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In addition to being packed with fundamental material important for every be-
ginner in complex analysis, in expeditious and intuitive terms this little book trans-
ports the reader through a range of interesting topics in one-dimensional hyperbolic
geometry, discrete subgroups, holomorphic dynamics and iterated function systems.
In chapter after chapter, one quickly arrives at open problems and areas for research.

The first half of the book carries the reader through the essential elements of
Riemann surface theory, starting with geometry in the Euclidean plane and the
Riemann sphere and going on to hyperbolic geometry in the hyperbolic plane.
Topics include basic properties of holomorphic and univalent functions, Schwarz’s
lemma, covering spaces, universal covering spaces, fundamental groups, discontin-
uous groups, Fuchsian groups.

There is a very nice exposition of the Poincaré polygon theorem, which provides
a sufficient condition for a subgroup of PSL(2, R) generated by side-pairings of a
hyperbolic polygon to form a discrete group. There is also a concise and elementary
exposition of the collar lemma. The collar lemma is a fundamental lemma for the
analysis of hyperbolic surfaces. It provides a collar of definite thickness contain-
ing any closed geodesic on a hyperbolic surface, and as the geodesic shortens the
collar gets thicker. One of its consequences is that there is a fixed lower bound on
the lengths of intersecting closed geodesics. The lower bound is universal for all
surfaces and all geodesics, and in this respect the lemma resembles the Heisenberg
uncertainty principle. In Bers [4, page 443-449] one can find a history of the lemma
and references for it.

In the second half of the book, starting with the chapters on Kobayashi and
Carathéodory metrics for hyperbolic plane domains, there are great numbers of new
theorems, many of which are only recently proved and some of which appear for the
first time in this publication. In this part the approach is more categorical. The
basic objects of study are canonical procedures for defining conformal metrics on
Riemann surfaces. The chief constraint is that such procedures are required to give
metrics that satisfy the conclusion of Schwarz’s lemma. If X is a Riemann surface
and we denote by σX the infinitesimal form of the canonically associated metric, we
require that for any holomorphic map f mapping X into another Riemann surface
Y we have the inequality

(1) σY (f(z))|f ′(z)| ≤ σX(z).

If σ satisfies this condition, we say it has the Schwarz lemma property.
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Whenever we have an infinitesimal form, we obtain a distance between two points
p and q in X by putting

σX(p, q) = inf
{∫

γ

σX(z)|dz|
}

,

where the infimum is taken over all paths γ joining p to q. Then σX(p, q) is sym-
metric and satisfies the triangle inequality. In some cases, σX(p, q) may only be
a pseudometric. That is, possibly σX(p, q) assigns the value 0 even when p �= q,
and in other cases σX(p, q) might be equal to ∞. Even so, if the Schwarz lemma
property is satisfied for the infinitesimal metric, then its corresponding version is
also satisfied for the metric; that is,

σY (f(p), f(q)) ≤ σX(p, q),

whenever f : X → Y is holomorphic.
The first example is the Poincaré infinitesimal form, ρX . In the unit disc, ∆ =

{z ∈ C : |z| < 1}, this form is given by

ρ∆(z)|dz| =
|dz|

1 − |z|2 .

It has the property that any holomorphic automorphism B of ∆ is an isometry;
that is, ρ∆(B(z))|B′(z)| = ρ∆(z). The metric associated to this infinitesimal form
is

ρ∆(p, q) =
1
2

log
1 +

∣∣∣ p−q
1−qp

∣∣∣
1 −

∣∣∣ p−q
1−qp

∣∣∣ .

If π : ∆ → X is a universal covering of a Riemann surface X, by definition ρX(p) =
ρ∆(z)
|π′(z)| where π(z) = p. The meaning of π′(z) depends on a choice of local parameter
at p. If w is such a parameter, then

π′(z) = lim
t→z

w ◦ π(t) − w ◦ π(z)
t − z

.

With this understanding, it is easy to check that ρX(w)|dw| is an invariant form.
Universal covering maps have the lifting property; that is, any continuous map
f : X → Y has a continuous lift f̃ : ∆ → ∆ such that πY ◦ f̃ = f ◦ πX , and f̃ is
holomorphic if f is. The Schwarz-Pick lemma says that for holomorphic self-map
g of the unit disc,

(2) ρ∆(g(z))|g′(z)| ≤ ρ∆(z).

Applying this to g = f̃ , one obtains

(3) ρY (f(z))|f ′(z)| ≤ ρX(z).

