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Many problems in complex geometry involve the analysis of high powers LN →
M of an ample holomorphic line bundle over a complex manifold M of dimension
m. When M is compact, there are no non-constant holomorphic functions on
M and instead one uses holomorphic sections of LN for N = 1, 2, 3, . . . to do
complex analysis. Examples of line bundles and holomorphic sections are given at
the beginning of §1. The space H0(M, LN ) of all holomorphic sections of LN is
analogous to the space of (holomorphic) homogeneous polynomials of degree N and
is equal to that space in the case H0(Pm,O(N)), i.e., M = Pm (complex projective
space) and L = O(1) (the hyperplane section bundle).

An important use of holomorphic sections of a line bundle L is to define holo-
morphic maps to projective space. A section can be expressed locally over an open
set U ⊂ M in the form s = fe, where f is a local holomorphic function (f ∈ O(U))
and where e is a local frame, i.e., a local non-vanishing section over U . A collection
{s1, . . . , sk+1} of sections determines a local map (f0, . . . , fk) : U → Ck+1, and it is
easy to see that the map changes only by a scalar multiple if the frame e is changed.
Hence, one obtains a map [f0, . . . , fk] : M → P

k to projective space (lines through
0 in Ck+1). The map is often written as [s0, . . . , sk]. The extreme case is to use an
entire basis S of sections to define the (Kodaira type) map

(1) ΦS = [s0, . . . , sdN
] : M → P

dN

with dN + 1 = dimH0(M, L). The line bundle is called very ample if ΦS is an
embedding. This property is independent of the choice of basis, since they differ
by the action of SL(dN + 1, C) on P

dN .
Another important use of holomorphic sections is to define subvarieties of M

by zero sets Zs = {z : s(z) = 0}. One may construct more general subvarieties
as fibers [s0, . . . , sk]−1(p) of maps to projective space or as simultaneous zeros
{z : s1(z) = · · · = sk(z) = 0} of several sections.

Often it is difficult to know how such maps or zero sets behave for a fixed line
bundle L. Additional control comes by taking tensor powers LN . A line bundle is
called ample if there exists a positive integer N so that LN is very ample, i.e., if
(1) is an embedding for a basis S of H0(M, LN ). In this case, for sufficiently large
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N , the dimension dN + 1 = dimH0(M, LN ) is given by a polynomial of the form
dN + 1 = c1(L)m

πmm! Nm + · · · , where c1(L) is the first Chern class of L. There is a
curvature condition (called positivity) for ampleness: L is ample if there exists a
Hermitian metric h on L with positive curvature (1, 1) form ωh. In a local frame
e, the metric may be written h = e−ϕ and then ωh = i

π ∂∂̄ϕ. When the line
bundle fails to be ample, it is difficult to determine the dimension of H0(M, LN ).
Asymptotic estimates on the dimensions of the qth cohomology group Hq(M, LN )
of the sheaf of LN -valued holomorphic sections are given by Demailly’s holomorphic
Morse inequalities [Dem2].

Holomorphic sections s ∈ H0(M, LN ) of high degree may be used to approxi-
mate general holomorphic objects. But the use of sections in H0(M, LN ) to make
approximations has a much wider scope than approximating holomorphic objects,
and it has become deeply embedded in complex geometry. A key use is to approx-
imate general smooth metrics by polynomial type metrics known as Bergman (or
Fubini-Study) metrics of degree (or height) N . The space BN of Bergman metrics
of degree N is by definition the finite-dimensional family of metrics obtained by
pulling back the Fubini-Study metric on PdN by the maps (1) as S varies over all
possible bases of H0(M, LN ). The program of Yau, Tian, Donaldson and others
of relating canonical metrics on M to algebro-geometric properties of (M, L) is
intimately connected to the use of the algebro-geometric Bergman metrics to ap-
proximate general transcendental Kähler metrics (cf. [D2, T, PS]). In fact, this
approximation is closely related to the use of Bernstein polynomials to approximate
general continuous functions [Z2].

Asymptotic analysis of holomorphic sections is important for other geometric
problems as well. Donaldson defined and used asymptotically holomorphic sections
on almost complex symplectic manifolds to construct embedded symplectic sub-
manifolds [D1].

