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The field of dynamical systems traces its roots to Poincaré’s qualitative study
of solutions to differential equations in the late nineteenth century. The subfield
of complex dynamics, which was initiated by Fatou and Julia in the late 1910s but
which did not draw substantial attention until the 1980s, focuses mainly on the
iteration of rational functions. In the 1990s, number theorists began to study such
iterations as well, noting parallels to certain aspects of the theory of elliptic curves.
Since then, number-theoretic dynamics has begun to emerge as a field in its own
right, especially concerning the rationality properties of periodic points.

1. RATIONAL PREPERIODIC POINTS

A (discrete) dynamical system is a set X and a function ¢ : X — X; one
considers the iterates ¢" := popo---0¢ for integers n > 0. We say a point x € X
is periodic if ¢"(x) = x for some n > 1; if n is the smallest such integer, the set
{z,¢0(x),...,¢" 1(z)} is called an n-cycle. More generally, given z € X, if there is
an integer m > 0 such that ¢™(z) is periodic, we say x is preperiodic.

Complex dynamics is devoted mostly to the case that X is the complex projective
line (i.e., Riemann sphere) X = P!(C) := CU{cc}, and that ¢ is a rational function
with coefficients in C. Motivated by number theory’s focus on rational numbers,
one can instead ask about (rational) preperiodic points in P*(Q) := QU{oco}, under
the action of a rational function ¢ € Q(z). That is, we wish to study the set

Preper(¢, Q) := {z € P}(Q) : z is preperiodic}.

Example 1.1. Let us compute Preper(¢,Q) for ¢(z) = 22 — 1 € Q[z]. First,
note that oo itself is fixed by ¢; indeed, for any polynomial, co is always a fixed
point, and no other points map to it. Second, consider x = mg/ng € Q, where
mg and ng are relatively prime integers and ng > 1. If ng > 2, then there is some
prime p and some integer r > 1 such that p”||ng; that is, p” divides ng but p"+!
does not. A simple calculation shows that when we write ¢(z) = m1/n; in lowest
terms, we must have p?"||n;. Proceeding inductively, the denominator ny, of ¢*(x)
satisfies p2kr||nk. The iterates of x are therefore all distinct. Thus, if z € Q is to
be preperiodic, its denominator ng must be 1; that is, x must in fact be an integer.

On the other hand, suppose x € Q satisfies |x| > 2. Then ¢(z) > 3, and in fact
¢(x) > |z|. The iterates of x then form a strictly increasing sequence, and once
again, x cannot be preperiodic. Thus, the only points of P!(Q) that could possibly
be preperiodic are oo, —1, 0, and 1. A simple computation shows

1+—0+— —1+—0,

so that 0 and —1 form a 2-cycle, 1 is preperiodic but not periodic, and, of course,
oo is fixed.
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Example 1.2. Let us now find Preper(¢,Q) for ¢(z) = 22 — 133/144. (This
seemingly obscure choice comes from setting p = 5 in Theorem 2 of [12].)

Given x = mg/ng € Q in lowest terms, suppose p”||ng for some prime p > 5 and
integer 7 > 1; then the argument of Example [[LT] shows that x is not preperiodic.
The same conclusion follows if 27||ng for some r # 2 or if 3%||ng for some s # 1.
Therefore, if x € Q is preperiodic, its denominator must be exactly 12.

Once again, meanwhile, a preperiodic point x € Q must satisfy |z| < 2, or else
the iterates of x will explode in size. Thus, £ must be one of the sixteen rational
numbers in the interval (—2,2) with denominator exactly 12. This time, however,
not all of those numbers are actually preperiodic. For example,

17 13 1

St

12 12 4’
and because 1/4 has the wrong denominator, neither 13/12 nor 17/12 is preperiodic.
Similarly, 5/12 and 23/12 are not preperiodic. Still, it is easy to check that £1/12,
+11/12, £7/12, and £19/12 are preperiodic. Specifically, —1/12 and —11/12 form
a 2-cycle; —7/12 and 19/12 are fixed; and clearly ¢(—x) = ¢(z) for all z. Together
with the fixed point at oo, then, ¢ has nine preperiodic points in P*(Q).

The two examples above suggest the following result, proven by Northcott in
1950 [I1]. To state it, we define the degree of a rational function ¢ € Q(z) to be
the maximum of the degrees of the numerator and denominator.

Theorem 1.3. Let ¢ € Q(2) be a rational function of degree d > 2. Then ¢ has
only finitely many rational preperiodic points. That is, # Preper(¢$, Q) < oo.

