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Chern, Shiing-shen
On integral geometry in Klein spaces.
Ann. of Math. (2) 43 (1942), 178–189.

This paper constitutes a praiseworthy attempt to bring methods and results
of the so-called “integral geometry” where they really belong, that is, within the
framework of E. Cartan’s theory of homogeneous spaces. Those (called Klein spaces
by the author) are the spaces in which a transitive Lie group G of automorphisms
has been defined, and which can therefore be represented as spaces of cosets G/g in
G with respect to a subgroup g. As the author has realized, integral geometry is the
study of a certain type of relations between integral invariants in two homogeneous
spaces N = G/g, M = G/h defined by the same group G and different subgroups
g, h, and is by no means confined to the group of motions in a Euclidean space (or in
one of constant curvature). The best-known case, and the one which may best serve
as illustration, is of course that in which G is the group of motions in Euclidean
space En, where n = 2 or 3, and g, h are the subgroups which respectively leave
invariant a given straight line and a given point; G/h is then En itself (viewed as
a point-space), and G/g the space of straight lines in En.

§ 1 sketches in brief outline Cartan’s method of invariant differential forms as
applied to homogeneous spaces; it gives, in terms of the constants of structure,
a necessary and sufficient condition for the existence of an invariant measure, ex-
pressible by the integral of an invariant differential form, in a homogeneous space
[cf. the treatment of the same problem for arbitrary locally compact groups in the
recent monograph by the reviewer, “L’intégration dans les groupes topologiques,”
Actual. Sci. Ind., no. 869, Hermann et Cie., Paris, 1941; MR0005741 (3,198b)].
The condition, as given, is purely local; the further considerations which are nec-
essary if orientation is taken into account (g need not be connected, nor need G/g
be orientable) are omitted.

§ 2 proposes a general definition of “incidence” between an element a in M = G/h
and an element b in N = G/g; a, b are called “incident” if the cosets x ·h, y ·g which
define them have a point z in common, in which case they of course have in common
the whole coset z ·γ with respect to γ = h∩g. This amounts to saying that there is a
transformation u = z−1 in the group which brings a, b to a given canonical position
u(a) = a0, u(b) = b0 (corresponding to the particular cosets h, g). This clearly
includes the usual definition of “incidence” in all relevant particular cases, but is
much more general. In the case of points and straight lines in En, for instance,
it will mean that a point and straight line are called “incident” in the sense of
the author if they are at a given distance δ from each other, δ being the distance
between a0 and b0; this is the same as the usual “incidence” if δ = 0; still calling
it “incidence” for δ > 0 may be slightly misleading, but only serves to widen the
scope of the author’s results.
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§ 3 is an attempt to prove the analogue of Crofton’s and Cauchy’s formulae in
the general setting previously outlined; the generalized Crofton formula alone is
discussed in full detail. Crofton’s classical theorem asserts that the measure of the
set of straight lines in E2 which are incident with a given curve is, up to a universal
constant factor, the length of the curve; the same is true in E3, curves and their
lengths being replaced by surfaces and their areas. The author now considers the
two homogeneous spaces M = G/h, N = G/g, of dimensions m, n, respectively;
let Vp be a portion of a p-dimensional variety in M , the dimension p being such
that the set Vn of elements of N which are incident with some elements of Vp is
of dimension n. The main part of the author’s argument then consists in finding
a suitable expression of the differential form which defines the invariant measure
in N , when that form is to be calculated over Vn. To that effect, a system of rep-
resentatives Wp is chosen in G for the cosets which correspond to the elements of
Vp; the calculation then proceeds correctly, although notations are somewhat con-
fusing, and the advantages of Cartan’s methods are partly lost by the unnecessary
introduction of local coordinates and the implicit use of systems of representatives;
the assertions [p. 185] that the forms ωi are “Pfaffian forms in λν only,” and that
ak