The book under review is the first to give a systematic book-length exposition of
the applications of H0(M, LN ) to these and other problems in complex geometry
and analysis on Kähler manifolds and, more generally, on almost-complex symplec-
tic manifolds. It contains a fairly large and up-to-date bibliography drawing from
a very wide variety of articles. It is written by geometric analysts from a PDE
point of view, and it is devoted in large part to the asymptotic analysis of high
powers of line bundles. The two main tools the book develops and uses are the
Bergman/Szegö kernel and Demailly’s holomorphic Morse inequalities.

The Bergman kernel PN (z, w) is given the most attention. It is the (Schwartz)
kernel function of the orthogonal projection onto H0(M, LN ) with respect to an
inner product induced by a Hermitian metric on L. Equivalently, it is the spectral
projection for the eigenvalue 0 of the Kodaira Laplacian ∆N = ∂̄∗∂̄ + ∂̄∂̄∗ on
L2(M, LN ). By the Bochner-Kodaira-Nakano formula, when (L, h) is a positive
line bundle, 0 is isolated from the rest of the spectrum as N varies, and in fact
the least non-zero eigenvalue of ∆N drifts to the right like a constant times N .
This spectral gap property allows for many constructions and approximations to
PN . For instance, the heat kernel kN (t, x, y) of ∆N is a very good approximation
in this case: one has kN (t, x, y) → PN (x, y) as N → ∞ with a remainder that
is O(e−CNt). Thus, one can reduce calculations involving PN to those involving
kN (t, x, y) for large t, which are sometimes simpler or better known. Another option
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is to construct PN as

PN = ψ(
√

∆) =
∫

R

ψ̂(t) cos(t
√

∆N )dt,

where ψ is a bump function equal to one near λ = 0 but which vanishes outside
of a small enough interval so that no other eigenvalue of

√
∆N lies in its support.

Then one can obtain information about PN from knowledge of the wave equation
associated to ∆N . The authors give many detailed constructions and calculations
of this kind, drawing from the literature on local index theory and in particular
from work of J. M. Bismut. Scaling asymptotics of the heat kernel can also be used
to prove the holomorphic Morse inequalities [B, Dem].

The Bergman/Szegö kernel may also be constructed directly as a complex os-
cillatory integral by a method due to Boutet de Monvel-Sjöstrand [BSj]. A new
and very nice construction is given in [BBSj]. At least conceptually, this is a more
direct approach than constructing the heat kernel or wave kernel and dropping the
positive eigenvalue terms. It can also be used to study Morse inequalities [B1]. The
Boutet de Monvel-Sjöstrand approach is however only briefly touched upon in the
book under review.

We now give an overview of Bergman kernels and holomorphic Morse inequalities
and their applications to a variety of problems in complex geometry.

1. Background on positive Hermitian holomorphic line bundles

over Kähler manifolds

Let (M, ω) be a compact m-dimensional Kähler manifold. We recall
that a Kähler manifold is a complex manifold possessing a Hermitian metric ds2 =∑m

i,j=1 gij̄dzi ⊗ dz̄j whose associated (1, 1) Kähler form ωg = i
2

∑m
i,j=1 gij̄dzi ∧ dz̄j

is closed. We assume that 1
π ω ∈ H2(M, Z) so that there exists a holomorphic

Hermitian line bundle (L, h) → M whose curvature (1, 1) form equals ω.

1.1. Examples of ample line bundles and holomorphic sections. Holomor-
phic line bundles and their holomorphic sections are well illustrated in the case of
Riemann surfaces, i.e., complex curves of dimension m = 1. The line bundles have
a different form depending on whether the genus g of the Riemann surface equals
0, 1 or is ≥ 2.

When the genus g = 0, M = P
1 is the Riemann sphere or one-dimensional

projective space of complex lines through the origin in C2. It carries the tautological
line bundle O(−1) → P1 whose line at a point [z0, z1] ∈ P1 is the line itself. The
dual line bundle O(1) is the line of linear functionals on the lines of O(−1). Its
square O(2) may be identified with the holomorphic tangent bundle T (1,0)P1, whose
holomorphic sections are holomorphic vector fields f d

dz . The line bundle O(1) is
ample and its holomorphic sections may be identified with the space of homogeneous
holomorphic polynomials of degree one on C

2. The Nth tensor power O(N) is a line
bundle whose holomorphic sections may be identified with the space of homogeneous
holomorphic functions of degree N on C2. The identifications will be explained in
§1.4.

