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One route to investigating the differential topology of real manifolds is through
Morse theory. A smooth manifold M is decomposed into the level-sets f~!(x) of
a smooth real-valued function f : M — R, and the global topology of M emerges
from the descriptions of how these level-sets change. One can understand the whole
homotopy type of M from this point of view [Mil69], or one can pass more quickly
to algebra by defining the Morse complex, which has generators the critical points
{z € M|df(z) =0} of f and a differential counting downward gradient flow-lines
v : R — M which solve v/ (t) = =V f(y(t)). This Morse complex computes the usual
singular cohomology, and one immediate consequence is a nontrivial lower bound
on the number of critical points of a generic smooth function on a closed manifold.
For complex algebraic varieties, Picard-Lefschetz theory [Laf1] is a complexifica-
tion of this picture, which studies a projective manifold through the level-sets of a
holomorphic function f : X --» C (since holomorphic functions on compact com-
plex manifolds are constant, this will be defined only away from some subvariety).
The locus of critical values being finite in C and having connected complement,
the inverse images of regular points f~!(x) will typically all be diffeomorphic; the
global topology of X now emerges through the monodromy, which describes how
these fibres are twisted globally in the family. Picard-Lefschetz theory provides a
kind of dimensional-induction machine, in which one studies varieties through their
hyperplane sections which, being of lower dimension, are presumed more tractable.

In a short but influential note [Arn95], V. I. Arnol’d pointed out that the mon-
odromy transformations of Picard-Lefschetz theory have a basic connection to sym-
plectic topology. The heart of this connection is straightforward to describe. Morse
functions have isolated singularities modeled locally on nondegenerate quadratic
forms. Over C, the unique local model is the map 7 : (z1,...,2,) — Zj 2]2 The
general fibre 771(1) C C" is symplectically diffeomorphic to the cotangent bundle
of a sphere T*S8" !, which carries the canonical symplectic structure of classical
mechanics, and Arnol’d’s basic observation is that the monodromy of the family of
varieties {m~1(¢) |t € S} is a symplectic diffeomorphism of T*S"~!. In the lowest
nontrivial dimension n = 2, the general fibre is an annulus, the monodromy map
is a Dehn twist in the obvious waist curve {(z1,22) € R?|2? + 25 = 1}, and the
symplectic property asserts that this preserves area. In higher dimensions there is
an analogous Dehn twist, which acts antipodally on the corresponding real sphere
(i.e., the zero-section of T*S™~1) and is compactly supported in a neighbourhood
of that sphere. Even in the local model, the symplectic structure keeps track of
information not visible in classical differential topology: when n = 3, the Dehn
twist on an affine quadric surface is of infinite order as a compactly supported
symplectomorphism, but its square is differentiably isotopic to the identity.

It has become clear over the last decade that this change in perspective, from
algebraic to symplectic topology in the context of Picard-Lefschetz theory, is actu-
ally rather profound, providing a key inroad into the symplectic natures of algebraic
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varieties. Many of the modern tools of symplectic topology arise from the pseudo-
holomorphic curve methods pioneered by Gromov [Gr85] and Floer [FIo88]. The
book under review is in some sense the fruition of the seed that Arnol’d’s observa-
tion planted; it sets out a framework for the computation, by dimensional induction
of the sort alluded to above, of a certain class of holomorphic curve invariants for
affine algebraic varieties. The assembling of Seidel’s beautiful machine involves
large tracts of mathematics, and in particular of homological algebra, which are
much more recent entrants into the symplectic topological arena. To set this wider
stage, it may be helpful to give a very brief reminder of the basics of Lagrangian
Floer cohomology.