i “are functions of λν ,” would be trivial if systems of representatives had been
chosen in h for the cosets of γ, but are untrue otherwise. Most of the calculation
is valid for an arbitrary choice of the system of representatives Wp for Vp in G; the
author, however, assumes from the beginning that this choice has been made in
a definite manner “by the method of moving frames of Cartan,” and uses this in
trying to define the invariant p-dimensional measure (or “area”) of Vp in M ; unfor-
tunately, the treatment is exceedingly sketchy at this point, and the phrase “it is in
general possible” [p. 182.] hardly helps to dissipate the obscurities of the proposed
definition. There is even more vagueness in the carrying out of the integration of
the calculated differential form; the author only says that he does this “by first
holding an element of Vp fixed”; doing so without any precaution, however, would
give 0 even in such a simple case as that of the classical Crofton formula; in the
latter case, what is done is to integrate, not the form itself, but its absolute value;
and it is open to question whether the same device should be adopted in the general
case, or whether (as the author seems to suggest in the case of infinite integrals)
integration should be carried out over some part only of the set Vn. It is appar-
ent, from the work of G. de Rham on integral invariants [Jber. Deutsch. Math.
Verein. 49, 156–161 (1939); MR0000721 (1,119e)] that the invariant p-dimensional
measure in a homogeneous space M is not always uniquely defined, and therefore
deeper investigations probably would be required in order to settle those questions
[cf. also W. Maak’s work on Crofton’s formula, Math. Ann. 116, 574–597 (1939)].
It would seem, therefore, that the author has not conclusively proved any general
theorem on the subject; however, he has given a method which is probably ade-
quate to settle any particular case where we already have some information about
the application of the moving frame method; and it should again be emphasized
that the main calculation is correct and should be found useful in any further work
on the subject. Similar remarks apply to the author’s attempt at a generalization
of Cauchy’s formula, which is given only in brief outline, and depends upon the
same calculation as above indicated.

From MathSciNet, December 2008
A. Weil
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MR0192436 (33 #661) 53.52

Chern, S. S.
The geometry of G-structures.
Bull. Amer. Math. Soc. 72 (1966), 167–219.

This paper is a revised and expanded version of the American Mathematical
Society Colloquium Lectures of 1960. It constitutes a remarkably comprehensive
and useful survey of modern work on riemannian and complex structures in dif-
ferential geometry. The unifying notion of a G-structure on an n-manifold M is
emphasised, by which the author means a reduction of the group GL(n, R) to the
subgroup G. He then considers the basic general problems of existence of particular
G-structures, the local and global properties of those which exist, and the mappings
between structures. The author remarks that he “will emphasize simple and con-
crete problems at the expense of generality”. Since the paper is itself a review, one
can add little except to praise its utility, interest and clarity. It contains a large
number of examples, and descriptions of theorems; several problems are stressed;
and there is a list of 141 references. There are 13 sections, listed, with brief in-
dication of contents, as follows: Introduction; Riemannian structure (curvature,
Gauss-Bonnet theorem, pinched manifolds); Connexions (and holonomy groups);
G-structures (Cartan’s problem of equivalence); Harmonic forms (holonomic G-
structures); Leaved structures (here regarded as a reduction of the structural group
with differential conditions, with examples from topological dynamics); Complex
structure (many examples of complex manifolds); Sheaves (Cousin’s problem, de
Rham’s Theorem, Dolbeault cohomology, Stein manifolds, classification of bundles
by H1(M, S)); Characteristic classes (conditions for reduction of structural group,
operations on vector bundles, curvature, divisibility); Theorems of Riemann-Roch,
Hirzebruch, Grothendieck, and Atiyah-Singer; Holomorphic mappings of complex-
analytic manifolds (theorems of Chow, Kodaira, Plücker, Picard, Ahlfors, Levine);
Isometric mappings of Riemannian manifolds (Nash’s theorem, tight immersions
and embeddings, minimal submanifolds); General theory of G-structures (local flat-
ness, Pythagorasian nature of metric).

It should be clear then, that here is the outline of a large book, which one hopes
the author will someday complete.

From MathSciNet, December 2008
H. B. Griffiths

MR0353327 (50 #5811) 57D20

Chern, Shiing Shen; Simons, James
Characteristic forms and geometric invariants.
Ann. of Math. (2) 99 (1974), 48–69.