When g = 1, then M = C/Λ, where Λ = Z ⊕ Zτ is a lattice in R
2. In this case,

both the tangent and cotangent bundles are trivial, and the positive line bundles
are powers of a different type of line bundle which we may call the theta line bundle
Θ → M . Its sections are theta functions of level one, and in general H0(M, ΘN )
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consists of theta functions of level N . These sections lift to C as holomorphic
functions θ(z, τ ) which transform under translations in Λ by so-called multipliers.
When N = 1, θ(z + 1, τ ) = θ(z, τ ), θ(z + τ, τ ) = e−iπτe−2πizθ(z, τ ). The only
periodic holomorphic functions with respect to Λ are constant functions, so this
quasi-periodic function and its higher level analogues are the next best thing. One
may express θ(z, τ ) =

∑
n∈Z

ein2τe2πinz as a one-dimensional Fourier series, and the
higher level analogues are similar. Although they are complicated special functions,
elements of H0(C/Λ, ΘN ) are, in many significant ways, no more complicated than
polynomials of degree N . Indeed, the degree N of the line bundle is a measure of
the degree of complexity of its sections. This theme is borne out by many of the
results mentioned in this review, e.g., by the number and distribution of zeros of
the sections.

When g ≥ 2, a natural ample line bundle over the Riemann surface M is the
canonical bundle K = T ∗(1,0), whose holomorphic sections are differentials fdz.
Holomorphic sections of powers KN are the holomorphic N -differentials f(dz)N .
As in the case of C/Λ, one may uniformize by lifting the line bundle and its sections
to the upper half-plane H, and then the sections become holomorphic functions
on H which transform by multipliers when translated by elements of the group
Γ ⊂ PSL(2, R) such that H/Γ = M . The multiplier is determined by the fact that
f(dz)N is Γ-invariant. The dual tangent bundle and its powers are negative when
g ≥ 2 and have no holomorphic sections.

1.2. Positive line bundles. The curvature form of a Hermitian line bundle (L, h)
is defined by

(2) ωh = − i

2
∂∂̄ log ‖eL‖2

h ,

where eL denotes a local holomorphic frame (= non-vanishing section) of L over
an open set U ⊂ M , and ‖eL‖h = h(eL, eL)1/2 denotes the h-norm of eL. The line
bundle is said to be positive since it possesses a Hermitian metric with a Kähler
curvature form. Positive line bundles are ample, which intuitively means that
there exist sections in H0(M, LN ) with specified value and derivative at any point.
The precise definition, given above, is that for some power LN , the map (1) is an
embedding. The dimension is given by the Riemann-Roch formula for large enough
N and has the asymptotics dim H0(M, LN ) = Volω(M,g)

πm Nm + O(Nm−1). For this
and related background, we refer to [GH]. We note that the book under review also
covers non-compact Kähler manifolds.

More generally, complex geometers are interested in semi-positive lie bundles, big
line bundles, pseudo-effective line bundles, and other weaker forms of positivity. A
semi-positive line bundle is one possessing a Hermitian metric h for which ωh is a
semi-positive metric (i.e., its eigenvalues are ≥ 0 at each point). A big line bundle
is one possessing a singular Hermitian metric whose curvature current is strictly
positive. In these cases, dim H0(M, LN ) ∼ cNm, although the leading coefficient
may be smaller than that of the Hilbert polynomial in the positive case. The book
covers big line bundles in its Chapter 2. For another extensive exposition, see
[Dem2].

1.3. Bergman/Szegö kernels. Bergman or Szegö kernels are orthogonal projec-
tions onto H0(M, LN ) with respect to an inner product. The most natural inner
products are the ones induced by the Hermitian metric h. The metric h induces
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Hermitian metrics hN on LN given by ‖s⊗k‖hN = ‖s‖N
h . We then define the Her-

mitian inner product on sections by

(3) 〈s1, s2〉hN =
∫

M

hN (s1, s2)dVh (s1, s2 ∈ H0(M, LN ) ) .

Here, dVh = 1
m!ω

m
h is the volume form induced by the positive (1, 1) form ωh.

Since 1
π ω is a de Rham representative of the Chern class c1(L) ∈ H2(M, R), one

has Vol(M) = πm

m! c1(L)m. The Szegö kernel (with respect to the Hermitian metric
h) is the orthogonal projection PhN : L2(M, LN ) → H0(M, LN ). In terms of an
orthonormal basis {SN

j } of sections of H0(M, LN ), one has

(4) PhN (z, w) =
dN∑
j=1

SN
j (z) ⊗ SN

j (w) ,

so that

(5) (PhN s)(z) =
dN∑
j=1

SN
j (z)

∫
M

hN
z

(
s(w), SN

j (w)
)
hN dVM (w) , s ∈ L2(M, LN ) .