A symplectic manifold (M?",w) is a real manifold equipped with a closed non-
degenerate 2-form. The prototypical examples are cotangent bundles T%@Q, smooth
projective or affine varieties, or more generally Ké&hler or Stein manifolds. A La-
grangian submanifold is a half-dimensional submanifold L™ C M for which the
restriction of the symplectic form vanishes identically, w|;, = 0; zero-sections of
cotangent bundles and real loci in algebraic varieties provide examples. A cen-
tral feature of symplectic topology is the tendency for Lagrangian submanifolds
to intersect “more” than classical topology suggests. For instance, the Arnol’d
conjecture (now a theorem of Fukaya-Ono and Liu-Tian) says that symplectic dif-
feomorphisms arising as the time-one maps of Hamiltonian flows have as many
fixed points as the sum of the Betti numbers of the ambient manifold, rather than
just the alternating sum, the bound provided by the classical Lefschetz fixed point
theorem. These fixed points can be viewed as intersections between the Lagrangian
diagonal A C (M x M, —w @ w) and the Lagrangian graph of the given symplec-
tic diffeomorphism. One of the central questions in modern symplectic topology
is the description of (constraints on) the Lagrangian submanifolds of a given M.
In general, this seems ferociously hard: we are far from knowing which smooth
manifolds admit Lagrangian embeddings in projective space, or the classification
up to Hamiltonian isotopy of Lagrangian tori 7" C C", or more or less anything
else. Nonetheless, there is steady progress, largely through various versions of Floer
theory.

In its simplest form, Lagrangian Floer cohomology takes a pair of Lagrangian
submanifolds (Lo, L1) C M of a symplectic manifold M, and associates to that pair
a vector space HF(Lg, Ly) invariant under Hamiltonian deformations of either L;.
This Floer homology is obtained from a chain complex, where the chain groups
are generated by the (presumed transverse) intersections Lo M L, and where the
differential counts solutions to a Cauchy-Riemann type equation

(1) u:Rx[0,1] = M; w@®x{i}) C Li; Osu+ JOu =0,

which are asymptotic at the ends of the strip to prescribed intersection points
x* € Ly L. Here J is an auxiliary choice of (time-dependent) almost complex
structure on the strip chosen compatibly with the symplectic form. Formally, one
can view this as a Morse-type chain complex for an action functional on the infinite-
dimensional space of paths from L to L;; practically, the essential feature of the
theory is the ellipticity of the Cauchy-Riemann equation, which makes counting
the relevant flow-lines feasible in at least a range of situations. If one takes (Lg, L1)
to comprise the zero-section of a cotangent bundle Q C T*@Q) and its Hamiltonian
image under the flow generated by a Morse function, one essentially recovers Morse
theory on @, and indeed the first application of Floer homology was to the Arnol’d
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conjecture by reduction to the Morse inequalities for numbers of critical points of
smooth functions, where we began.

Lagrangian Floer homology has had numerous successes in a range of problems in
symplectic topology. There is a large literature addressing partial computations and
special situations. The Heegaard Floer homology of Ozsvath and Szabé [OS04] is a
version of Lagrangian Floer homology (for certain Lagrangian tori in the symmetric
product of a Riemann surface) and is expected to contain equivalent information
to Seiberg-Witten theory; it has found remarkable applications in knot theory and
3-manifold theory, leading amongst other breakthroughs to an algorithm for com-
puting the genus of a knot [MOS]. All that is in spite of the fact that to set Floer
theory on a solid footing is itself a substantial task—indeed, a gargantuan task if
the setting is made sufficiently general, as attested by the recent 1000-page opus of
Fukaya, Oh, Ohta, and Ono [FO3], the aim of which is largely to understand when
the above heuristics can be filled out even to define the Floer homology groups.
The essential issue is that perturbations of the geometric or auxiliary data (the
almost complex structure, inhomogeneous terms in the Cauchy-Riemann equation,
Hamiltonian isotopies of the Lagrangians) are not collectively sufficient, in general,
to achieve transversality for the moduli spaces of solutions to equation ().

The gradual resolution of these issues has involved deep and delicate new ideas
in analysis. However, Seidel sensibly confines himself to situations where most of
the bugbears are absent: he focuses on ezact symplectic manifolds and their ez-
act Lagrangian submanifolds. Namely, he assumes the symplectic form w = df
is globally exact, and if L. C M is a Lagrangian under consideration, moreover
0|, = df. Cotangent bundles and affine varieties belong to this class; crucially,
however, closed symplectic manifolds can never be exact. The exactness means,
first, that M contains no holomorphic spheres, and second that L bounds no holo-
morphic discs. These trivial consequences of Stokes’ theorem sweep away the foun-
dational headaches that have tormented the general development of the subject
for a decade and which Fukaya-Oh-Ohta-Ono’s Kuranishi spaces and the ongoing
polyfold program of Hofer and his collaborators will eventually defeat. Nonethe-
less, Floer theory in the exact case is far from trivial: indeed, stripped of technical
problems in its formulation, it becomes easier to appreciate its elegance and its
power.

