vi), with unit variance. To simplify the presentation, we assume that Yy = 0.
In further development of this review, we briefly introduce the optimal filter evo-
lution equations associated with this elementary filtering model in a rather formal
way.
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5.1. A brief introduction to stochastic calculus. We recall that the infini-
tesimal generator L; associated with the signal diffusion X, defined above is the
second-order differential operator given by
of 10%f
L = =— + -—=.
o(f) = a Ox + 2 022

Roughly speaking, using a second-order Taylor type expansion, for any infinitely
differentiable test function f, one can write in evocative shorthand the formula
0 102
with the martingale term dM;(f) := g—i(Xt) dW;. The above formula can be
obtained in an formal way using the rule d X;dX; ~ dW;dW; ~ dt. The magnitude
of the stochastic remainder martingale term M, (f) given above is often measured
in terms of its predictable angle bracket (M(f));. We recall that this predictable
process is such that M;(f)? — (M(f)); is again a martingale, and it is defined by

df(Xt) =

(M(f)) = / Tr,(f, £)(X.) ds

in terms of the carré du champ operator associated with L and defined as

T (f.f) = Lo(f?) — 2 L(f) = %) |

This stochastic analysis technique works for a rather general class of infinitesimal
generators L, including jump type models. This Taylor type second-order expansion
is known as the Ito formula. For further details on this subject, we refer the reader
to the seminal books by Daniel Revuz and Marc Yor [I3], Ioannis Karatzas and
Steven Shreve [10], Philip Protter [12], and Stewart Ethier and Thomas Kurtz [8].
The infinitesimal generator L plays a fundamental role in the stochastic analysis of
Markov processes and parabolic type partial differential equations. Ignoring, as we
will do throughout most of this review, that theorems need specific assumptions to
make them true, if we let u; be the law of the random state X; and set

i(9) = E(g(X,)) = /

pi(dz) g(x)
Rd

for any sufficiently regular function g from R into R, then from (5.I)) below we
readily find that p; solves the second-order partial differential equation

d

o pe(f) = pe(Le(f))-

5.2. The Zakai and the Kushner—Stratonovich equations. As in the Bayes’
formula, the conditional distribution m; of the random states X; given the observa-
tions from the origin up to the current time ¢ can be represented as the normalized
ratio of a weighted positive measure p;; that is, we have that

(5.1)  m(f) =E(f(X0)[Ys,s <t) = pu(f)/pe(1)  with  pi(f) = Ey (f(X1)Zt)
and the likelihood function Z; is given as in ([IJ]) by the formula

t 1 t
loth:/ bS(Xs)dYS—§/ VA(X.)ds (= dZ; = Z;bi(X1)dYs) .
0 0
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In the above displayed formula Ey (.) stands for the expectation w.r.t. the law of
X, with a fixed observation process Y.
Roughly speaking, using the fact that

dpi(f) = Ey (Z; df(Xy)) +Ey (f(Xy) dZy)
= By (ZLi(f)(X1)) dt + Ey (f(X) Z:bi(Xt)) dYa,

we find that the measure valued process p; satisfies the following evolution equation,
called the Zakai equation,

dpe(f) := pe(Le(f))dt + pe(fbe) dYs.

Using the fact that Li(1) = 0 = dpi(1) := pe(br) dYy = pe(1)me(by) dYz, we also
prove that

t 1 t
log (1) = [ m(b)aY. - 5 [ mv)ds,
0 0
from which we deduce that

o2 (Ze/ (1)) = [ 10(X0) = mb))dY. = mbds] = 5 [ (X0) = ).

Arguing as above, replacing bs by the centered function [bs — m4(bs)] and dY; by
the so-called innovation process [dY; — 74(bs)ds], we prove that the optimal filter 7,
satisfies the following stochastic partial differential equation, called the Kushner—
Stratonovich equation

dmi(f) = me(Le(f))dt + m(f (b — m(be))) (dYy — me(be)dt).

The rigorous derivations of the above probabilistic models and their multidimen-
sional versions are discussed in full detail in the book under review. The authors
also provide a very nice discussion of the existence and the smoothness properties
of a density w.r.t. the Lebesgue measure of the conditional distributions.