We note that in the book under review, the power is denoted p and the Bergman/-
Szegö kernel is denoted Pp.

In this discussion, we have only considered the Bergman kernels on Kähler man-
ifolds and line bundles. But the notion of an orthogonal projection onto the kernel
of a differential (or pseudo-differential) operator acting on sections of a vector bun-
dle is very general, and one uses the term Bergman kernel in this level of generality.
In the book under review, Bergman kernels are studied both on Kähler manifolds
and on almost Kähler symplectic manifolds.

1.4. Lifting the Szegö kernel to the unit circle bundle. To understand why
PhN is called a Szegö kernel, we lift it to the unit circle bundle defined by the
Hermitian metric. The book under review does not use this approach, but it is
important to be aware of it. It originates in the work of H. Grauert and is discussed
in some detail in [BG] and [BSZ], which we follow here.

We let L∗ denote the dual line bundle to L, and we consider the circle bundle
X = {λ ∈ L∗ : ‖λ‖h∗ = 1}, where h∗ is the norm on L∗ dual to h. Let π : X → M
denote the bundle map; if v ∈ Lz, then ‖v‖h = |(λ, v)|, λ ∈ Xz = π−1(z). Thus, X
is the boundary of the disc bundle D = {λ ∈ L∗ : ρ(λ) > 0}, where ρ(λ) = 1−‖λ‖2

h∗ .
It was observed by Grauert that positivity of ωh implies that D is strictly pseudo-
convex in L∗. Hence, X is a strictly pseudoconvex CR manifold. The contact form
α = −i∂ρ|X = i∂̄ρ|X and the volume form

(6) dVX =
1

(m)!
α ∧ (dα)m = α ∧ π∗dVh

are associated to X.
The sections s ∈ H0(M, LN ) lift to equivariant CR functions on X. That is, we

define the Hardy space H2(X) ⊂ L2(X) of square-integrable CR functions on X,
i.e., functions that are annihilated by the Cauchy-Riemann operator ∂̄b which are
in L2 with respect to the inner product

(7) 〈F1, F2〉 =
1
2π

∫
X

F1F2dVX , F1, F2 ∈ L2(X) .
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Equivalently, H2(X) is the space of boundary values of holomorphic functions on D
that are in L2(X). We let rθx = eiθx (x ∈ X) denote the S1 action on X and denote
its infinitesimal generator by ∂

∂θ . The S1 action on X commutes with ∂̄b; hence
H2(X) =

⊕∞
N=0 H2

N (X), where H2
N (X) = {F ∈ H2(X) : F (rθx) = eiNθF (x)}. A

section s of Lk determines an equivariant function ŝ on L∗ by the rule

ŝ(λ) =
(
λ⊗N , s(z)

)
, λ ∈ L∗

z , z ∈ M ,

where λ⊗N = λ ⊗ · · · ⊗ λ. Henceforth, we restrict ŝ to X and then the equivari-
ance property takes the form ŝN (rθx) = eiNθ ŝ(x). The map s �→ ŝ is a unitary
equivalence between H0(M, LN ) and H2

N (X).
The Szegö kernel of complex analysis is the (Schwartz kernel of the) orthogonal

projection P : L2(X) → H2(X), i.e., onto boundary values of holomorphic functions
in D. The Bergman kernel is the orthogonal projection onto holomorphic functions
in D. In the asymptotic analysis we are especially interested in the equivariant
Szegö kernels PN : L2(X) → H2

N (X), i.e.,

(8) PNF (x) =
∫

X

PN (x, y)F (y)dVX(y) , F ∈ L2(X) ,

which are the Fourier components of P with respect to the S1 action. The asymp-
totics of PN are dual under the Fourier transform to the singularity on the diagonal
of P (x, y) =

∑∞
N=1 PN (x, y), which was determined by C. Fefferman [F].

The advantages of lifting to X are that the lifted sections of all H0(M, LN ) are
functions rather than sections, and more seriously that they lie in one fixed Hilbert
space. Obtaining asymptotics is essentially Fourier analysis with respect to the S1

action.

1.5. Model examples. A basic example is the hyperplane bundle O(1) → CPm,
the dual of the tautological line bundle. In this case, the circle bundle X is the
2m + 1 sphere S2m+1, which is the boundary of the unit ball B2m+2 ⊂ C

m+1. A
straightforward calculation shows that

(9) PN (x, y) =
∑

J

(N + m)!
πmj0! · · · jm!

xJ ȳJ =
(N + m)!