We conclude that the Poincaré infinitesimal form ρX is assigned to any Riemann
surface X whose universal covering is conformal to the unit disc, and this assignment
has the Schwarz lemma property.

A second example is the Kobayashi infinitesimal form κX(z)|dz|. By definition

(4) κX(w) = inf
{

ρ∆(z)
|f ′(z)|

}
,
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where the infimum is taken over all holomorphic functions f mapping the unit disc
∆ into X and mapping z to w. From (3), if the surface has a universal covering con-
formal to the unit disc, then ρX(w) ≤ ρ∆(z)

|f ′(z)| , so from (4) ρX(w)|dw| ≤ κX(w)|dw|
and κX is positive. From the uniformization theorem, this is the only way (4) can
be positive, and in that case ρX(w)|dw| = κX(w)|dw|. When it is not positive,
κX(p) = 0 for every point p ∈ X and X is a Riemann surface with universal cover-
ing conformal either to the complex plane C or to the extended complex plane C.
Surfaces for which κX(p) > 0 are called hyperbolic. So there is nothing really new
about this example except that the extremal problem for finding κX also applies
to non-hyperbolic surfaces where it gives κX(p, q) identically equal to zero. One
slightly new observation is that the Schwarz lemma property still holds.

A third example is the Carathéodory metric, cX . Once again we take the Poincaré
metric and the Schwarz inequality as the starting points, but instead of using the
family of holomorphic maps from ∆ to X, we use maps from X to ∆ and a dual
extremal problem. By definition

(5) cX(p) = sup {ρ∆(g(p))|g′(p)|} ,

where the supremum is over all holomorphic maps g from X to ∆. By parallel
arguments we obtain cX ≤ ρX , and in general we have

cX ≤ ρX ≤ κX

for every Riemann surface X. The metric cX turns out to be a really different
example. When X is an annulus, one can easily show that cX < ρX , although
even in this case explicit calculation of cX seems to be difficult. The topology on
X induced by cX(p, q) coincides with the topology induced by ρX(p, q) and cX has
the Schwarz lemma property.

One obtains many more examples by using extremal problems similar to those
of Kobayashi and Carathéodory if one replaces the reference surface ∆ by some
other hyperbolic Riemann surface Ω. In particular, Keen and Lakic define relative
Kobayashi and Carathéodory metrics the following way:

κΩ
X(w) = inf

{
ρΩ(z)
|f ′(z)| : f holomorphic from Ω into X with f(z) = w

}
,

cΩ
X(z) = sup

{
ρX(f(z))|f ′(z)| : f holomorphic from Ω into X

}
.

κΩ
X and cΩ

X are canonical infinitesimal forms, and they satisfy the Schwarz lemma
property in the variables X and Ω, respectively.

When X is a subset of Ω, these definitions become useful for the study of itera-
tions of holomorphic maps from Ω into X. Depending on geometric properties of X
and Ω, it is possible that the inclusion map from X into Ω is a strict contraction,
by which we mean there might be a constant l(X, Ω) such that

sup
z∈X

ρΩ(z)
ρX(z)

= l(X, Ω) < 1.

If this is so, any holomorphic map f : Ω → X is a strict contraction both for the
metric ρΩ and ρX .

Definition. X is called a Lipschitz subdomain of Ω if l(X, Ω) < 1.
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Definition. Let R(X, Ω) be the supremum of the radii of hyperbolic discs with
respect to the metric ρΩ completely contained in X. X is called a (hyperbolic)
Bloch domain in Ω if R(X, Ω) < ∞.

In [3] Beardon, Carne, Minda and Ng prove the following theorem.

Theorem 1. X is a Bloch subdomain of Ω if, and only if, it is a Lipschitz subdo-
main of Ω; that is l(X, Ω) < 1 if and only if R(X, Ω) < ∞.

Since the notion of a subdomain being Bloch or Lipschitz is defined in terms
of the Poincaré metric, one can make parallel definitions in terms of either the
Kobayashi or Carathéodory metrics.

Definition. X is called a Kobayashi-Lipschitz or Carathéodory-Lipschitz subdo-
main of Ω if

sup
z∈X

ρΩ(z)
κΩ

X(z)
< 1 or sup

z∈X

cΩ
X(z)

ρX(z)
< 1, respectively.

Definition. Let cR(X, Ω) and kR(X, Ω) be the supremum of the radii of discs
measured with respect to the metric cΩ

X or κΩ
Ω, respectively, completely contained

in X. Then X is called a Carathéodory-Bloch or Kobayashi-Bloch domain in Ω if
cR(X, Ω) < ∞ or kR(X, Ω) < ∞, respectively.