This paper is a detailed version of a previous one [Proc. Nat. Acad. Sci. U.S.A.
68 (1971), 791–794; MR0279732 (43 #5453)]. In the intervening period the activity
on this topic of secondary characteristic classes has been great, so it seems proper
to examine here some of the details and indicate a little of where and how it has
been pursued.

Let E → M be a principal bundle with group G. For each invariant polynomial
P ∈ Ik(G), the Weil homomorphism gives a characteristic class, determined by
the invariant 2k-form P (Ωk) on E, where Ω is the curvature form of a connection

http://www.ams.org/mathscinet-getitem?mr=0192436
http://www.ams.org/mathscinet-getitem?mr=0192436
http://www.ams.org/mathscinet-getitem?mr=0353327
http://www.ams.org/mathscinet-getitem?mr=0353327
http://www.ams.org/mathscinet-getitem?mr=0279732
http://www.ams.org/mathscinet-getitem?mr=0279732


344 SELECTIONS REPRINTED FROM MATHEMATICAL REVIEWS

θ on E. The authors define a (2k − 1)-form TP (θ) on E having P (Ωk) as its
exterior derivative. On each fiber Em the restriction of TP (θ) is a closed form
that is independent of the choice of θ and represents the transgression class in
H2k−1(G;R) which corresponds to P . An explicit formula is given for TP (θ),
but perhaps it is more important that it is determined up to an exact form by
the following functorial properties in the category of G-bundles with a connection:
(1) dTP (θ) = P (Ωk) and (2) P → TP (θ) is natural with respect to connection-
preserving G-bundle maps. The authors’ object is to give geometrical significance
to the forms TP (θ), especially in the case where P (Ωk) = 0 so that TP (θ) is closed
and represents a cohomology class on E.

When P is integral, then the information carried by TP (θ) can be pushed forward
to M in the form of a cochain u ∈ C2k−1(M ;R/Z) such that, up to a coboundary,
π∗u is the reduction of TP (θ)modZ. The algebra of such cochains (differential
characters) has been studied further by J. Cheeger and the second author (“Dif-
ferential characters and geometric invariants”, to appear) and Cheeger [Symposia
Mathematica, Vol. XI (Convegno di Geometria, INDAM, Roma, Maggio, 1972), pp.
441–445, Academic Press, London, 1973]. If 2k − 1 ≥ dimM , so that P (Ωk) = 0,
then u is a cocycle. Sometimes u carries information independent of the choice
of θ; this is true of the cohomology class of u when 2k − 1 > dimM , and when
dim M = 2k−1, there are general conditions under which the reduction of u mod Q
is independent of θ.

When E is the bundle of bases, then the significant invariant polynomials are
those giving the Pontrjagin classes. Then the authors prove that if θ and θ′ are the
Riemannian connections of conformally related metrics on M , TP (θ) and TP (θ′)
differ by an exact form and P (Ωk) = P (Ω′k). Hence when P (Ωk) = 0, TP (θ)
represents a cohomology class in H2k−1(E;R) which is a conformal invariant.

As an application a necessary condition for conformal immersion of a Riemannian
manifold in Rn+k is obtained, where n = dim M . If there is such an immersion,
the normal Pontrjagin forms ⊥Pi(Ω2i) = 0 for i > [k/2], and 1

2T⊥Pi(θ) represents
an integral cohomology class on E. A calculation shows that for a bi-invariant
metric on SO(3), 1

2TP1(θ) = −1
2T⊥

1(θ) is not integral, and consequently SO(3)
does not admit a conformal immersion into R4. For an extension of this result to
the classical compact groups see the paper of J. L. Heitsch and H. B. Lawson, Jr.
reviewed below [#5812]. An oriented compact 3-manifold is parallelizable, so that
1
2TP1(θ) can be pulled down to M via a section of E; the integral of this pulled-
down form is an R/Z-invariant Φ(g) of the conformal class of the metric g. The
authors show that as a function of metrics, Φ has g as a critical point if and only
if g is conformally flat.