πmN !
〈x, y〉N .

Note that

P (x, y) =
∞∑

N=1

PN (x, y) =
m!
πm

(1 − 〈x, y〉)−(m+1) ,

which is the classical Szegö kernel for the (m + 1)-ball.
The second example is the linear model C

m × C → C
m for positive line bundles

L → M over Kähler manifolds and their associated Szegö kernels. Its associated
principal S1 bundle Cm × S1 → Cm may be identified with the reduced Heisenberg
group Hm

red = Cm × S1 with group law

(ζ, eit) · (η, eis) = (ζ + η, ei[t+s+�(ζ·η̄)]).

The metric on LH with curvature Θ =
∑

dzq ∧ dz̄q is given by setting hH(z) =
e−|z|2 ; i.e., |f |hH

= |f |e−|z|2/2. For N = 1, 2, . . . , H2
N ⊂ H2(Hm

red) is the (infinite-
dimensional) Hilbert space of square-integrable CR functions f such that f ◦ rθ =
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eiNθf as before. The Szegö kernel PH
N (x, y) is the orthogonal projection to H2

N ,
given by

(10) PH
N (x, y) =

1
πm

NmeiN(t−s)eN(ζ·η̄− 1
2 |ζ|

2− 1
2 |η|

2) , x = (ζ, t) , y = (η, s) .

Another infinite volume example is provided by the hyperbolic disc D (or plane).
In this case, the relevant line bundles are powers Kλ → D of the canonical bundle
and the Hilbert space is

H2
λ(D) = {f ∈ O(D),

∫
D

|f(z)|2(1 − |z|2)λ−2dm(z)) < ∞},

where dm is the Lebesgue measure. An orthonormal basis is given by

{en =

√
Γ(n + λ)
n!Γ(λ)

zn}.

Here, O(D) is the space of holomorphic functions on D. The Bergman kernel for
this space is

Bλ(z, w) = (1 − zw̄)−λ =
∞∑

m=0

(λ)m
(zw̄)m

m!
,

where
(λ)m = λ(λ + 1) · · · (λ + m − 1).

1.6.Kähler quantization and the Boutet de Monvel-Sjöstrand parametrix.
The approach we are describing is that of Kähler quantization. Geometric (and
in particular Kähler) quantization links symplectic geometry (manifolds, functions
and maps) to Hilbert space analysis (Hilbert spaces, Toeplitz operators, and Fourier
integral operators). Thus, the Hardy space H2(X) is the quantization of the sym-
plectic cone Σ = {(x, rαx) : r > 0, x ∈ X} ⊂ T ∗X and the Bergman/Szegö kernel
P is the quantization of the restriction to this cone. The spaces H0(M, LN ) both
in the Kähler and symplectic settings arise from geometric quantization of (M, ω)
and the parameter 1

N is the Planck’s constant in this setting.
By analyzing the symplectic geometry of Σ and its quantization, Boutet de

Monvel-Sjöstrand [BSj] constructed a parametrix for P , i.e., a complex oscillatory
kernel

(11) S(x, y) ∼
∫ ∞

0

eitψ(x,y)s(x, y, t)dt,

with the same singularity as P on the diagonal. Here, the amplitude is a classical
symbol possessing the expansion s ∼

∑∞
n=0 tm−nsn(x, y) and the phase tψ(x, y) is

of positive type, i.e., complex valued but with non-negative imaginary part. Their
parametrix construction gave a new proof of C. Fefferman’s results on the singu-
larity on the diagonal of P (x, y) [F].

One obtains the Fourier components by averaging,

(12) PN (x, y) ∼ 1
2π

∫ ∞

0

∫ 2π

0

eitψ(x,rθy)s(x, rθy, t)e−iNθdtdθ.

If one changes variables t → Nt and applies the stationary phase method, one can
eliminate the integrals and obtain a simple asymptotic expression

(13) PN (z, 0; w, 0) = eN(ϕ(z,w)− 1
2 (ϕ(z)+ϕ(w)))χ(d(z, w)) sk(z, w) + O(N−∞),
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where ϕ is a local Kähler potential for ωh and ϕ(z, w) is its (almost-) analytic
extension. Also, χ(d(z, w)) is a smooth cutoff to a neighborhood of the diagonal
in M × M . The real part of the phase, which controls the decay of the integral, is
equal to the negative of the Calabi diastasis function

�t = D(z, w) := ϕ(z, w) + ϕ(w, z) − (ϕ(z) + ϕ(w)),

an intrinsic kind of distance between points determined by the Kähler form ω. It
does not depend of the choice of Kähler potential for ω.

