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WHITNEY’S EXTENSION PROBLEMS
AND INTERPOLATION OF DATA

CHARLES FEFFERMAN

Abstract. Given a function f : E → R with E ⊂ R
n , we explain how to

decide whether f extends to a Cm function F on R
n . If E is finite, then one

can efficiently compute an F as above, whose Cm norm has the least possible
order of magnitude (joint work with B. Klartag).

Let f : E → R be a function defined on a given (arbitrary) set E ⊂ R
n, and

let m ≥ 1 be a given integer. How can we decide whether f extends to a function
F ∈ Cm(Rn)? If such an F exists, then how small can we take its Cm norm? What
can we say about the derivatives of F up to order m at a given point? Can we take
F to depend linearly on f?

These questions go back to work of H. Whitney [33], [34], [35] in 1934. In
the decades since Whitney’s seminal work, fundamental progress was made by G.
Glaeser [23], Y. Brudnyi and P. Shvartsman [4]–[9] and [28]–[30], and E. Bierstone,
P. Milman, and W. Paw�lucki [1]. (See also N. Zobin [36], [37] for the solution of a
closely related problem.) Building on this work, our recent papers [11]–[16] gave a
complete solution to the above problems. Along the way, we solved the analogous
problems with Cm(Rn) replaced by Cm,ω(Rn), the space of functions whose mth

derivatives have a given modulus of continuity ω. (See [14], [15].) It is natural also
to consider Sobolev spaces Wm,p(Rn), for which work on the above problems is
just beginning (see Shvartsman [31]).

The finite, effective versions of the above problems are basic questions about
interpolation of data: Let E ⊂ R

n be a finite set, and let f : E → R be given. Fix
m ≥ 1. We want to find an interpolant, i.e., a function F ∈ Cm(Rn) such that
F = f on E. How small can we take the Cm norm of an interpolant? How can
we compute an interpolant whose Cm norm is close to least possible? What if we
require only that F and f agree approximately on E? What if we are allowed to
discard a few points from E? An efficient solution to these problems would likely
have practical applications. Joint work [19], [20] of B. Klartag and the author shows
how to compute efficiently an interpolant F whose Cm norm is within a factor C of
least possible, where C is a constant depending only on m and n. Unfortunately,
we do not know whether that constant C is absurdly large; we suspect that it is.
To remedy this defect, and hopefully obtain results with practical applications, we
pose the following sharper version of the interpolation problem.
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Let m, n ≥ 1, and let f : E → R, where E ⊂ R
n consists of N points. Let ε > 0

be given. Compute an interpolant F whose Cm norm is within a factor (1 + ε) of
least possible.

Work on this difficult problem is just beginning. (See [17], [18].)
The goal of this expository paper is to state our main results on the classical

Whitney problems for Cm(Rn), and our joint results with Klartag on the problem
of interpolation. We omit here our results on Cm,ω(Rn), and, e.g., the recent work
of Shvartsman on Wm,p(Rn). Also, we make no attempt to explain here the ideas
in our proofs and algorithms, and merely content ourselves with stating theorems.
We hope to present those ideas in a more detailed exposition to be written someday.

This article is an expanded version of a talk given at a conference celebrating
the 25th anniversary of the founding of MSRI. It was a pleasure and an honor to
participate in that conference. I am grateful to Anna Tsao for bringing to my
attention the practical problem of fitting a smooth surface to data. I am grateful
also to Gerree Pecht, for expertly LATEXing this article.

Let us state our problems in more detail.
Fix integers m, n ≥ 1. We will work in Cm(Rn), the space of Cm functions

F : R
n → R for which the norm

‖ F ‖Cm(Rn) = max
|α|≤m

sup
x∈Rn

|∂αF(x)|

is finite. For F ∈ Cm(Rn) and x ∈ R
n, we write Jx(F) (the “jet” of F at x) to denote

the mth degree Taylor polynomial of F at x, i.e.,

[Jx(F)](y) =
∑

|α|≤m

1

α!
[∂αF(x)] · (y − x)

α for y ∈ R
n .

Thus, Jx(F) belongs to P, the vector space of all real-valued mth degree polynomials
on R

n. We answer the following four questions.
Suppose we are given a compact∗ set E ⊂ R

n and a function f : E → R.