The effective use of this theory seems to exploit two hypotheses: an integral-
ity assumption on P and the vanishing of P (Ωk). In this paper, this vanishing
is obtained under a dimension hypothesis. However, it is possible to obtain more
extensive applications when one has Bott-type vanishing theorems, that is, in the
case of foliated bundles. The systematic study of such vanishing theorems and
the secondary characteristic classes they lead to is being pursued by F. W. Kam-
ber and P. Tondeur [see, e.g., Manuscripta Math. 11 (1974), 51–89; MR0334237
(48 #12556)].

From MathSciNet, December 2008
R. L. Bishop
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MR0494957 (80b:53008) 53A60; 14C21, 14H99, 53B25

Chern, S. S.; Griffiths, Phillip
Abel’s theorem and webs.
Jahresber. Deutsch. Math.-Verein. 80 (1978), no. 1-2, 13–110.

This paper is in the tradition of Blaschke and his school. The subject is the
local invariants of a finite family of foliations; the methods are those of algebraic,
projective, and differential geometries.

A d-web on an open set U in Rn is a set of d foliations of U , each foliation of
codimension one. The leaves of the foliations are always assumed to be in general
position. Two d-webs are equivalent if one can be mapped to the other by a smooth
diffeomorphism of the domains of definition. For d ≤ n, all d-webs are locally
equivalent. The most interesting case is when d > 2n ≥ 6 and this is assumed in
the following. A d-web is linear if the leaves are all hyperplanes and is linearizable
if it is equivalent to a linear d-web. Note that two linear d-webs are generally not
equivalent.

This study of d-webs is motivated by the following example. (In the manner of
the paper we intermix real and complex structures. Also all statements should be
interpreted locally.) Consider an algebraic curve C of degree d in Pn. Let ξ ∈ Pn∗

be a generic hyperplane and p1(ξ), · · · , pd(ξ) the points of intersection of ξ with
C. The hyperplanes in Pn∗ dual to each pi(ξ) define a linear d-web on an open
set U in Pn∗. Let ω be any holomorphic differential on C. By the differentiated
form of Abel’s theorem,

∑
ω(pi(ξ)) = 0, where each ω(pi(ξ)) is a one-form on U

of the form a(pi)dpi. If one now uses local coordinates on C and lets ui(ξ) be the
local coordinate expression for pi(ξ), then the hyperplanes ui = constant define the
linear d-web on U and the web normals satisfy an equation (1)

∑
fi(ui)dui = 0.

For an arbitrary d-web choose functions u1, · · · , ud such that ui = constant
gives the leaves of the ith foliation. An equation of the form (1) is called an abelian
equation. The rank of a d-web is defined to be the number of linearly independent
abelian equations. This rank does not depend on the choice of defining functions
and is an invariant of the web. Returning to the algebraic curve C, one has that
the rank of the associated web is the genus of C. Castelnuovo in 1889 determined
a sharp bound for the genus of a nondegenerate algebraic curve of degree d in Pn.
Call his bound π(n, d). Thus, there are d-webs on Rn of rank π(n, d) and such
webs are algebraic in the sense that they are constructed from algebraic curves in
Pn. Now the first author, as part of his dissertation written under Blaschke, proved
that this same number serves as a bound for the rank of any d-web. Thus, it is
natural to investigate if a d-web of maximum rank is necessarily algebraic.

The main result of this paper is that a d-web of maximum rank is lineariz-
able. But by a result of the second author [Invent. Math. 35 (1976), 321–390;
MR0435074 (55 #8036)] a linear web which admits at least one abelian equation is
algebraic. Thus, a d-web of maximum rank is equivalent to the web defined by one
of Castelnuovo’s extremal curves. The problem of finding invariants which describe
when a web is linearizable, but without requiring a large rank, is thought to be
more difficult.

We shall briefly outline the proof of the main result. This proof is in three
stages. The first uses some ideas of algebraic geometry to define a system of curves
on U . The second shows that these curves form a path geometry in the sense of
classical projective differential geometry. In the last stage the projective curvature
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is shown to vanish. So the curves can be transformed into straight lines and this
transformation takes the leaves of the web to hyperplanes.