One of the major conjectures of arithmetic dynamics, proposed by Morton and
Silverman in 1994 [10], is the following Uniform Boundedness Conjecture.

Conjecture 1.4. Let d > 2. Then there is a constant C' = Cy such that for any
rational function ¢ € Q(z) of degree d,

# Preper(¢, Q) < Ca.

In fact, Northcott proved his result, and Morton and Silverman stated their
conjecture, not just for the projective line over Q, but for projective N-space (for
any N > 1) and over any number field, i.e., any finite extension of Q. For the sake
of exposition, this review will stick (mostly) with P*(Q), but the reader should note
that everything we say can be done over number fields, and quite a lot of it can be
done in higher dimension.

Part of the evidence for Conjecture [ comes from an analogy with the uniform
boundedness of torsion on elliptic curves over number fields (proven by Mazur [6]
for Q, and ultimately proven in full generality by Merel [7]). There is also fairly
strong evidence that Conjecture [[L4]is true at least for quadratic polynomials over
Q, with an upper bound of C' = 9, as attained in Example [[22] above; see [12]. Still,
a full resolution of the conjecture, even in the simplest case of quadratic polynomials
over Q, seems to be out of reach at the moment.

2. HEIGHTS AND CANONICAL HEIGHTS

At its core, the proof of Northcott’s theorem is a generalization of the arguments
of Examples [[.T] and [[.2] using Weil’s theory of Diophantine heights, which begins
with the following simple idea.
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Any z € Q can of course be written as a fraction m/n in lowest terms (with
m,n € Z), in which case we define the height of = to be simply

(2.1) h(z) = h(m/n) := log max{|m|, |n|}.

(In order to define h on all of P}(Q), we may treat co as 1/0, so that h(c0) = 0.)
Intuitively, h(x) is the amount of space x would take up on the page if written out
as a fraction; put another way, it measures some sort of arithmetic complexity of
the rational number z. Clearly, h(x) is independent of the choice of m and n (which
can only vary up to sign). Moreover, for any given bound B € R, the set

{z € P{Q) : h(z) < B}

is finite.
The connection with dynamics comes from the following much less obvious prop-
erty of the height function.

Theorem 2.1. Let ¢ € Q(z) be a rational function of degree d > 1. Then there is
a constant Cy € R such that for any x € P1(Q),

[h(d(x)) —d - h(z)| < Cy.

The conclusion of this fundamental result from Diophantine geometry is often
stated in “big-Oh” notation as the approximate functional equation
(2.2) h(g(z)) =d - h(z) + O4(1).
The < direction of ([2:2]) is actually fairly easy to prove, but the > direction is far
more difficult. Given Theorem [2.I] however, it is easy to deduce that if d > 2, then
no Q-rational preperiodic point can have height more than Cy/(d —1). Northcott’s
theorem for P}(Q) then follows from the finiteness of sets of bounded height.

Note that if ¢(z) = 2¢, then the approximate formula h(¢(z)) = d- h(z) + O(1)
is in fact the exact equality h(¢(z)) = d - h(z). More generally, if deg¢ = d > 2,
we can define the canonical height for ¢ by

he(z) = lim d~"h(¢"(x)).
n—oo

It is easy to check that this limit converges, and that the ezact functional equation
fAL(z,(qS(x)) =d- fw(m) holds. In addition, fw(m) = h(z) + O4(1), so that as before,
there are only finitely many rational points of canonical height below any given
bound. At the same time, hg4(z) (which is always nonnegative) is zero if and only
if = is a preperiodic point of ¢. Thus, the canonical height function fqu combines

both arithmetic information (it approximates h, the arithmetic complexity) and
dynamical information (returning zero precisely at preperiodic points).

3. PLACES AND REDUCTION

As is common in number theory, one can gain more insight by the use of absolute
values. An absolute value on a field K is a function |- | : K — [0,00) that is
nondegenerate (|z| = 0 if and only if z = 0), multiplicative (|zy| = |z||y|), and
satisfies the triangle inequality (Jz + y| < |z| + |y|). Besides the usual absolute
value, which we will denote |- |o, hereafter, there is a p-adic absolute value |- |, on
Q for each prime number p. The latter is defined by |p"q|, =p~", where ¢ € Q is a
rational number with neither numerator nor denominator divisible by p, and r € Z.
It is a non-archimedean absolute value, meaning that it satisfies the strengthened
triangle inequality |z + y[, < max{|z|p, |y|,}.
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In the early twentieth century, Ostrowski proved that the standard absolute
value and the p-adic absolute values are essentially the only absolute values on Q.
The set Mg :={] - |oo, | - |2, | - I35 | |5, - - .} satisfies the product formula

H x|, =1 for all nonzero z € Q,
’UEM@

where we have abused notation by sometimes writing v in place of | - |,. Number
theorists often think of Mg as a geometric object whose elements are called the
places of Q. The idea is that one can work locally by considering a particular
absolute value | - |, and then try to combine the local information to prove global
results—that is, results about Q itself.