Question 1. How can we decide whether there exists a function F ∈ Cm(Rn) such
that F = f on E?

Question 2. Let x ∈ R
n be given. Compute

AT P(x) = {Jx(F) : F ∈ Cm
(R

n
) , F = f on E} .

(Here “ATP” stands for “allowed Taylor polynomials”.)
Note that AT P(x) is a (possibly empty) affine subspace of P.

Question 3. Compute the order of magnitude of

‖ f ‖Cm(E) = inf {‖ F ‖Cm(Rn): F ∈ Cm
(R

n
) , F = f on E} .

We owe the reader a precise definition of the phrase “order of magnitude”. Sup-
pose X, Y ≥ 0 are real numbers determined by m, n and other data (e.g., the set E

and the function f). Then we say that X and Y have “the same order of magnitude”,
and we write X ∼ Y, provided cX ≤ Y ≤ CX for constants c and C depending only
on m and n. To “compute the order of magnitude” of X is to compute some Y such
that X ∼ Y.

∗In the introduction, we took E to be arbitrary. Without loss of generality, we can take E to
be compact.
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Define a Banach space Cm(E) =
{
F
∣∣
E

: F ∈ Cm(Rn)
}
, equipped with the norm

‖ f ‖Cm(E) from Question 3.

Question 4. Is there a bounded linear map

T : Cm
(E) → Cm

(R
n
)

such that
Tf

∣∣
E

= f for all f ∈ Cm
(E) ?

There are analogues of the above questions with Cm(Rn) replaced by other
function spaces, e.g., Sobolev spaces Wm,p(Rn), or the space Cm,ω(Rn) of all Cm

functions whose mth derivatives have modulus of continuity ω.
For Cm,ω(Rn), these problems are completely solved, although we do not discuss

them here; see [13], [14], [15]. In the setting of Wm,p(Rn), work is just beginning;
see Shvartsman [31].

Next we pose our effective, finite problems.
Suppose we are given

• E ⊂ R
n finite;

• f : E → R; and
• σ : E → [0, ∞).

Question 5. Decide whether there exists F ∈ Cm(Rn) such that

‖ F ‖Cm(Rn) � 1

and
|F(x) − f(x)| � σ(x) for all x ∈ E.

Here and below, we write X � Y to indicate that X ≤ CY, for a constant C

depending only on m and n. To appreciate Question 5, think of an experimenter
measuring F(x) for x ∈ E, and obtaining the experimental result f(x) with uncer-
tainty σ(x). See Figure 1 for two examples.
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Figure 1. Graphs of two different sets of experimental data.
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In the following sharper version of Question 5, we are asked to compute a more-
or-less optimal interpolant F ∈ Cm(Rn).

Question 6. Compute a function F ∈ Cm(Rn) and a real number M ≥ 0, such
that

‖ F ‖Cm(Rn) ≤ M

and
|F(x) − f(x)| ≤ Mσ(x) for all x ∈ E,

with M having the least possible order of magnitude.

We will explain later what it means to “compute a function F”. We write
‖ f ‖Cm(E,σ) to denote the infimum of M over all pairs F, M as in Question 6.

Perhaps some of the data gathered by our experimenter are “outliers”, and should
be discarded. Which data points should we discard?

Question 7. Suppose we are given E ⊂ R
n (finite), f : E → R, σ : E → [0, ∞), and

an integer Z, less than the number of points in E. How can we find a subset S ⊂ E

with at most Z points, in such a way that the norm ‖ f ‖Cm(E�S,σ) is as small as
possible?

We regard Questions 5, 6, and 7 as computer-science problems. We seek algo-
rithms, and we ask how many computer operations are needed to carry out those
algorithms.

Let us briefly review some of the history of Questions 1 through 4. The subject
starts with the work of H. Whitney [33], [34], [35] in 1934. Whitney answered
Questions 1 through 4 for Cm(R1) (i.e., for the case n = 1), and he proved the
classical Whitney Extension Theorem, which gives a simple, complete answer to
the following question.