As mentioned above, the recent article of Berman-Berndtsson-Sjöstrand [BBSj]
contains a very readable and novel construction of the parametrix in the form (13).
It constructs the approximate Bergman/Szegö kernel in the form of a Fourier inte-
gral over a good contour. The proof that the approximate kernel truly approximates
the true Bergman/Szegö kernel is deduced from the Hörmander ∂̄ estimates.

1.7. Diagonal and off-diagonal asymptotics. There are many geometric ap-
plications of the asymptotics on and off the diagonal of the Szegö kernel PN (z, w).
This parametrix was used by D. Catlin [C] and independently by the reviewer [Z] to
obtain asymptotics on the diagonal of the Szegö kernel, and applications to Tian’s
almost isometry theorem [T]. In subsequent work with P. Bleher and B. Shiffman
(cf. [SZ, BSZ]), off diagonal asymptotics on balls of radius N1/6

√
N

were determined.
One way to state them is by rescaling the Szegö kernel in small balls and in special
Heisenberg coordinates :
(14)

N−mPN (P0 + u√
N

, θ
N ; P0 + v√

N
, ϕ

N )

= ΠH
1 (u, θ; 0, 0)

[
1 +

∑K
r=1 N−r/2br(P0, u, 0)

]
+ N−(K+1)/2RK(P0, u, N) ,

where

(15) ‖RK(P0, u, N)‖Cj({|u|≤N1/6}) <∼ CK,je
− 1−ε

2 |u|2 for j ≥ 0 ,

and where br(P0, u, v) are certain polynomials. Thus, on small enough balls, the
Szegö kernel is a small perturbation of the Heisenberg Szegö kernel of the same
degree. On the diagonal one has

(16) PN (z, 0; z, 0) = a0N
m + a1(z)Nm−1 + a2(z)Nm−2 + · · ·

for certain smooth coefficients aj(z) with a0 = π−m. The next two coefficients were
calculated by Z. Lu [Lu].

The off-diagonal expansion is covered in Chapter 4 and is given a lot of attention
in this book. They give off-diagonal expansions for PN for various elliptic differential
operators such as the Kodaira-Laplacian operator, the spin-C Dirac operator and
others, and improve upon (14) by giving exponentially small remainders. They
derive the off-diagonal asymptotics from those of the heat or wave kernels, rather
than by the method above. An omission is that they do not seem to mention
that off-diagonal asymptotics, in both the Kähler and almost Kähler case, were
earlier derived in both the Kähler and almost Kähler case from the Boutet de
Monvel-Sjöstrand parametrix (see [BSZ, SZ]). As with many applications in this
book, the off-diagonal asymptotics are often more pertinent than the on-diagonal
ones. For instance, as discussed below, they give a simple analytic proof of Kodaira
embedding type theorems.
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The expansions for line bundles admit several generalizations to holomorphic
vector bundles E. One might consider twists Lk ⊗E or symmetric powers SymkE.
In both cases, by enlarging M , one can reduce the existence of the expansion to the
case of powers of line bundles. The heat kernel approach may be simpler for actual
calculations. The calculation of the trace asymptotics for Lk ⊗ E was carried out
in [W].

1.8. Applications. Bergman/Szegö kernels can be used in many applications. If
we fix y and L2 normalize, we obtain a coherent state Φy

N (x) = PN (x,y)√
PN (y,y)

based at

y. It corresponds to a holomorphic section of LN which is most peaked at y. On
small balls of radius C√

N
, it is like a Gaussian bump of height N

m
2 centered at y

and with width C√
N

, although its tails are longer than Gaussian globally on the
manifold. Since it is almost a delta function at y for large N , the map

(17) y → Φy
N

can be proved to define an embedding ΦN : X → H2
N (X). This is an analytic

version of the Kodaira embedding theorem. It is an equivariant lift to X of the
usual Kodaira embedding (1).

Chapters 5–8 of the book under review contain many applications of the on- and
off-diagonal asymptotics of the Szegö kernel to problems in geometry and analysis.
Among them are the following.

