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This book is devoted to some recent developments in our understanding of the
topology of free loop spaces of manifolds. The contributions are based on three
lecture courses given by the authors at a summer school at Almeŕıa, Spain, in the
summer of 2003. The two parts treat rather different facets of the theory, and I
will try to give some perspective on each of them in turn.

The free loop space of a manifold X is the space ΛX = Map(S1, X) of maps from
S1 into X. I am deliberately vague on the kind of maps one considers (the minimal
requirement being continuity), since that often depends on context and taste. For
a classical Riemannian geometer, interest in these spaces comes from the following
source. For certain dynamical systems on X, such as the geodesic flow, the closed
trajectories can be described as critical points of some (action) functional, and one
can use Morse theory and its generalizations to relate existence questions for closed
orbits to topological properties of ΛX. An early and still fundamental result in this
direction is the theorem of Gromoll and Meyer [20], which asserts the existence of
infinitely many geometrically distinct periodic geodesics for any Riemannian metric
on simply connected closed manifolds X for which the rational Betti numbers of
ΛX are unbounded. Using minimal model techniques, it was shown by Sullivan and
Vigué-Poirrier [30] that the latter property holds whenever the rational cohomology
ring of X needs more than one generator.

More recently, interest in path and loop spaces has arisen from their importance
as basic configuration spaces in string theory. The term string topology in the title
is a direct reference to this physics lingo. It refers to a whole collection of algebraic
structures discovered by Chas and Sullivan [7, 8, 27] on the singular chains of various
path spaces of a smooth oriented manifold M , whose underlying operations are a
topological model of “string interaction”. Indeed, the idea is quite elegant and very
easy to explain. Consider a piece of directed string in three-space (the vertical in
Figure 1) and a family of pieces of directed string (the horizontals in Figure 1) which
move across it. Exactly one of the strings in the family meets the first string, and
at this instance one can imagine cutting the two strings at the intersection point
and recombining them as shown in Figure 2. This is the essential local operation
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Figure 1. A local family of curves meeting another curve transversely

of string topology. The variety of algebraic structures it generates comes from the
types of curves considered, and whether one allows the interactions at all points of
the string or only at certain points marked in advance. The local picture could also
describe a self-intersection, in which case the result of local recombination breaks
the curves into two pieces.

Figure 2. Result of local recombination

As already mentioned, in more mathematical terms a “family of strings” is usu-
ally a singular chain on a suitable path or loop space on some oriented smooth
manifold M . The essential observation of Chas and Sullivan was that if one im-
poses transversality conditions on the evaluation maps to M , the local operations
give rise to transformations from chains to chains. The drawback is that these
naive chain level operations are only partially defined. However, standard argu-
ments show that the simplest operations descend to well-defined and well-behaved
algebraic structures on homology. The two most prominent examples are

• an associative, graded commutative product of degree − dimX and a Lie
bracket of degree 1− dimX on H∗(ΛX), which combine with the operator
Δ : H∗(ΛX) → H∗+1(ΛX) coming from the circle action rotating the
domain to yield a Batalin–Vilkovisky (or BV) algebra structure onH∗(ΛX),
and

• an involutive Lie bialgebra structure on HS1

∗ (ΛX,X), the S1-equivariant
homology of the free loop space relative to the subset of constant loops (see
[8] for the definitions).

Even though the original paper [7] is still not published, there exist several con-
structions of the above operations in the literature; see, e.g., [8, 11, 6, 25, 9, 14].
There are further generalizations to operations on chains in spaces of paths with
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endpoints in suitable smooth submanifolds, where the interactions take place ei-
ther at the ends of the paths (via intersection theory in the submanifolds) or in the
interior of the paths (as described in the geometric picture above). Some of these
have been implemented on the homology level in [26, 18], where they are phrased
in the language of topological conformal field theories. The chain level version is
not yet properly treated in the literature, mainly due to various technical compli-
cations. In the naive description above these can be traced back to the fact that
the intersection of chains requires transversality. Conceptually, the expected final
outcome, however, is quite simple. Depending on the precise context, one obtains a
representation of some operad, properad or prop (these are gadgets parametrizing
the relevant operations and their compatibilities; see Chapter 2 of Part I of the
book or, e.g., [24]) on a category whose morphisms correspond to suitable chains
in loop or path spaces in a fixed manifold.