Question 0. Let E ⊂ R
n be compact. Suppose that for each x ∈ E we are given an

mth degree polynomial Px ∈ P. How can we decide whether there exists a function
F ∈ Cm(Rn) such that Jx(F) = Px for all x ∈ E?

See also [25] and [32] for the classical Whitney theorem.
In 1958, G. Glaeser [23] answered Questions 1 and 2 for C1(Rn), i.e., for the

case m = 1. He gave a geometrical solution based on his notion of the “interated
paratangent space”. This notion is defined in terms of iterated limits. Examples
given by Glaeser [23] and Klartag-Zobin [24] suggest strongly that any complete
answer to Question 1 must bring in such iterated limits.

In a series of papers [4]–[9] and [28]–[30] from the 1970’s to the present decade,
Y. Brudnyi and P. Shvartsman studied the analogues of Questions 1 through 4 for
the space Cm,ω(Rn) (the space of functions whose mth derivatives have modulus
of continuity ω).

They conjectured the following crucial
Finiteness Principle. To decide whether a given f : E → R extends to a

function F ∈ Cm,ω(Rn), it is enough to look at all restrictions f
∣∣
S
, where S ⊂ E is

an arbitrary k-element subset. Here, k is an integer constant depending only on m

and n.
More precisely, if f

∣∣
S

extends to a function FS ∈ Cm,ω(Rn) of norm at most 1 (for
each S ⊂ E with at most k elements), then f extends to a function F ∈ Cm,ω(Rn),
whose norm is bounded by a constant depending only on m and n.
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Brudnyi and Shvartsman proved the above Finiteness Principle in the first non-
trivial case, m = 1. Their proof introduces the elegant idea of “Lipschitz selection”,
and produces for m = 1 the optimal k, namely k = 3 · 2n−1. See [7]. The papers
of Brudnyi and Shvartsman contain additional results and conjectures relevant to
Questions 1 through 4.

The next significant progress on Questions 1 and 2 was the paper [1] of E.
Bierstone, P. Milman, and W. Paw�lucki. They found an analogue of Glaeser’s
iterated paratangent space for Cm(Rn). Using this notion, they answered a variant
of Questions 1 and 2 in the case where E is a subanalytic set. Their version of the
iterated paratangent space is very close to the dual of the “Glaeser-stable bundle”
defined later in this exposition. See [1], [2], [12].

Question 4 was answered affirmatively in the case m = 1 by Bromberg [3], and
in the case n = 1 by Merrien [26]. See also [8].

Let us now prepare to answer Questions 1 through 4.
It is convenient to view these questions from the broader context of “bundles”.
With apologies to geometers, we start by defining “bundles” as follows.

Let E ⊂ R
n be a compact set. For each x ∈ E, suppose we specify a (possibly

empty) affine subspace Hx ⊂ P.
Then we call the family H = (Hx)x∈E a “bundle” over E.
We refer to Hx as the “fiber” of H at x. If H = (Hx)x∈E and H′

x = (H′
x)x∈E are

bundles over the same compact set E, then we say that H′ is a “sub-bundle” of H

provided we have H′
x ⊆ Hx for all x ∈ E. Note that Hx need not vary continuously

with x; in fact, dimHx may vary wildly.
The crucial question regarding “bundles” is as follows.

Question 1
′
. Let H = (Hx)x∈E be a bundle over a compact set. How can we

decide whether there exists a function F ∈ Cm(Rn) such that Jx(F) ∈ Hx for all
x ∈ E?

We call such a function F a “section” of the bundle H, and we write F ∈ Γ(H).
Note that if any of the fibers Hx is empty, then obviously the bundle H has no

sections.
It is easy to see that Question 1′ generalizes Question 1. In fact, given f : E → R,

we define a bundle H = (Hx)x∈E by setting

Hx = {P ∈ P : P(x) = f(x)} for all x ∈ E.

A section of the bundle H is precisely a Cm function F such that F = f on E.
Consequently, Question 1 is a particular case of Question 1′. The corresponding
generalizations of Questions 2 and 3 are as follows.

Question 2
′
. Let H = (Hx)x∈E be a bundle over a compact set E. For x ∈ R

n,
compute the affine space

ATP(x, H) = {Jx(F) : F ∈ Γ(H)} ⊆ P .