Keen and Lakic prove many theorems straightening out the relationships between
these concepts. For example, they prove Lipschitz, Bloch and Kobayashi-Bloch are
equivalent concepts for X ⊂ Ω, Lipschitz implies Carathéodory-Lipschitz, Lipschitz
implies Kobayashi-Lipschitz and Kobayashi-Bloch implies Carathéodory-Bloch. By
providing counterexamples they also show in many cases that these conditions are
not necessary and sufficient.

If X is a subset of Ω, these metrics become useful for studying the convergence
properties of a composition of a randomly selected sequence of holomorphic func-
tions fn mapping Ω into X. Let

Gn = fn ◦ · · · ◦ f1 and Fn = f1 ◦ · · · ◦ fn.

Fn and Gn are called the backward and forward iterations, respectively. Forward
iterations are relatively simple to understand and Keen and Lakic show that all
accumulation points of any forward iteration of maps from a hyperbolic plane do-
main Ω into a subdomain X are constant functions if and only if Ω �= X. Moreover,
any closed subset of X can be realized as the set of forward accumulation points of
some iterated function system. These results are new and can be viewed as broad
generalizations of the Denjoy-Wolff theorem which states that for any holomorphic
function that maps the unit disc into itself and is not a Möbus transformation, the
iterates converge to some value in the closed unit disc.

The situation for backward iterations is more interesting. The question is to find
the most general possible condition on X ⊂ Ω that guarantees that any backward
iteration system has only constant accumulation points. A subdomain with this
property is called degenerate. Here, Keen and Lakic produce a beautiful theorem
by inventing a condition that combines the relationship between the Carathéodory
and Kobayashi metrics relative to a given domain Ω. First of all, notice that

(6) cΩ
X ≤ ρΩ ≤ ρX ≤ κΩ

X ,
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and the condition that X is Kobayashi-Lipschitz in Ω is that

(7) sup
z∈X

ρΩ(z)
κΩ

X(z)
< 1,

and the condition that X is Carathéodory-Lipschitz in Ω is that

(8) sup
z∈X

cΩ
X(z)

ρX(z)
< 1.

Keen and Lakic put

ck = sup
z∈X

cΩ
X(z)

κΩ
X(z)

,

and so by using (6) one sees that the condition that ck < 1 is weaker than either of
the previous conditions (7) or (8). They call a subdomain X of Ω for which ck < 1
a ck-Lipschitz domain and show that such domains are denerate. The idea of a
ck-Lipschitz domain is that maybe on one part of X the Carathéodory condition
is satified and on another part the Kobayashi condition is satisfied, but neither of
these conditions is separately satisfied on all of X. The ck-condition allows for one
of the Carathéodory or Kobayashi conditions to take over wherever the other one
fails.

The proof that such domains are degenerate is straightforward. From the Schwarz
lemma properties

kΩ
X(f(z))|f ′(z)| ≤ kΩ

Ω(z)

and

cX
X(f(z))|f ′(z)| ≤ cΩ

X(z),

and since kΩ
Ω(z) = ρΩ(z) and cX

X(z) = ρX(z), one has the inequality

|f ′(z)|2 ≤ ρΩ(z)
kΩ

X(z)
cΩ
X(z)

ρX(f(z))
.

By applying this inequality to the derivative of a long composition and using the
ck-constant, one shows that the derivative of any limit must be constant.

This theory suggests trying to develop a similar approach to the Kobayashi and
Carathéodory metrics for holomorphic maps of Teichmüller space into subdomains.
In this setting, it is not known if the Carathéodory and Kobayashi metrics coin-
cide, although there is an interesting positive result in this direction due to Kra,
[11]. Theorems that provide sufficient conditions for existence of fixed points of
holomorphic self-maps of Teichmüller space into itself can be useful.

After the chapters concerning relative Kobayashi and Carathéodory metrics for
plane domains and iterated function systems, there are two additional chapters:
one that gives explicit lower bounds for Poincaré metrics of plane domains and a
second on the theory of uniformly perfect domains. Finally, there is a nice appendix
giving a brief exposition of elliptic functions.

This book is a basic reference for background and problems in one-dimensional
dynamics and complex analysis along with many other such books. We have in-
cluded references for some of these in the bibliography, [1], [2], [6], [7], [10], [12],
[13], [14], [15], [16], [17].
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