In the recent survey [28], which includes an extensive bibliography, Sullivan de-
scribes some of the roots of string topology, as well as its present state of develop-
ment. In particular, the second part of his survey contains informative accounts of
various perspectives on string topology that have emerged so far, and the third part
outlines an implementation of the chain level theory corresponding to the involutive

Lie bialgebra structure on HS1

∗ (ΛX,X) mentioned above.
There is a variety of reasons to care about string topology. I will briefly describe

my personal interest in the subject, which comes from the close relation to the
theory of holomorphic curves with boundary on some Lagrangian submanifold L in
a symplectic manifold (M,ω). A holomorphic curve is a map u : (Σ, ∂Σ) → (M,L)
from some Riemann surface with boundary Σ which satisfies a generalized Cauchy–
Riemann equation with respect to an almost complex structure J on M suitably
compatible with the symplectic form ω. Fixing the topological type of Σ and
a relative homology class A ∈ H2(M,L), one obtains a certain moduli space of
equivalence classes of such maps representing the homology class A, where two
maps are considered equivalent if they are intertwined via an automorphism of the
domain. As the equation is elliptic, these moduli spaces have finite (expected)
dimension. They are not compact, but can be compactified by adding strata built
from earlier (with respect to a suitable partial order) such moduli spaces. With a
substantial amount of analytical work, these compactified spaces can be given the
structure of smooth weighted branched manifolds with boundary and corners. Such
a compactified moduli space can be viewed as a suitable chain of loops (or tuples of
loops if Σ had more than one boundary component) by evaluating each point (i.e.,
holomorphic map u) at the boundary. There is a slight complication here, since
each point is only an equivalence class of maps, but this can easily be dealt with.
Now the wonderful thing is that the boundary of each such chain can be described
in terms of string topology operations applied to other such chains.

One not entirely obvious effect is that in this way one can use information about
the string topology of L to obtain restrictions on the possible Langrangian em-
beddings. This was first noticed by Fukaya, and, applying this circle of ideas
with Σ = D2, he outlined proofs of several remarkable results in symplectic topol-
ogy [15]. For example, he completely classified connected, closed, oriented, prime
3-dimensional manifolds which can occur as Lagrangian submanifolds of standard
symplectic C3: the only candidates are products of oriented closed surfaces with



708 BOOK REVIEWS

the circle, and by a well-known elementary construction these indeed do embed as
Lagrangian submanifolds.

There are several ongoing projects (see, e.g., [16, 1, 2, 29, 10]) that aim to make
various aspects of the relation of holomorphic curves and string topology precise,
and to exploit it in differential topology, symplectic topology, and Hamiltonian
dynamics. It appears that in many of these applications, some chain level discussion
is essential, but there is some freedom in “shifting the analytic difficulties” between
the holomophic curve side and the topological side.

In the first part of the book under review, Cohen and Voronov take the reader
on a guided tour through some of the tools used in string topology, with an empha-
sis on homotopy-theoretic methods. Chapter 1 starts with a review of intersection
theory in manifolds, and introduces the loop product, loop bracket, BV-operator
Δ, and string bracket mentioned above on the homology level. It also presents the
Cohen–Jones approach [11] to the loop product via stable homotopy theory, and
it briefly sketches one relation of string topology to Hochschild cohomology (I will
return to this point below). Chapter 2 gives a rapid review of operads and props, as
well as algebras over them, with special attention to the cacti operad introduced by
Voronov [31], which can be used to describe part of string topology. Chapter 3 dis-
cusses the topological field theory perspective on string topology mentioned above,
and Chapter 4 is dedicated to Floer homological interpretations on the cotangent
bundle. This is one instance where the holomorphic curve picture described above
has recently been worked out in some detail [1, 2]. The last chapter of Part I
describes some ongoing work of the second author on higher-dimensional general-
izations of string topology, with general spheres replacing the loops or strings in
the constructions. This is another aspect of the theory that is still in its infancy,
with promising lines for further research.

As often happens with guided tours—I presume most tourists will agree—the
customer interested in details will want to consult additional sources, but at the
very least he or she will have a good enough overview of the basic ideas to make
an informed choice of what to read next.

The second part of the book is concerned with topological cyclic homology, and
more specifically it describes the construction of algebraic models amenable to
computations. As I am far from an expert on this subject, I will restrict myself to
some background remarks. In their preparation, I found the surveys by Berrick [3]
and Madsen [23] and the monograph of Loday [22] very helpful.