Question 3
′
. Let H = (Hx)x∈E be a bundle over a compact set E. Compute the

order of magnitude of the infimum of ‖ F ‖Cm(Rn) over all sections F ∈ Γ(H).

We put off the generalization of Question 4 until later. Note that AT P(x, H)

may be empty.
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Our initial plan is to answer Questions 1, 2, and 3 by answering the more general
Questions 1′, 2′, and 3′. Unfortunately, Questions 1′, 2′, and 3′ as stated are
absurdly general. For instance, any variable-coefficient partial differential equation
with boundary conditions on a bounded domain Ω may be written as

(∗) LF = g on Ω , L̃ F = h on ∂Ω .

Here, F is the unknown function; g and h are given; and L, L̃ are variable-coefficient
linear partial differential operators.

Taking E= closure (Ω), we note that the condition LF(x) = g(x) for a particular
x ∈ Ω, or L̃F(x) = h(x) for a particular x ∈ ∂Ω, asserts simply that the jet Jx(F)

belongs to a particular affine subspace Hx ⊆ P. Thus, the boundary value problem
(∗) has a Cm solution F if and only if the bundle (Hx)x∈E has a section.

Consequently, Question 1′ contains as a special case every linear boundary value
problem (in which the unknown is a single real-valued function). Particular cases of
(∗) are already highly non-trivial open problems. We are unlikely to get a complete
answer to Question 1′ anytime soon.

The cure is to change our definition of a “bundle”. To prepare the way, let x ∈ R
n

be given. Then the vector space P becomes a ring under a natural multiplication
�x (“jet multiplication”), uniquely specified by demanding that Jx(FG) = Jx(F)�x

Jx(G) for any smooth functions F, G. More explicitly, if

P(y) =
∑

|α|≤m

Aα · (y − x)
α and Q(y) =

∑
|β|≤m

Bβ · (y − x)
β ,

then P �x Q is the polynomial

(P �x Q)(y) =
∑

|α| + |β|≤m

Aα · Bβ · (y − x)
α+β .

That is, we simply multiply P by Q in the usual way, and then discard powers
of (y − x) of order greater than m. Now we can give our revised definition of a
“bundle”.

Let E ⊂ R
n be a compact set. For each x ∈ E, let Hx be either the empty

set or else a coset of an ideal in the ring (P,�x). Then we call H = (Hx)x∈E a
“bundle”. Thus, rather than a translate of a vector subspace of P, we demand that
a non-empty fiber must be a translate of an ideal.

From now on, we adopt the above revised definition of “bundles”. It is now
reasonable to pose Questions 1′, 2′, and 3′. As before, these questions generalize
Questions 1, 2, and 3. In the next few pages, we answer our (appropriately general)
Questions 1′, 2′, and 3′.

A key idea regarding Questions 1′, 2′, and 3′ is that of “Glaeser refinement”.
Given a bundle H = (Hx)x∈E, we will produce another bundle H̃ = (H̃x)x∈E,
called the “Glaeser refinement” of H, with three crucial properties:

(A) H̃ is a sub-bundle of H.
(B) Any section of H is already a section of H̃.
(C) H̃ can be computed from H by doing linear algebra and taking a limit.

Before giving the definition of the Glaeser refinement, we explain how to exploit
properties (A), (B), and (C) above. The idea is to iterate the Glaeser refinement:
Suppose we want to understand the sections of a given bundle H0. According to
properties (A) and (B), we may without loss of generality replace H0 by its Glaeser
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refinement H1. Again applying properties (A) and (B), we may similarly replace
H1 by its own Glaeser refinement H2. Continuing by induction, we define each Hk

to be the Glaeser refinement of Hk−1; and we know from repeated applications of
(A) and (B) that

(†1) H0 ⊇ H1 ⊇ H2 ⊇ · · ·
while

(†2) Γ(H0) = Γ(H1) = Γ(H2) = · · · .

Without loss of generality, we may replace our original bundle H0 by its kth iterated
Glaeser refinement Hk. Each Hk arises from Hk−1 as in property (C) above. Thus,
we pass from our given bundle H0 to the sub-bundle Hk by taking a k-fold iterated
limit.