Of course, real life observation processes are clearly far from being the perfect
solution to a diffusion equation, in the sense that we never observe the complete
continuous time observation trajectories. From this viewpoint, one might think
that these evolution equations are useless! Nevertheless, the continuous time evolu-
tion equations derived above enable the use of traditional numerical approximation
tools for partial differential equations, such as spectral methods, deterministic grid
type models and splitting-up techniques. As underlined in the book, these tech-
niques can be very successful in low-dimensional and regular filtering problems, but
they cannot be applied in high-dimensional models or in nonlinear filtering models
involving high probability mass variations.

5.3. The robust filtering equation. In practice, the observations delivered by
any type of measurement sensors always arrive at discrete moments in time. Of
course, using a simple linear interpolation, we almost obtain the solution of the
sensor equation, but still real life observation data are never the output of a for-
malized mathematical model! It is therefore essential to design a continuous time
filter representation that enjoys continuity properties w.r.t. the observation process.
To solve this important question, a more sensible mathematical model is provided
by the so-called robust version of the conditional distributions flows discussed in
the previous section. The term robust refers to the fact that the dependence on
the observation data is continuous. As mentioned in [I], such robust formulation
was stated in the late-1970s by J.M.C. Clark in [2] without proof. More recent
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treatments with rigorous mathematical developments can be found in the pair of
articles [I} [4].

At a formal level, the robust filtering equation is a Feynman-Kac—Schrédinger
type evolution that can be derived using an elementary integration-by-parts formula
combined with an exponential change of reference probability measure. Because of
its importance in practice and its interesting connections with Schrodinger semi-
groups and their mean field particle interpretations, we provide a direct informal
proof of these models.

Firstly, using Ito’s integration-by-parts formula, we find that

b(X)dY: = d(b(X,)Ys) — Yedb,(X,)
— (X)) + [ebiLt(e—bi)} (X,)dt + dlog Z|

with the random function b;(z) = Y;b:(2) and the exponential martingale Z; defined
in terms of dMy(b}) := —Y;dM,(b;) by the formula

dlog 7 = dM,(b.) — [ebiLt(e*bi)JrLt(b;)} (X,)dt
= AMLB) — T, (0, ) (X0t = dML(b]) — Zd(M(B):.

This implies that

t
]Ey (f(Xt)Zt) = ]Ey <f(Xt)Z£ exp <b/(Xt) + / ‘/S(Xs)d3>>
0
with the random potential function V; defined by
Vi = " Ly(e7") — b2 /2.

By classical probabilistic techniques of exponential change of measures, the mar-
tingale Z; induces a new reference measure, under which the signal diffusion has
an infinitesimal generator given by

L) = L)+ 0, (7%, 1) = L) - D 9L

In other words, Lj is the infinitesimal generator of the signal diffusion process X
defined as X; by replacing the drift term a; by the function a; := a; — %. By
(EID), we conclude that the optimal filter can be rewritten as

52 m(f) = (1) o () with () = By (s e ([ t V(xids) )

It is not difficult to check that the flow of unnormalized measures ~y; satisfies the
Schrédinger equation

%%(f):%(fltv(f)) with Ly (f)(2) = Ly(f)(2) + Vi(2) f(2).

and the continuous time version of the multiplicative formula ([ is given by

(53 10590 = 1) = () =exp { [ n(vjas).
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6. STOCHASTIC PARTICLE APPROXIMATION ALGORITHMS

The final part of the book is centered around the theoretical and numerical
analysis of modern stochastic particle filtering models.

Branching and interacting particle methods are one of the most active contact
points between applied probability, Bayesian statistics, theoretical chemistry, quan-
tum physics, and engineering sciences, including rare event analysis and advanced
signal processing. The origins of particle methods can be traced back in physics
and molecular chemistry to the 1950s with the pioneering works of T.E. Harris
and H. Kahn [9] and that of M.N. Rosenbluth and A.W. Rosenbluth [I4]. Fur-
ther details on the origins and the application domains can be found in the studies
[5l 7, 111, 15 [16].

These stochastic particle algorithms can be thought of in various ways.

From the physical point of view, they can be seen as microscopic particle inter-
pretations of physical nonlinear measure-valued equations. From the probabilistic
point of view, they can be interpreted as interacting recycling acceptance-rejection
sampling techniques. In this case, they can be seen as a sequential and interacting
importance sampling technique. From the pure mathematical point of view, they
can also be interpreted as natural stochastic linearizations of nonlinear evolution
semigroups.

Next, we provide a synthetic and universal picture of these mathematical models.
This presentation differs slightly from the one presented in the book, but it is closer
to more traditional mean field particle models arising in physics and fluid mechanics,
and it applies to more general situations.