First stage: Recall that to a compact algebraic curve C of genus r there is
an associated canonical curve F (C) in Pr−1 defined by any choice of a basis for
the holomorphic differential forms on C. It follows from Abel’s theorem that the
curve F (C) is highly nongeneric—if C is a nondegenerate curve of degree d in
Pn and ξ ∈ Pn∗ then the points F (p1(ξ)), · · · , F (pd(ξ)) span some Pd−n−1. An
analogous construction for any web of maximal rank r yields a map U → Pr−1,
x �→ [z1(x), · · · , zr(x)], such that for each x the points {z1(x), · · · , zr(x)} all lie on
a rational normal curve Ex in some Pd−n−1. Also, the normals to the leaves at x
lie on a rational normal curve Dx in P(T ∗

x ) and there is a natural projectivity from
Dx to Ex. Note that the curves Dx give a distribution of curves over U while all
the curves Ex lie in a given space Pr−1. A system of curves x(t) is defined on U
by the condition that infinitely near curves in Ex(t) intersect in n− 1 points. Each
point in Dx corresponds to a normal to a hypersurface in U with the property that
any such curve tangent to the hypersurface at one point must always remain in
the hypersurface. In this way one obtains a two-parameter family of hypersurfaces
which includes the leaves of the web.

Second stage: The system of curves x(t) is in fact defined by an overdetermined
system of second order ordinary differential equations. To show that these curves
actually exist one must study compatibility conditions. The key idea is to consider
the G-structure defined by the distribution of the normal curves Dx and use the
associated moving frames as a tool in the compatibility calculations. The curves
x(t) thus are shown to form a path geometry. Each hypersurface in the above
two-parameter family is totally geodesic in this path geometry.

Third stage: The problem is now one of projective differential geometry. To any
path geometry may be associated a unique normalized projective connection. The
curvature of this connection is identically zero precisely when there is a diffeomor-
phism which maps each curve to a straight line (and thus each totally geodesic hy-
persurface to a hyperplane). Finally, a very nice result completes the proof: If in any
path geometry we are given a distribution of rational normal curves Dx ⊂ P(T ∗

x )
such that each ω ∈ Dx is the normal to a totally geodesic hypersurface through x,
then the associated normalized connection has zero curvature.

Many various techniques are used in this proof but all are carefully motivated
and explained and the paper is self-contained to a remarkable degree. Among
the many digressions and explanations, the interested reader may find Steiner’s
synthetic construction of the conic through five points and various generalizations;
a derivation of Castelnuovo’s bound for the genus and Chern’s bound for the rank;
the relation between Abel’s theorem and the Riemann-Roch theorem; a discussion
of projective differential geometry and the proof that there is a unique projective
connection associated to any path geometry; and a proof of Beltrami’s theorem
that the geodesics of a Riemannian metric form a flat path geometry if and only if
the metric has constant sectional curvature.

The classical theory of d-webs is by definition the content of the book by W.
Blaschke and G. Bol [Geometrie der Gewebe, Springer, Berlin, 1938; Jbuch 20, 67].
Similar material is in Blaschke’s lecture notes [“Lectures on topological questions in
differential geometry”, delivered at the University of Chicago, Chicago, Ill., 1932].
An expository paper closely related to the reviewed paper is by the second author
[Algebraic geometry (J. J. Sylvester Sympos., Johns Hopkins Univ., Baltimore, Md.,
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1976), pp. 26–51, Johns Hopkins Univ. Press, Baltimore, Md., 1977; MR0480492
(58 #655)]. Finally, the authors have begun to study similar questions for webs
of codimension greater than one. In another paper [53009 below], they define the
rank of such a web and find similar sharp bounds.

From MathSciNet, December 2008
H. Jacobowitz

http://www.ams.org/mathscinet-getitem?mr=0480492
http://www.ams.org/mathscinet-getitem?mr=0480492