The above construction, taken from [12], is a slight variant of a construction
given by Bierstone, Milman, and Paw�lucki in [1]. A simple ingenious lemma of
Glaeser [23], adapted by Bierstone, Milman, and Paw�lucki in [1], shows that the
above process stabilizes. In fact, let k∗ = 2 · dimP + 1. Then

Hk∗ = Hk∗+1 = Hk∗+2 = · · · .

That is, the bundle Hk∗ is “Glaeser stable”, i.e., it is its own Glaeser refinement.
Since H0 and Hk∗ have the same sections, and since Hk∗ is in principle computable
from H0 thanks to (C), we arrive at the following conclusion.

In order to answer Questions 1′, 2′, and 3′, we may assume without loss of
generality that the bundle H is Glaeser stable.

Before proceeding further, we give the definition of the Glaeser refinement, and
check its essential properties (A), (B), and (C). This is the most technical part of
our (otherwise painless) exposition.

We begin by preparing the way with a few simple remarks.

(#1) Let us fix a large enough integer constant k depending only on m and n.
(#2) Given points x0, x1, . . . , xk ∈ R

n, and given polynomials P0, P1, . . . , Pk ∈
P, we define

Q(P0, P1, . . . , Pk ; x0, x1, . . . , xk) =

k∑
i,j = 0

(xi �= xj)

∑
|α|≤m

[
∂α (Pi − Pj) (xj)

|xi − xj|m−|α|

]2

.

(#3) Suppose F ∈ Cm(Rn).
Given x0, x1, . . . , xk ∈ R

n, define Pi = Jxi
(F) for i = 0, 1, . . . , k.

Then
lim

x1,...,xk→x0

Q(P0, P1, . . . , Pk ; x0, x1, . . . , xk) = 0 (by Taylor’s theo-

rem).

Armed with the above useful remark, we can (finally) give the definition of the
Glaeser refinement. Let H = (Hx)x∈E be a bundle over a compact set. The Glaeser
refinement H̃ = (H̃x)x∈E is defined as follows.

Fix x0 ∈ E and P0 ∈ Hx0
. Then P0 ∈ H̃x0

if and only if

(∗) min {Q(P0, P1, . . . , Pk ; x0, x1, . . . , xk) :

P1 ∈ Hx1
, P2 ∈ Hx2

, . . . , Pk ∈ Hxk
} → 0

as x1, x2, . . . , xk ∈ E tend to x0.
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Note that H̃x may be empty, even if all the Hx are non-empty. That is why it is
convenient to allow the case of empty fibers in the definition of “bundle”.

Again, our definition of the Glaeser refinement, taken from [12], is a slight variant
of a definition given in [1]. Let us check that properties (A), (B), and (C) hold for
the Glaeser refinement as we have just defined it.

First of all, (A) holds trivially, since we have defined H̃ as a sub-bundle of H.
Next, (B) follows easily from observation (#3). In fact, let F be section of H, and
let P0 = Jx0

(F). Then by taking Pi = Jxi
(F) for i = 1, 2, . . . , k, we see from (#3)

that (∗) holds, and thus P0 ∈ H̃x0
. Consequently, F is also a section of H̃, proving

(B). Finally, to prove (C), fix x0 ∈ E and P0 ∈ Hx0
. For fixed x1, . . . , xk ∈ E, we

compute∧
(x0, P0 ; x1 . . . xk) = min {Q(P0, . . . , Pk ; x0, . . . , xk) : P1 ∈ Hx1

, . . . , Pk ∈ Hxk
}

by minimizing a quadratic form over a finite-dimensional affine space; this is routine
linear algebra. By definition, P0 ∈ H̃x0

if and only if
∧

(x0, P0 ; x1, . . . , xk) → 0 as
x1, . . . , xk ∈ E tend to x0. Thus, to decide whether P0 ∈ H̃x0

, we carry out routine
linear algebra and then take a limit. This proves (C), concluding our discussion of
the definition of the Glaeser refinement.

We are now at the heart of the matter, namely Questions 1′, 2′, and 3′ for a
Glaeser-stable bundle. The answers are given by the following result.