6.1. Discrete time models. In the discrete time situation, the central idea is to
rewrite the desired flow of measures 7, such as the one introduced in ({2, in
terms of a nonlinear integral evolution equation of the form

(61)  1a(de’) = (a1 Ko, )(da') = / Tor (d2) Koy, (2, da)

with some Markov transition K, _,. In this case, 7, can be interpreted as the

distribution of the random states X,, of the time-inhomogeneous Markov process
defined as

P (Yn € dx\yn_l) =Kny, 1 (Xp_1,dz) with n,_1 = Law(X,_1),

starting with some initial random variable with distribution 19 = Law(X(). The
Markov chain X, can be thought of as a perfect sampling algorithm. Unfortu-
nately, the sampling of its random transitions requires computation of the current
distribution of the chain.

The N-mean field particle interpretation of the equation (G.I)) is a Markov chain
& = (&) 1<i<n with elementary transitions given by

(6.2) P(neda',....aM)e1) = [ Ky (€hyda?)
1<i<N

with the current occupation measures 7Y ; = % Zfil (5&71. The initial system
consists of N independent and identically distributed random variables with com-
mon law 7.

The stochastic perturbation model associated with these discrete generation par-
ticle models is now defined in terms of a sequence of centered random fields V.
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defined by the equation

1
N N ‘rN
(6.3) M = nnflKn,n,f:Ll VN " :

We notice that the above equation only differs from (G.IJ) by the Monte Carlo

precision parameter \/—% and the centered random fields V,V. Under rather weak

regularity conditions, we can prove that V.V converge in law, as N — oo, to a
sequence of independent centered Gaussian fields V;, with a variance function that
can be explicitly expressed in terms of the transitions K, ,, ,. A detailed proof
of this functional fluctuation theorem, including uniform convergence estimates,
can be found in [4] 5] in the context of filtering models and in [6] for general and
abstract distribution flows.

The mean field particle model associated with the flow of optimal one-step predic-
tors n,, defined in ([@2]) is a simple genetic type stochastic algorithm: The mutation
and the selection transitions are dictated by the prediction and the updating transi-
tions defined in Section[dl During the selection transition, one updates the positions
of the particles in accordance with the fitness likelihood functions g, (., yn). This
mechanism is called the selection-updating transition as the adapted particles are
selected for reproduction. In other words, this transition allows particles to give
birth to some particles at the expense of light particles which die.

The second mechanism is called the mutation-prediction transition since at this
step each particle evolves randomly according to the transition kernels M,,.

Another important feature of genetic type particle models is that their ances-
tral or their complete genealogical tree structure can be used to approximate the
smoothing problem, including the computation of the distribution of the signal
trajectories given the observations. Further details on this subject can be found
in 3] B].

Mimicking the multiplicative formula ([£.4]), an unbiased particle approximation
of the unnormalized measures ,, defined in ([43) is given by

W () =) < T 7 (g up))-

0<p<n

These genetic type particle algorithms can be extended to branching approxima-
tion models with random population sizes. The book provides a series of judicious
branching strategies that can be used in the context of filtering, including minimal
variance branching number of offsprings allocated to individual sites and the sto-
chastic universal sampling technique introduced by Baker at the end of the 1980s.

6.2. Continuous time models. Continuous time filtering problems can be ap-
proximated by discrete time generation models using elementary Euler type ap-
proximation schemes. Besides this fact, the robust evolution equations discussed in
section (.3 have a natural mean particle interpretation in term of the normalized
probability measures n;:(f) = v (f)/v(1), with the measures 7; defined in (5.2]).
After some elementary computations, we find that the flow of probability measures
1; satisfies the evolution equation

En(f) = (L ()
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with the integro-differential interacting jump type generator L; ,, defined by

Lo (F)(2)
— L(H@) + V(@) / (F(2') = f(2)) mi(de’) + / (') — f(2) Vit (o) me(de)

for any pair of nonnegative potential functions (V,©,V,7) s.t. V; = V;" —V,”. As
in the discrete time case, L;,, can be interpreted as the infinitesimal generator
of a nonhomogeneous Markov process X; with jump type transitions that depend
on the current distribution 7; = Law(X;). Between jumps, X; explores the state
space using a free Lj-motion. At rate V, (X), the random state X; jumps to a
new location randomly chosen with the current distribution 7;, and at rate 7;(V;"),
the random state X, jumps to a new location randomly chosen with the updated
distribution V;* (z)n:(dz)/n:(V;1).