Returning to heights, it is an easy consequence of the product formula that

(3.1) h(z) = Z logmax{1,|z|,} for all z € Q.
vE Mg

Note that for any x € Q, all but finitely many of the terms on the right side are
zero, and hence this seemingly infinite sum is in fact finite. Note also that this
formula no longer requires us to write x as a fraction in lowest terms; indeed, to
define the height for arbitrary number fields, where the ring of integers might not
have unique factorization, one usually uses a version of ([B.I)) rather than (ZII).

The term A, (x) = logmax{1, |z|,} in [BI) is often called the local height of x
(at v). If we write ¢(z) = f(z)/g(x), where f and g are polynomials, then \,, like
h, also satisfies an approximate functional equation, this time of the form

Ao(@(2)) = d - Ay(z) —log [g(x)]s + Op (1),

where the “big-Oh” constant depends on ¢ and v but not on x. Moreover, for any
given ¢, the “big-Oh” constant is zero for all but finitely many v. That is, for such
U,

(3-2) Ao(0(x)) = d - Ay (2) — log |g() o

for all  such that g(x) # 0. This last fact is intimately related to the fundamentally
important notion of good reduction, as follows.

Given ¢(z) = f(2)/9(z) € Q(z) and a prime number p, we would like to be able
to reduce ¢ modulo p. That is, simply replace all the coefficients of f and g by
their images in the field F,, = Z/pZ of p elements, to get a rational function

- (2)

3 = 275 €Fy(2).
To do that, of course, we must first clear denominators in f and g so that all
coefficients lie in Z; it would also make sense to cancel any common prime factors
among all those coefficients while we are at it. Thus, we may assume that f and
g are relatively prime polynomials in Z[z]. Even after making that assumption,
however, there is the possibility of introducing some extra cancellations when we
move from f and g to f and g. Thus, we state the following definition.

Definition 3.1. Let ¢(z) € Q(z) be a rational function of degree d > 0, and write
¢(2) = f(2)/g(2), where f,g € Z[2] are relatively prime polynomials. Let p be a
prime number. Let ¢(z) = f(2)/g(z), where f,g € F,[z] are the reductions of f

and g modulo p. If deg(¢) = deg ¢, then we say ¢ has good reduction at p, and
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that p is a good prime for ¢. Otherwise, deg(¢) < deg(¢), and we say ¢ has bad
reduction at p, and that p is a bad prime for ¢.

For the sake of completeness, we also say that every ¢ € Q(z) has bad reduction
at the archimedean place v = co.

If ¢(z) € Q[z] is a polynomial, it is not difficult to show that ¢ has good reduction
at a prime p if and only if p divides neither the numerator of the lead coefficient
nor the denominators of any of the coefficients. For example, the map ¢(z) =
z? — 133/144 may be written as f/g for f(z) = 14422 — 133 and g(z) = 144; note
that f, g € Z[z] are relatively prime. Thus, ¢ has bad reduction at 2 and 3, because
modulo either prime, the degree of ¢ = f/g = —1/0 = oo has dropped from 2 to
0. By fiat, ¢ also has bad reduction at v = co. On the other hand, ¢ has good
reduction at every other prime (even those dividing 133). Naturally, it is not a
coincidence that the bad places 2, 3, and co are precisely the ones that required
special consideration in Example

As an example of a nonpolynomial, consider 1(z) = (322 —8z)/(4z+11) € Q(z).
One can check that ¢ has bad reduction at v = 3,5,11, 13, 0o, and good reduction
everywhere else. For example, modulo 5, we have ¢(z) = 3z(z—1)/(—2z+1) = —3z2;
the degree has dropped because of a cancellation introduced by reduction modulo 5.

In general, the reduced map ¢ of course acts on P! (F,) = F, Uoco. Meanwhile,
there is a natural reduction map from P!(Q) to P*(F,), sending = to z(mod p) if
|z|, < 1, and sending every x with |z|, > 1 to co. This reduction map, which we
will denote by z +— T, can also be extended to a map from P*(Q) to P!(F,), where
K denotes the algebraic closure of the field K.

Theorem 3.2. Let ¢(z) € Q(z) be a rational function of degree d > 0, and write
d(z) = f(2)/g9(2), where f,g € Z[z] are relatively prime polynomials. Then

(1) ¢ has only finitely many bad primes.
(2) Let p be a prime number. The following are equivalent:
(a) ¢ has good reduction at p.