Theorem 1. Let H = (Hx)x∈E be a Glaeser-stable bundle over a compact set E.
Then

(A) H has a section if and only if all the fibers Hx : (x ∈ E) are non-empty.
Moreover, suppose H has a section. Then the following hold.

(B) For each x ∈ E, we have AT P(x, H) = Hx. (Trivially, for each x ∈
R

n
� E, we have AT P(x, H) = P.)

(C) Let k be the integer constant from (#1). Then there exists M ∈ (0, ∞)

such that, for any x1, . . . , xk∈E there exist polynomials P1∈Hx1
, . . . , Pk∈

Hxk
such that

|∂αPi(x0)| ≤ M for |α| ≤ m and i = 1, . . . , k ; and

|∂α
(Pi − Pj)(xj)| ≤ M |xi − xj|

m−|α| for |α| ≤ m − 1 and i, j = 1, . . . , k .

(D) The infimum of ‖ F ‖Cm(Rn) over all sections F ∈ Γ(H) has the same
order of magnitude as the least possible M in (C).

The proof of this theorem is given in [12]; it builds on the earlier papers [11],
[14].

We note in passing that every bundle over a finite set E is Glaeser stable; in
this case, conclusions (A), (B), and (C) above are obvious, but (D) has non-trivial
content.

This concludes our discussion of Questions 1, 2, 3 and 1′, 2′, 3′.
Regarding Question 4, we have the following result.

Theorem 2. Let E ⊂ R
n be any subset. Then there exists a linear map T :

Cm(E) → Cm(Rn), such that

• Tf
∣∣
E

= f for all f ∈ Cm(E); and
• The norm of T is bounded by a constant depending only on m and n.
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Our generalization of Question 4 in the context of bundles is as follows.
Let E ⊂ R

n, and for each x ∈ E, let I(x) ⊂ P be an ideal in the ring (P,�x). We
write J to denote the ideal in Cm(Rn), given by

J = {F ∈ Cm
(R

n
) : Jx(F) ∈ I(x) for all x ∈ E} .

Thus, Cm(Rn)
/
J is a Banach space. We write π : Cm(Rn) → Cm(Rn)

/
J to denote

the natural projection.

Theorem 3. Given any E and (I(x))x∈E as above, there exists a linear map T :

Cm(Rn)
/
J → Cm(Rn), such that

• πT = identity on Cm(Rn)
/
J; and

• ‖ T ‖≤ C, with C depending only on m and n.

The last two results are proven in [16].
We recover Theorem 2 from Theorem 3 by taking I(x) = {P ∈ P : P(x) = 0} for

each x ∈ E.
Thus, we have answered the original Questions 1–4 arising from Whitney’s work.
We turn now to the effective finite version of the problem, and prepare to address

Questions 5, 6, and 7.
To do so, we must first explain what it means to “compute a function” F ∈

Cm(Rn) from data m, n, E, f, σ. We have in mind the following dialogue with a
computer.

We first enter the data m, n, E, f, σ. The computer performs “one-time work”
and then signals to us that it is ready to accept “queries”. We may then repeatedly
“query” our computer. A “query” consists of a point x ∈ R

n. Once we enter the
query x, the computer responds by performing a calculation (the “work at query
time”), and it then prints out ∂αF(x) for each |α| ≤ m.

In the above definition, we demand that the function F be determined uniquely
by the input data m, n, E, f, σ. We disallow “adaptive algorithms” in which the
function F depends on our queries.

The resources used to “compute a function” F ∈ Cm(Rn) follow:

• The number of computer operations needed for the one-time work;
• The number of computer operations needed to answer a query; and
• The number of memory cells needed for the whole computation.

We call these simply the “one-time work”, the “query work”, and the “storage”,
respectively.

The “computer” we have in mind uses standard von Neumann architecture (see
[27]), but it works with exact real numbers. We assume that an arbitrary real
number can be stored in a single memory cell, and that elementary arithmetic
operations on real numbers may be performed without round-off errors. This model
of computation is called “real RAM”. (In [20], we also give a rigorous discussion of
the effects of round-off errors, but we now omit all further mention of this issue.)