The cyclic (co)homology of an associative algebra first appeared in the works of
Connes, Loday and Quillen, and Tsygan in the early 1980s. To describe the idea,
I start by briefly recalling the definition of Hochschild homology. Suppose that A
is a unital associative algebra over some ring k, say k = Q for simplicity. Given
an A-bimodule M , one considers the sequence C•(A,M) of modules Cn(A,M) =
M ⊗A⊗n. Together with the structure maps

di(m, a1, . . . , an) =

⎧
⎨

⎩

(ma1, a2, . . . , an), i = 0,
(m, a1, . . . , aiai+1, . . . , an), 0 < i < n,
(anm, a1, . . . , an−1), i = n,

(1)

si(m, a1, . . . , an) = (m, a1, . . . , ai, 1, ai+1, . . . , an), 0 ≤ i ≤ n,(2)

the sequence is what is known as a simplicial module. It is sometimes called the
cyclic bar construction of A with coefficients in M . By definition, the Hochschild
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homology of A with coefficients in M is

HH∗(A,M) := H∗(C•(A,M), d), where d =
∑

i

(−1)idi.

In the special case that M = A, one simply writes HH∗(A). An important property
of Hochschild homology is its Morita invariance,

HH∗(Mr(A)) ∼= HH∗(A),

where Mr(A) denotes the r × r matrices with coefficients in A. This isomorphism
is induced from a trace map tr : Cn(Mr(A),Mr(A)) → Cn(A,A) given as

tr(M0 ⊗ · · · ⊗Mn) :=
∑

0≤i0,...,in≤r

(M0)i0i1 ⊗ (M1)i1i2 ⊗ · · · ⊗ (Mn)ini0 ,

which is easily checked to be a simplicial map. This trace map plays an important
role in the definition of the Dennis trace map

Tr : Hn(GL(A), k) → HHn(A),(3)

which is constructed from the composition

Hn(GLr(A), k)
ι∗→ HH∗(k[GLr(A)])

f→ HHn(Mr(A))
tr→ HHn(A).(4)

Here GLr(A) ⊂ Mr(A) denotes the multiplicative subgroup of invertible matrices.
To explain this sequence of maps, note that in analogy with the cyclic bar con-
struction for algebras above, we can form the cyclic bar construction Bcyc

• (G, Y ) of
a group G with coefficients in a two-sided G-space Y , with Bn(G, Y ) = Y × Gn,
using exactly the same formulas (1) and (2) as before. One gets a simplicial set
and, by definition, the homology of a group G is computed by using the trivial
two-sided G-space Y = {∗}. In this case B•G := Bcyc

• (G, ∗) is simply called the bar
construction of G. Now the map ι∗ in (4) is induced from the map ι : B•GLr(A) →
C•(k[GLr(A)]) defined as ι(∗, g1, . . . , gn) = ((g1 · · · gn)−1, g1, . . . , gn), and the map
f is induced from the “fusion map”, which maps a formal linear combination of
invertible matrices to an actual sum. Note that both of these maps are simplicial.
The lucky fact is that, while the fusion map does not stabilize well as r increases
(for GL∗(A) one adds a diagonal 1, for M∗(A) one adds a row and column of
zeroes), the composition does, giving rise to a map (3) as claimed.

A further simple but important observation is that in all of the above examples,
there is an additional cyclic symmetry, in the sense that the structure maps di and
si are compatible with an action of the cyclic group Zn+1 on Cn. To be explicit,
on Cn we have the following relations:

dit = tdi−1 for 1 ≤ i ≤ n and d0t = dn,

sit = tsi−1 for 1 ≤ i ≤ n and s0t = t2sn.

A simplicial object with this additional structure is called a cyclic object, a funda-
mental notion introduced by Connes [12]. In the case of the Hochschild complex, the
action is generated by t(a0, . . . , an)=(an, a0, . . . , an−1), and for the bar construction
B•G of a group it is generated by t(∗, g1, . . . , gn)=(∗, (g1 · · · gn)−1, g1, . . . , gn−1).

Notice that the above relations imply that the Hochschild boundary map d de-
scends to a well-defined map b on the quotient of Cn(A,A) by the action of (1− t).
Now the cyclic homology HC∗(A) of the algebra A is simply defined as the ho-
mology of this quotient complex [13], at least under our assumption that k = Q

(see, e.g., [22] for the general construction using suitable bicomplexes). Connes
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motivation in [13] was to generalize the classical Chern character from differential
geometry,

ch : K0(X) → Hev
deRham(X).

which associates to each vector bundle its total Chern class. Here generalization on
the one hand meant extending it to more general algebras than the commutative
algebra of functions on a manifold, in particular noncommutative ones. But there is
also an extension to higher K-theory, which is inspired by the Dennis trace map. In
fact, notice that all the maps in (4) are in fact maps of cyclic objects, so they induce
maps on cyclic homology. Moreover, the projection map from B•G to the quotient
by (1 − t) give rise to a map from the group homology to the cyclic homology of
the group, so analogously to the Dennis trace map we obtain the Chern character

ch : H∗(GL(A); k) → HC∗(A).