Much of this power comes from additional structure. The first versions of Floer
theory, for action functionals on spaces of connexions arising in gauge theory, came
with long exact sequences (Floer’s eponymous exact triangle) relating the groups as-
sociated to 3-manifolds related by surgeries; the power of Heegaard Floer homology
derives in good measure from its computability, which in turn hinges on the groups
being bound together by exact sequences from surgeries and by functorially defined
maps from cobordisms. Floer homology of the diagonal HF (A, A) =2 QH*(M) re-
covers quantum cohomology with its famous product structure. When viewed from
the Lagrangian submanifold side, that product counts holomorphic triangles, and
it was introduced by Donaldson who pointed out that one could make a category
whose objects were Lagrangian submanifolds of M and whose morphism groups
were Floer homology groups. The composition in the category is then provided by
the holomorphic triangle product. The landscape was changed more drastically by
the appreciation, partly derived from Kontsevich’s homological mirror symmetry
conjecture, that one should “algebraise” the situation much further still. Homolog-
ical mirror symmetry is a huge undertaking that relates algebraic and symplectic
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geometry in a variety of settings. The important point for our current purposes is
that the symplectic geometry which enters is precisely the geometry of Lagrangian
submanifolds and their Floer homology groups. These enter not in isolation but
gathered together into a much richer algebraic structure, the Fukaya category. To
first approximation, the objects of the Fukaya category F(M) are the Lagrangian
submanifolds of M, and the morphisms in the category are the chain complexes
CF(Lo,L;) which underlie the Floer homology groups. Donaldson’s category is
recovered on passing to homology (in this context, called passing to the derived
category). Not only are the morphism spaces in F(M) chain complexes rather than
groups, but there are hierarchies of additional operations, in the form of chain-level
products

p*: CF(Ly_1,Ly) ® -~ ® CF(Lo, L1) — CF (Lo, Ly,)[2 — K]

of degree 2 — k, for k > 1, for all collections (Lo, ..., L) of objects. Here u' is the
Floer differential, counting holomorphic bigons R x [0,1]; u? counts holomorphic
triangles and serves to make the group HF(L,L) into a unital ring; the higher
p*, counting holomorphic (k + 1)-gons, carry along the information of Massey-type
products in Floer homology. Again in analogy with classical topology, just as we
learn early on that homology groups are better invariants than Euler characteristics,
so the algebra of differential forms or the singular cochain complex on a manifold
is better still. The Fukaya category is the symplectic generalisation of this more
inclusive package; for the cotangent bundle T*@Q, the Fukaya category is essentially
equivalent data to the rational homotopy type of @), seen through Morse theory.

Fukaya categories have a rather fearsome reputation: indeed, many practitioners
of symplectic topology probably remain unconvinced that they exist, or at least
shy away from them with nervousness. The very definition relies on combining
triangulated A.-categories, not the most transparent corner of homological algebra,
with the output of a theory based on elliptic partial differential equations and
whose examples are drawn from diverse parts of algebraic geometry. The operations
{1*}1~2 are not chain maps and do not descend to Floer homology; moreover,
they are defined by counting pseudo-holomorphic polygons, and the counts depend
critically on the choice of auxiliary data (including the almost complex structure).
The Fukaya category is somewhat like an infinite rank matrix depending on many
choices, for which none of the matrix coefficients is actually invariant: rather, the
entire structure is invariant up to a suitable notion of quasi-equivalence. This is
a much bleaker state of affairs than one encounters in traditional Gromov-Witten
theory or quantum cohomology, where one counts only closed holomorphic curves
and the individual counts are well defined; the added complication here is that
moduli spaces of holomorphic polygons have codimension one boundary strata in
their compactifications, and hence do not carry fundamental cycles, in contrast to
the Deligne-Mumford moduli spaces of stable closed curves. (A part of this is that
the Fukaya category is not strictly a category at all, but an A..-category.) All that
notwithstanding, there are many simple ideas buried beneath the largely technical
obscuring facades.