We are looking for algorithms that work well for arbitrary inputs m, n, E, f, σ. If
we were willing to make favorable assumptions on the geometry of the set E (e.g.,
if E looks something like a lattice), then our problems would be much easier. An
example of a delicate case arises, e.g., if every point of the set E lies near the zero set
of a polynomial Q of degree less than m. For such E, the restriction of F ∈ Cm(Rn)

to E changes little when we change F by adding a multiple of Q. Consequently, a
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näıve algorithm will carry out an ill-conditioned calculation and produce an awful
result.

Now we are ready to answer Questions 5 and 6, by stating the following results,
due to B. Klartag and the author [19], [20]. We write #(E) to denote the number
of elements of a finite set E.

Theorem 4. Given m, n, E, f, σ (with #(E) = N), we can compute the order of
magnitude of ‖ f ‖Cm(E,σ) using at most CN log N operations, and at most CN

storage. Here, C depends only on m and n.

Theorem 5. Given m, n, E, f, σ (with #(E) = N), we can compute a function
F ∈ Cm(Rn), and a number M ≥ 0, such that

• ‖ F ‖Cm(Rn) ≤ M,
• |F(x) − f(x)| ≤ Mσ(x) for all x ∈ E,
• M ≤ C ‖ f ‖Cm(E,σ).

The computation uses one-time work at most CN log N, query work at most C log N,
and storage at most CN. Here, C depends only on m and n.

Very likely these results are best possible. Already it takes CN computer oper-
ations merely to read the data.

Regarding Question 7, we have the following result. See [22].

Theorem 6. Given m, n, E, f, σ, with #(E) = N, there is an enumeration
x1, x2, . . . , xN of the set E, with the following properties:

(A) Let 1 ≤ Z ≤ N, and let S ⊂ E be any subset with at most cZ elements.
(Here, c is a small constant depending only on m and n.) Let S∗

Z :=

{x1, . . . , xZ}, the first Z points of our enumeration. Then ‖ f ‖Cm(E�S∗
Z

,σ)

≤ C ‖ f ‖Cm(E�S,σ), with C depending only on m and n.
(B) For any Z ≤ N we can compute x1, . . . , xZ using at most CZN log N work

and CN storage, where C depends only on m and n.

Theorem 6(A) tells us that the set S∗
Z of putative “outliers” is “more-or-less-

optimal”, in the sense that we cannot make ‖ f ‖Cm(E�S,σ) much smaller than
‖ f ‖Cm(E�S∗

Z,σ) by using far fewer points than the Z points of S∗
Z.

We have no reason to believe that the work CZN log N in Theorem 6(B) is best
possible.

The proof of Theorem 6 rests on the following refined version [22] of the Brudnyi-
Shvartsman finiteness principle in the setting of Cm(Rn).

Theorem 7. Given m, n, E and σ (with #(E) = N), there exist S1, S2, . . . , SL ⊂ E

with the following properties:
• #(S�) ≤ C for each 	, with C depending only on m and n.
• L ≤ CN, with C depending only on m and n.
• For any f : E → R, we have

‖ f ‖Cm(E,σ) ∼ max
�=1,...,L

‖ f ‖Cm(S�,σ) .

Moreover, we can compute S1, S2, . . . , SL from m, n, E, σ using at most CN log N

work and at most CN storage, where C depends only on m and n.

In principle, Theorems 4–7 give excellent answers to our effective, finite problems.
Unfortunately, some of the constants C in the statements of these results are likely
to be absurdly large. This would rule out practical applications.
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Therefore, we pose the following sharpened form of our interpolation problem:

Question 8. Fix m, n ≥ 1. Let f : E → R, with E ⊂ R
n finite. Let ε > 0 be given.

Compute an interpolant F ∈ Cm(Rn), such that ‖ F ‖Cm(Rn)≤ (1 + ε)· ‖ F̃ ‖Cm(Rn)

for any other interpolant F̃.

Recall that an interpolant is simply a function F ∈ Cm(Rn) such that F = f on
E.

In order to pose Question 8, we have to return to our definition of the norm on
Cm(Rn). Recall that we have defined

(∗1) ‖ F ‖Cm(Rn)= sup
x∈Rn

max
|α|≤m

|∂αF(x)|.