(b) ¢(T) = ¢(x) for all z € PY(Q), where x +— T denotes the reduction
modulo p map from PL(Q) to P1(F,).
(¢) A\p(d(m)) = d - Ny(x) — log |g(x)|, for all x € Q such that g(x) # 0.

Part (1) of Theorem B2 holds because all the bad primes divide the resultant of
f and g, which is an integer. More precisely, the resultant is a certain polynomial
(the Sylvester determinant) in the coefficients of f and g. Meanwhile, condition (b)
of part (2) above says simply that it makes sense to work with ¢ modulo p; and
condition (c) is exactly equation (B:2)).

Of course, at the finitely many places v at which ¢ has bad reduction, the analysis
is far more complicated. To understand the dynamics at a bad place v, we should
consider the completion of Q at v; that is, toss in all limits of sequences that are
Cauchy with respect to |- |,, to obtain Qu := R if v = 00, or Q,, the field of p-adic
rationals, if v = p is a prime.

It is often useful to work over the algebraic closure, too. Thus, for v = oo, we turn
to C, and we are back in the setting of complex dynamics, studying the iteration of
a rational function on the Riemann sphere P*(C). Complex dynamics, while still a
very fertile field, has fortunately been around long enough that there are numerous
expositions on the subject, such as [I], [, [§]. In particular, the Fatou and Julia sets
of ¢ in P1(C), as well as the classification of periodic points as attracting, repelling,
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or indifferent, are understood well enough to shed light on problems over Q. The
bounds |z|w < 2 for preperiodic points in Examples [Tl and [[2] for instance, come
from an understanding of the Fatou and Julia sets of the maps in question.

On the other hand, if v = p is prime, then the algebraic closure @p of Q, is
not complete, but its completion C, is both complete and algebraically closed.
We can therefore consider the action of ¢ on P!(C,), the p-adic analogue of the
Riemann sphere. Dynamics over non-archimedean fields is a newer research area
with fewer expositions, although some early research papers such as [2, [3] 5] [13]
provide something of an introduction to the subject. Nevertheless, much of the
same theory of Fatou and Julia sets can be carried out in the non-archimedean
context; the denominators of 12 in Example [[.2] for instance, can be understood
as coming from the 2-adic and 3-adic Julia sets of ¢(z) = 22 — 133/144.

Given these fundamentals (canonical heights, reduction, complex dynamics, and
non-archimedean dynamics), one can of course study many arithmetic aspects of
dynamics other than the rationality of preperiodic points. For example, as is con-
jectured for elliptic curves, is there a positive lower bound, depending only on some
kind of conductor of ¢, for the canonical height of a nonpreperiodic point? If we
fix ¢ but let our number field K grow, how does the set of K-rational preperiodic
points grow? If ¢ is not a polynomial, is there an upper bound on the number of
consecutive iterates any x € P1(Q) can have that are all integers, assuming some
appropriate minimality restrictions on our choice of coordinates? What do various
moduli spaces of dynamical systems look like? These and many other questions,
including questions about canonical heights, non-archimedean dynamics, and other
specialized tools, remain very much open.

4. THIS BOOK

Silverman presents a thorough introduction to the dynamics of a rational func-
tion ¢(z) € K(z) acting on P}(K) := K U {oo}, where K is a number field. The
Arithmetic of Dynamical Systems develops the relevant aspects of heights, canonical
heights, complex dynamics, and non-archimedean dynamics from scratch. While
the reader is assumed to be familiar with number fields, Galois theory, some al-
gebraic number theory, and a smattering of algebraic geometry, the exposition is
essentially self-contained. The book is aimed at an audience of number theorists
and their graduate students; in particular, no previous knowledge of dynamical
systems is assumed. In addition, although the reader is of course referred to the
(extensive) bibliography for the proofs of some of the deeper results, most of the
many lemmas and theorems are proven in full detail in the text.

For example, Silverman devotes one chapter to complex dynamics and two (one
for good reduction, one for bad) to non-archimedean dynamics. Topics in each
case include multipliers of periodic points, Fatou and Julia sets, and coordinate
changes (i.e., conjugation by linear fractional transformations). The discussion of
non-archimedean dynamics also includes a brief and very readable introduction to
Berkovich space and dynamics on the Berkovich projective line; readers wishing to
learn that theory may find it helpful to start with Silverman’s book before turning
to the more comprehensive discussions in [13] or [14], for example. Another chapter,
devoted to dynamics over Q and other number fields, develops height and canonical
height functions from the ground up. The same chapter also discusses integrality
(cf. the aforementioned question on consecutive integer iterates) and Diophantine
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approximation a la Siegel and Roth, as well as the action of Galois on preperiodic
points.