• Relating stability of polarized line bundles to existence of constant scalar
curvature Kähler metrics in the Kähler class c1(L). Stability is an algebraic-
geometric notion, while scalar curvature metrics are transcendental differ-
ential geometric. A key link between algebraic geometry and differential ge-
ometry is provided by the space BN of Bergman (= Fubini-Study) metrics,
i.e., metrics obtained by pulling back the Fubini-Study metric under Ko-
daira maps given by any basis of H0(M, LN ). It follows from [T, C, Z] that
when the bases are orthonormal with respect to 〈, 〉hN , then the Bergman
metrics approximate any Kähler metric in the given Kähler class in a very
strong asymptotic sense. This approximation was used in [D2] to show
that existence of a constant scalar curvature metric implies stability in a
certain sense. A key point was that the second term a1 in the expan-
sion (16) is the scalar curvature sω of ωh [Lu] . This term could also be
obtained by some basic invariant theory (up to a constant, sω is the geo-
metric invariant which could occur in this term). On a deeper level, BN

is a finite-dimensional symmetric space whose geometry approximates the
infinite-dimensional symmetric space H of Kähler metrics in a fixed Kähler
class. For instance, Phong-Sturm proved [PS2] that geodesics of BN (which
are one-parameter subgroups) approximate geodesics of H (which are so-
lutions of a complex homogeneous Monge-Ampère equation). For further
exposition in this direction, see [PS].

• Zeros of random holomorphic sections. Here one equips H0(M, LN ) with a
Gaussian measure induced by h, and one considers the expected distribu-
tion of zeros. The two-point function is PhN (z, w), and from the diagonal
asymptotics one finds that the expected limit distribution of zeros of ran-
dom sections is the curvature (1, 1)-form (cf. [BSZ]). This is the equilibrium
measure in this situation; R. Berman recently proved more general results in
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this direction [B2]. P. Bleher, B. Shiffman, and the reviewer [BSZ, BSZ2]
used the off-diagonal asymptotics (14) to obtain correlation functions as
well, although the book does not pursue the subject that far.

• Asymptotics of the holomorphic analytic torsion. This is defined as a deter-
minant of a certain Laplacian on LN ⊗E, where E is a vector bundle. It is
used to define the Quillen metric. Bismut-Vasserot studied the asymptotics
as N → ∞ of the torsion. Applications of the torsion to canonical metrics
are discussed in [MW], which escaped the bibliography but is another useful
reference.

• Geometry of almost-complex symplectic manifolds. There are several types
of replacements for H0(M, LN ) when (M, ω, J) is an almost complex sym-
plectic manifold with integral form ω and compatible complex structure J .
Donaldson’s paper [D1] initiated a new field of constructing analogues of
Kähler asymptotic analysis in the symplectic setting. His purpose was to
construct embedded symplectic submanifolds as zero sets of certain spe-
cial asymptotically holomorphic sections of the pre-quantum line bundles
LN → M determined by ω. Motivated by his paper, Borthwick-Uribe [BU],
Shiffman-Zelditch [SZ], R. Paoletti, and the authors of this book (among
others) considered Bergman/Szegö kernel analysis for a variety of spaces of
sections replacing H0(M, LN ). The space in [BU] is the space (first defined
in [GU]) of low-lying eigensections for a certain modified �b Laplacian in
the almost Kähler setting, which equals �b in the Kähler case. The space
in [SZ] is a space of almost holomorphic sections defined by Boutet de
Monvel-Guillemin [BG] where the non-integrable ∂̄b operator is deformed
by a pseudo-differential perturbation to an integrable operator satisfying
D2

b = 0. The authors of this book also consider the spin-C Dirac operator
and its kernel. All of these spaces of sections provide asymptotically holo-
morphic sections in the sense of [D1]. Kodaira embedding theorems were
proved in [BU]; they were derived in [SZ] for almost holomorphic sections as
a corollary of the off-diagonal expansion (14). The low-lying eigensections
of [GU, BU] are those of a differential operator for which good estimates
may be expected, while those of [BG, SZ] have a Bergman/Szegö kernel
that is very similar to the Kähler case.

2. Holomorphic Morse inequalities

We now consider the second large topic of the book. Holomorphic Morse inequal-
ities are used to estimate dimensions hq(LN ) := dim Hq(M, LN ) of holomorphic
sections of line bundles which are not necessarily positive. In this generality, one
has no Boutet de Monvel-Sjöstrand parametrix, and there are few alternatives to
the heat or wave kernel approximation. (One alternative can be found in the recent
article of R. Berman [B2].)