We could equally well have defined, say,

(∗2) ‖ F ‖Cm(Rn) = sup
x∈Rn

(
∑

|α|≤m

1
α!

|∂αF(x)|2

)1/2

,

or
(∗3) ‖ F ‖Cm(Rn) =

∑
|α|≤m

sup
x∈Rn

|∂αF(x)|.

Each of these definitions of the Cm norm leads to a different version of Question 8,
whereas Questions 0–7 are unaffected by our choice of the Cm norm.

Motivated by (∗1) and (∗2), we assume that, for each x ∈ R
n, we are given a

norm | · |x on the vector space P of mth degree polynomials on R
n. We then define

(∗) ‖ F ‖Cm(Rn) = sup
x∈Rn

|Jx(F)|x.

This includes the formulas (∗1) and (∗2), as we see by taking

|P|x = max
|α|≤m

|∂αP(x)|

and

|P|x =

⎛
⎝ ∑

|α|≤m

1

α!
|∂αP(x)|2

⎞
⎠

1/2

,

respectively.
(Note that the norm (∗3) is not of the form (∗); we will not study Question 8 for the
norm (∗3).) We require that the norms |P|x satisfy two technical assumptions called
the “bounded distortion property” and “approximate translation-invariance”; see
[17], [18].

Once we have specified the norms | · |x (x ∈ R
n), our Question 8 makes sense; it

refers to the Cm norm (∗).
From now on, we assume we are given a family of norms | · |x as above; and our

Cm norm is always defined by (∗).
Any algorithm to answer Question 8 must make use of the norms | · |x. We

assume that our computer has access to an Oracle. Given a polynomial P ∈ P and
a point x ∈ R

n, the Oracle returns the value of |P|x and charges us one unit of
“work” to do so. (This assumption can be weakened; see [18].)

The following problem is related to Question 8, just as Whitney’s extension
theorem is related to the classical Whitney extension problem. (See Questions 0
and 1.)
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Question 9. Fix m, n ≥ 1. Let E ⊂ R
n be finite. For each x ∈ E, let Px ∈ P be

given. Let ε > 0. Compute a function F ∈ Cm(Rn) with the following properties.
• Jx(F) = Px for each x ∈ E.
• Let F̃ ∈ Cm(Rn) be any other function satisfying Jx(F̃) = Px for each

x ∈ E. Then

‖ F ‖Cm(Rn) ≤ (1 + ε) · ‖ F̃ ‖Cm(Rn) .

We have a sharp answer to Question 9.

Theorem 8. Given m, n, ε and (Px)x∈E as in Question 9, with #(E) = N, we can
compute F ∈ Cm(Rn) satisfying the conditions in Question 9, with one-time work
C(ε)N log N, query work C(ε) log N, and storage C(ε)N. Here, C(ε) depends only
on m, n, ε and on our choice of the Cm norm. See [18].

Here, we are not primarily concerned with the dependence of C(ε) on ε, since
in hoped-for practical applications we can take, say, ε = 3.

The proof of Theorem 8 is based on a finiteness principle analogous to the
Brudnyi-Shvartsman finiteness principle. Unfortunately, the corresponding finite-
ness principle in the context of Question 8 is false. (See Fefferman-Klartag [21].)

Regarding Question 8, we at least have the following result, as a consequence of
the proof of Theorem 8. (See [18].)

Theorem 9. Given m, n, E, f, ε, with #(E) = N, we can compute an interpolant
F as in Question 8, using one-time work C(ε)N5(log N)2, query work C(ε) log N,
and storage C(ε)N2.

We can probably do a bit better by tweaking the argument. However, to arrive at
an efficient algorithm for Question 8, we will probably need to find new mathematics
to fill the gap left by the failure of the relevant finiteness principle.

We have just begun to make progress on this difficult problem.
We think we see how to give an optimal algorithm for Question 8 in the case

of C2(R2). As in Theorem 8, the one-time work is C(ε)N log N, the query work is
C(ε) log N, and the storage needed is C(ε)N. We hope this result survives when
we try to write it up carefully.

The general case (i.e., Question 8 for Cm(Rn)) will require substantial additional
ideas. Let us see what progress can be made in the years ahead.
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