As in the discrete time case, the Markov process X; can be thought as a perfect
sampling algorithm, but its effective sampling again requires computation of the
current distribution of the process at any time step.

The N-mean field particle interpretation of the evolution equation

En(1) = (L ()

is the Markov process & = (£})1<i<ny with the infinitesimal generator GEN) defined
on sufficiently regular functions F' as

N

N i i
Gg )(F)(xl,...,xN) ::ZLE,%Zf’:léIiF(Il""’x ooz,
i=1

In the above formula, we have used the upper index L,EZ,)7 to indicate that the
operator L, acts on the ith coordinate. As in the discrete time case, the initial
system consists of NV independent and identically distributed random variables with
common law 7.

From the above discussion, & is a Moran genetic type interacting particle model:
Every particle & explores the state space using a free Lj-motion. At rate V,”(&}),
it jumps to a new location randomly chosen with the current distribution 7 =
+ Z;\;l 55_3, and at rate nY (V;), it jumps to a new location randomly chosen with

the updated discrete measures V" (z)nl (dz) /)N (V7).
Mimicking the multiplicative formula (5.3]), an unbiased particle approximation
of the unnormalized measures ; defined in (£.2)) is given by

0 =) x| [ oy (Vis

Further details on the origins and the mathematical analysis of these interacting
particle models can be found in [4] [I5] and the references therein.

7. CONCLUSIONS

Stochastic filtering is a natural and universal probabilistic learning technique.
It is currently used in a wide variety of scientific disciplines, including Bayesian
inference, information theory, speech recognition, communication systems, signal
processing, econometrics, financial mathematics, numerical physics, biology, fore-
casting data assimilation, and many others.
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Understanding the full theoretical and numerical picture of nonlinear filtering
theory demands significant mathematical and statistical sophistication far beyond
that required to understand and appreciate the derivation of the optimal filter
equations and its numerical approximations in a given application domain.

Nowadays, in diverse scientific communities, it seems that most of the practition-
ers are avoiding the mathematical foundations of filtering, directly applying some
filtering techniques to a particular estimation problem. In principle there is nothing
really wrong with this approach, but the danger is in having a new generation of
young researchers who have no idea of the mathematical foundation nor the nu-
merical performance, the robustness, the stability properties or even the limitation
of the nonlinear filtering model they employ.

In this respect, the book of Bain and Crisan provides an excellent expository
breakthrough, making the fundamentals of stochastic filtering accessible and co-
herent to any researcher having some background in probability theory and sto-
chastic analysis. In an effort to make the book accessible and self-contained, two
appendices contain a selected assortment of measure theory, probability theory, and
stochastic analysis calculus. The writing and the edition is precise and enjoyable
to read, with ample and detailed references.

The book is divided into two clearly separated parts, each written as a self-
contained essay.

The first part provides a clean probabilistic treatment of the theoretical aspects
of the filtering problem, with rigorous derivations of optimal filter evolution equa-
tions. By a lovely conceptual argument, the authors show that the conditional
distributions of the signal is a stochastic process with values in the space of prob-
ability measures. From there, in the span of just three sections, weighing in at a
not-very-dense ninety pages, the authors provide a rigorous derivation of the Zakai
equation, the Kushner—Stratonovich evolution equation, as well as the robust rep-
resentation formula using a partial differential equations approach or an alternative
functional analytic approach. The remaining two sections of this first chapter are
devoted to regularity properties of optimal filters and finite-dimensional filters, in-
cluding the Kalman—Bucy filter and the Benes filters, using the robust formulation
discussed above.

The second part of the book is dedicated to numerical methods for solving the
nonlinear filtering problem, with an emphasis on particle approximation models.
Six classes of algorithms are presented, including linearization techniques, deter-
ministic grid approximations, or spectral methods. The final two sections contain a
detailed study of continuous and discrete generation particle algorithms, also known
as sequential Monte Carlo methods in Bayesian inference literature.

I highly recommend this book to any researcher in applied mathematics, as well
as to any researchers in engineering and computer sciences with some background in
statistics and probability. Alan Bain and Dan Crisan masterfully guide the reader
through a fascinating area of probability and Bayesian inference which has been
very active in the last two decades. By the end of the book the serious reader
will be well equipped with most of the theoretical foundations of filtering and with
numerical methods, including advanced cutting-edge particle techniques, to study
and solve a large class of nonlinear filtering problems. The book can also serve as a
useful text for an informal seminar or a second year graduate course on stochastic
filtering.
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