The first point to make is that restricting attention to a suitable class of non-
compact symplectic manifolds has philosophical as well as technical advantages. To
date, there is no way of telling whether a projective variety contains any Lagrangian
submanifolds whose Floer cohomology is well defined whatsoever. By contrast, at
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least if one allows noncompact Lagrangian submanifolds whose behaviour at infin-
ity is carefully constrained, such objects always exist on affine varieties. Indeed, if
Y is affine and w : Y — C is a Lefschetz pencil, then one can take the Lefschetz
thimble of a critical point. In the local model 7 : C* — C of the Morse singularity
described above, this is just the real locus R™ C C™, which can more invariantly be
viewed as the set of points which emanate from the critical point at the origin under
the natural symplectic flow defined by parallel transport over the positive real axis
m(R") = R>o C C. Any affine variety admits Lefschetz fibrations and so contains
Lefschetz thimbles; although they reach infinity, the maximum principle applied to
their images in C quickly shows that their pseudo-holomorphic curve theory is no
more problematic than for closed exact Lagrangians. Thus, one has somewhere to
start, and the Fukaya categories that Seidel considers admit these particular non-
compact objects from the outset: indeed, they play a central role. (For cotangent
bundles, we have shifted attention away from the zero-section to include the cotan-
gent fibre.) One compelling contribution of the present book is a split-generation
result, which says that the Fukaya category of closed Lagrangian submanifolds in-
side Y is in a sense completely determined by the subcategory obtained from a finite
“distinguished basis” of Lefschetz thimbles, namely, those associated to a collection
of paths in the base C of the Lefschetz fibration which are disjoint, one emanating
from each critical value. The split-generation result is formally analogous to Beilin-
son’s classical resolution of the diagonal for studying coherent sheaves on projective
spaces; a more fanciful, but perhaps helpful, perspective would be that it provides
a kind of “geometric Fourier theory”, in which unknown Lagrangians are abstractly
“resolved” in terms of a familiar basis.

Donaldson pointed out that Lagrangian “matching spheres” S™ = L C Y
can sometimes be swept out by families of Lagrangian spheres in the fibres
{S"1 = L, C w(t)}iey over paths v C C between critical values of the Lef-
schetz fibration w. The S™~!’s degenerate to critical points of w over the ends of
~: a matching sphere is given by gluing together two Lefschetz thimbles along their
boundaries. This construction “relativises” the idea of passing to a hyperplane
section, so it applies in a suitable sense to Lagrangian spheres as well as the affine
varieties containing them. Starting from this, Seidel shows the Fukaya category of
an affine variety is “combinatorially computable”, in an appropriate and rigorous
sense, from the data of a collection of Lefschetz pencils: one on the total space,
one on the fibre of the first pencil, one on the fibre of the next, and so forth. This
dimensional-induction machine, which eventually reduces one to studying holomor-
phic curve theory in a punctured Riemann surface where one can appeal to the
Riemann mapping theorem, is the culmination of the book. We should emphasise
that, although in exact symplectic manifolds HF(L,L) = H*(L) is a topologi-
cal object, there is in general no prediction for the rank of the Floer cohomology
HF (Lo, Ly) when Ly # L1, and its definition involves solutions to an elliptic par-
tial differential equation that one has no expectation of writing down explicitly. To
assemble even a partial or theoretical algorithm for extracting detailed information
on these groups is qualitatively as well as quantitatively striking. We should also
mention that one can hope to approach the symplectic topology of a closed vari-
ety X indirectly by virtue of the theory in ¥ = X\Xy and ideas from algebraic
deformation theory [Sei(2]. This strategy has been carried out successfully in two
nontrivial cases—for the quartic surface [Sei03] and the genus two curve [Sei0§].
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The split-generation result for Fukaya categories of Lefschetz fibrations is the
culmination of many other developments. At the heart of these is a basic relation-
ship between geometry and algebra: Dehn twists act via algebraic twists. Recall
that the local monodromy of a Lefschetz fibration is a Dehn twist in a Lagrangian
sphere S"~1 = [ ¢ M = w~'(t) C Y. There is also an algebraic twist functor,
which is the cone on the canonical evaluation

(2) Homg(yp)(L,0) @ L < e,

The algebraic twist can be defined for any L; the theorem asserts that if L is rep-
resented by a Lagrangian sphere, then the Dehn twist 77, and algebraic twist Tp,
act in the same way on the Fukaya category. This equivalence between algebraic
and geometric twists was conjectured by Kontsevich and is proved here for the first
time. One sees at once, in the left-hand side of (@), that we have allowed objects
of the shape V ® L for chain complexes V. This is one part of the long algebraisa-
tion process, involving enlarging the Fukaya category to include not just geometric
objects (Lagrangian submanifolds) but things built out of those in ways that make
homological algebra methods relevant and applicable (formal chain complexes of
Lagrangian submanifolds, formal summands of such complexes). Although it may
be counterintuitive, the power of the machinery is only realised because of this en-
largement: it perhaps entails a loss of information, but the information retained is
rendered more tractable.