The holomorphic Morse inequalities of J. P. Demailly [Dem] assert that

(18) dim Hq(M, LN ) ≤ (−1)q Nn

n!

∫
M(q)

(
i

2π
c1(L))n + o(Nn).

Here, M(q) ⊂ M is the subset in which ic1(L) has precisely q negative eigenvalues.
It was observed by J. M. Bismut [B] that the leading order scaling asymptotics of
the heat kernel could be used to simplify the proof of these inequalities. Bismut’s
proof was substantially simplified by J. P. Demailly [Dem] and by T. Bouche. We
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denote by �̄q
N = (∂̄ + ∂̄∗)2 the complex Laplacians on (0, q) forms with values in

LN . The heat operator is given by e−�̄q
N and we denote its kernel by kq

N (t, x, y).
We define the time-scaled diagonal heat kernel by eq

N (t, x) := kq
N (t/N, x, x) . Then

eq
N (t, x) ∼ eq

∞0(t, x) := (
∑
|J|=q

etα̃J )
n∏

j=1

tαj(x)
sinh tαj(x)

,

where α̃J =
∑

j /∈J αj −
∑

j∈J αj . Since one obviously has

(19) dimHq(M, LN ) ≤
∫

M

kq
N (t/N, x, x)dV

for any t, we can let N → ∞ to obtain

(20) lim
N→∞

N−n dimHq(M, LN ) ≤
∫

M

t−neq
∞o(t, x)dV

and then let t → ∞ to obtain

(21) lim
N→∞

N−n dimHq(M, LN ) ≤ (−1)q 1
n!

∫
M(q)

(
i

2π
c1(L))n.

In the last step we used that (as t → ∞),

(22)
etαtα

sinh tα
=

tα

1 − e−2tα
∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tα + O(te−2αt), α > 0,

1, α = 0,

O(te−2|α|t), α < 0.

In the case of q = 0, we have

(23) e0
∞0(t, x) ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tr
∏r

i=1 αi(x), αi(x) ≥ 0 ∀i, αi(x) > 0 i = 1, . . . , r,

1, αi(x) = 0 ∀i,

0, ∃i : αi(x) < 0.

For general q the asymptotics depend in a more complicated way on the eigenvalues
of ic1(L). Assume for simplicity that ic1(L) is non-degenerate at x ∈ M(q), and
let J−(x) denote the set of q indices for which αj(x) < 0 and, respectively, J+(x)
denote the set of indices for which αj(x) > 0. The only term in α̃J which makes a
non-trivial asymptotic contribution is the one for which J = J−(x). Hence

(24)
t−neq

∞0(t, x) ∼ t−n
∏

j et|αj(x)| tαj(x)
sinh tαj(x)

∼ (−1)q
∏

j αj(x).

2.1. Applications. The holomorphic Morse inequalities were first proved by J. P.
Demailly for application to the Grauert-Riemenschneider conjecture that X is
Moishezon if it carries a semi-positive line bundle (L, h) which is positive at least at
one point. The book reviews the proof and also gives further applications to non-
positive line bundles. For instance, they prove the Ji-Shiffman theorem [JS] that
Moishezon manifolds are those that admit a strictly positive singular polarization
(L, h) (i.e., a singular metric whose curvature current is strictly positive). There are
related theorems of Bonavero and Takayama. They also discuss Boucksom’s the-
orem on volumes of pseudo-effective line bundles. R. Berman has recently proved
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local versions of the holomorphic Morse inequalities directly using the Bergman
kernel for non-positively curved metrics [B1, B2].

3. Final remarks

The book under review is very thorough and quite successful in providing a
unified approach to a large and diverse collection of results on the asymptotic
analysis of line bundles, most of which are not discussed in any other book. In
addition, it contains Problem sections at the end of each chapter. It could be used
as a textbook on the subject in a graduate level class.

As mentioned above, the book takes a consistent heat kernel (or at times wave
kernel) approach to Bergman kernels and holomorphic Morse inequalities. This
makes sense, since one has a parametrix for the heat kernel whether or not ω is
a positive (1, 1) form, and so it is very useful for both of the main topics of the
book. Moreover, heat kernel expansions are often easier to compute than Szegö ker-
nel expansions. The reviewer has already indicated that the microlocal or Kähler
quantization aspects are omitted. Aside from that, the book under review provides
a very detailed and thorough introduction to asymptotics of line bundles and holo-
morphic sections, which takes the reader from the basic definitions to many of the
research problems of contemporary interest.
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