In fact it is customary to view it as a map from the K-theory of A to a variant of
cyclic homology called negative cyclic homology, but I will not pursue this point
here (again, see, e.g., [22] for details).

All this algebra leaves us with an obvious question: What does all of this have
to do with the free loop space? In the algebraic discussion up to this point, we have
only used the face operators di (and the cyclic operator t). However, the simplicial
structure allows us to form geometric realizations of all our objects. It was noticed
early on that the geometric realization |X•| of a cyclic set or space X• has a natural
S1-action; see, e.g., [5, 19, 21]. Given a topological group G, we can view Y = G as
a two-sided G-space and consider the cyclic bar construction Bcyc

• G := Bcyc
• (G,G)

of G, which by our above discussion is a cyclic space. Now we have a projection
map p : Bcyc

• G → B•G, defined as p(g0, . . . , gn) = (∗, g1, . . . , gn), which is a map of
simplicial spaces. Passing to geometric realizations, and using the natural S1-action
on |Bcyc

• G| we get a continuous map

S1 × |Bcyc
• G| → |Bcyc

• G| p→ |B•G| �→ BG,

and it turns out that the adjoint |Bcyc
• G| → Map(S1, BG) of this map is a homotopy

equivalence. This construction in fact extends to more general objects G than just
groups. In particular one can use the Moore loop space ΩX of a pointed topological
space X in place of G. In this way one obtains a homotopy equivalence

|Bcyc
• ΩX| �→ Map(S1, BΩX) 	 ΛX,(5)

where in the last step we have used the fact that BΩX 	 X. Arguing along these
lines, one obtains canonical isomorphisms [19]

HH∗(S∗(ΩX)) ≡ H∗(ΛX)

and

HC∗(S∗(ΩX)) ≡ HS1

∗ (ΛX),

where S∗(ΩX) denotes the strictly associative algebra of singular chains on the
Moore loop space with the Pontryagin product.

At this point I should mention that there are other Hochschild and cyclic (co)ho-
mology constructions that yield the homology of the free loop space. In fact, for
simply connected spaces X, one has [21] (see also the end of the first chapter of
Part I of the book)

HH∗(S∗(X), S∗(X)) ∼= H∗+dimX(ΛX),(6)
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which also admits a cyclic version. Here S∗(X) denotes singular cochains, with
algebra structure given by cup product. The importance of this construction is
that Hochschild cohomology of any algebra has the structure of a Gerstenhaber
algebra [17]. In fact, for cochains on a smooth closed oriented manifold, Félix
and Thomas [14] proved that, with coefficients in a field of characteristic zero,
the Gerstenhaber algebra structure lifts to a BV algebra structure, and (6) is an
isomorphism of BV algebras, where on the right one considers the string topology
BV-structure mentioned in the first part of this review.

Topological Hochschild and cyclic homologies were defined with the goal of ex-
tending the tools from algebraic K-theory for rings to “rings up to homotopy”. Ac-
cording to [23], Goodwillie first suggested replacing the algebra A by an Eilenberg–
MacLane spectrum and the tensor product by the smash product of spectra in the
above algebraic constructions. For the Hochschild story, this was carried out by
Bökstedt, and the cyclic version was developed by Bökstedt, Hsiang and Madsen [4].
There they defined topological cyclic homology, which assigns to each topological
space X and prime p a topological spectrum TC(X; p). Moreover, they generalized
the Chern character to the cyclotomic trace, which maps from K-theory to topo-
logical cyclic homology, and used it to prove a K-theoretic version of the Novikov
conjecture.

So far, very few explicit computations for topological cyclic homology are known,
and the basic aim of Part II of the book is to construct algebraic models for the
topological cyclic homology of a space X which are amenable to such computations.
Here model means a cochain complex (or algebra) such that, after tensoring with
the finite field Fp, its cohomology is isomorphic to the mod p spectrum cohomology
of TC(X; p). After collecting some preliminaries in Chapter 1, Chapter 2 describes
the construction of certain algebraic models for the free loop space. Chapter 3
explains the construction of a model for the homotopy orbit space for the S1-action
on the loop space. Finally, in Chapter 4 the pth power map (for p = 2) is modelled,
and the previous machinery is put together to construct the advertised model of
the mod 2 topological cyclic homology.

To summarize, this book gives an introduction to some exciting recent develop-
ments in the topology of free loop spaces. It should be a good starting point for a
more detailed study of the rapidly developing literature on this subject, and given
the pace of these advances, this maybe the best that could be hoped for. In fact, it
is not a very daring prediction that eventually our collective understanding of the
topology of free loop spaces will allow us to combine the two aspects of the theory
which are presented somewhat disjointly in this book.
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