A brief description of an application shows how the algebraic structure enters in
practice. This is an unpublished result of Seidel himself and is an application of
homological mirror symmetry for projective space. The mirror of CP" is a certain
Lefschetz fibration w : (C*)™ — C (see [HV00]), and mirror symmetry asserts the
equivalence between the bounded derived category of coherent sheaves D’(P") and
a Fukaya category generated by Lefschetz thimbles D™F((C*)™) as introduced and
studied in the book under review. Suppose L C (C*)™ is a closed connected exact
Lagrangian submanifold which, in addition, carries a spin structure and has van-
ishing Maslov class. It defines an object of F((C*)™) and hence a complex &, — P
of coherent sheaves. The compactness of L implies that this complex of sheaves is
invariant under the Serre functor of the category, which is given on P" by tensoring
with the ample anticanonical bundle. Only sheaves with zero-dimensional support
have this property: starting from here, one argues that up to a shift in grading the
complex € is actually quasi-isomorphic to the skyscraper sheaf of a point, hence
by a well-known computation has Ext* (€., &) = A(C™). These Ext-groups cor-
respond, under mirror symmetry, to the Floer homology groups HF (L, L) of our
original Lagrangian submanifold, which in the exact setting reproduce ordinary co-
homology; so one infers that L has the same complex cohomology groups as the
torus. This is a partial but highly nontrivial result towards Arnol’d’s “nearby La-
grangian submanifold” problem, which would predict that L is Hamiltonian isotopic
to T™ C T*T"™ = (C*)™. This sketch, however superficial (and errors introduced by
the reviewer notwithstanding), should immediately bring home the central tenet of
the philosophy, namely that a single unknown Lagrangian might sometimes most
profitably be studied by first obtaining a description of the entire derived Fukaya
category. Away from mirror symmetry, one can use algebraic approximation and
the Nash-Tognoli theorem to bring similar techniques to bear on Lagrangian sub-
manifolds of arbitrary cotangent bundles, whence to questions arguably of interest
in dynamics.
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The book is in three parts. The first is a comprehensive albeit condensed in-
troduction to A..-categories, twisted complexes, and idempotent completion. The
second part, after a quick review of classical Lagrangian Floer theory (material
which does not yet appear in any textbook), concerns the basic construction of
the Fukaya category and its fundamental invariance properties. The third part of
the book proves the relation between algebraic and geometric twists, derives the
split-generation theorem, and builds the dimensional-induction machine. The book
ends with one application: the Fukaya category of a punctured Riemann surface
of genus at least two is proved to not be formal (not equivalent to a category with
vanishing higher-order products). This showcases some of the algebra in action and
has a deeper significance in view of the role played by surfaces in low-dimensional
topology. The global structure of the book—first algebra generalities, with sym-
plectic geometry making its appearance in the second part, and Lefschetz fibrations
and Dehn twists defered to the third—hugely simplifies the task of teasing out the
logical structure of any given argument and the set of prerequisites on which a
particular piece of machinery rests. The exposition, whilst terse, is exemplary in
precision.

Seidel has gone to great effort to lay out the foundations of Fukaya categories, in
the simplest nontrivial setting, in a complete and accessible fashion. He has accom-
plished the remarkable and generous feat of variously developing, clarifying, and
writing the basic theory in a way which gives a safe point of entry for anyone hoping
to learn or deploy these methods. At least for geometers it deserves to become the
standard (re)source for the material it covers. We should end by pointing out that
the Fukaya category is only one of several algebraic frameworks which emerge from
the Gromov-Floer theory of pseudo-holomorphic curves, for instance, there are the
differential graded algebras of symplectic field theory and the integrable systems
which lurk mysteriously behind Gromov-Witten theory. How these various strands
will eventually tie together is unclear, and the topic of much current enquiry.
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