Other chapters branch out towards a small selection of more advanced topics.
One such topic is the study of moduli spaces of dynamical systems. Here, Silverman
defines dynatomic polynomials, analogous to cyclotomic polynomials, as certain
polynomials whose roots are periodic points of a given map ¢. He uses them
to define certain moduli spaces that can be considered analogous to the classical
modular curves from the theory of elliptic curves. He also studies the full moduli
space M of all degree-d rational maps; M, is in general a highly nontrivial object
because it parametrizes not individual maps ¢ but rather equivalences classes of
maps ¢ under coordinate change.

Another chapter is devoted mainly to Lattes maps, which arise from endomor-
phisms of elliptic curves. Silverman devotes one section to a high-speed review of
the relevant aspects of the theory of elliptic curves, but his well-known text [15]
would still be advisable as background for the reader interested in this topic. Fi-
nally, the last chapter presents an introduction to number-theoretic dynamics in
higher dimension, especially the case of automorphisms either of affine space A™ or
of a K3 surface.

As Silverman notes in the introduction, there are of course many other topics
that can be considered arithmetic or algebraic dynamics. The 3n + 1 problem is
probably the most famous such topic; others include dynamics over other algebraic
fields or on Drinfeld modules. Even within the study of dynamics of algebraic
morphisms over local and global fields, there are many active areas of research
that Silverman’s book mentions but does not really cover, such as ergodic theory
in p-adic dynamics (requiring the Berkovich theory) and Galois equidistribution of
preperiodic points.

The Arithmetic of Dynamical Systems arrives with auspicious timing. The sub-
ject has now been studied long enough and by enough researchers that a fairly
broad literature exists, the field has a “big picture” to guide it, and numerous open
questions have been posed to motivate future research. At the same time, the field
is young enough that there are few, if any, other such comprehensive introduc-
tions to the subject. With a growing number of graduate students and established
researchers trying to learn the subject, such a clear exposition comes none too soon.

The book is well organized and well written, with a style and structure simi-
lar to those of Silverman’s elliptic curves texts [I5 [16]. Ideas and intuitions are
conveyed clearly, but at the same time, the presentation is completely rigorous.
There are hundreds of exercises at a wide range of difficulty levels, and there are
dozens of conjectures and open questions embedded in the exposition. Number the-
orists interested in studying dynamics will find this book to be both an excellent
introduction and a valuable reference for the subject.

REFERENCES

1. A. Beardon, Iteration of Rational Functions, Springer-Verlag, New York, 1991. MR1128089
(92j:30026)

2. R. Benedetto, Reduction, dynamics, and Julia sets of rational functions, J. Number Theory
86 (2001), 175-195. MR1813109//(2001m:11211)

3. J.-P. Bézivin, Sur les points périodiques des applications rationnelles en analyse ultramétrique,
Acta Arith. 100 (2001), 63-74. MR1864626 (2002j:37059)

4. L. Carleson and T. Gamelin, Complex Dynamics, Springer-Verlag, New York, 1991.
MR1230383(94h:30033)


http://www.ams.org/mathscinet-getitem?mr=1128089
http://www.ams.org/mathscinet-getitem?mr=1128089
http://www.ams.org/mathscinet-getitem?mr=1813109
http://www.ams.org/mathscinet-getitem?mr=1813109
http://www.ams.org/mathscinet-getitem?mr=1864626
http://www.ams.org/mathscinet-getitem?mr=1864626
http://www.ams.org/mathscinet-getitem?mr=1230383
http://www.ams.org/mathscinet-getitem?mr=1230383

164

5.

6.

7.

10.

11.

12.

13.

14.

15.

16.

BOOK REVIEWS

L.-C. Hsia, Closure of periodic points over a non-archimedean field, J. London Math. Soc. (2)
62 (2000), 685-700. MR1794277|/(2001j:11117)

B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Etudes Sci. Publ. Math. 47
(1977), 33-186. MR488287|(80c:14015)

L. Merel, Bournes pour la torsion des courbes elliptiques sur les corps de nombres, Invent.
Math. 124 (1996), 437-449. MR 1369424 /(961:11057)

. J. Milnor, Dynamics in One Complex Variable: Introductory Lectures, 2nd ed., Vieweg,

Braunschweig, 2000. MR1721240|/(2002i:37057)

. P. Morton, Arithmetic properties of periodic points of quadratic maps, II, Acta Arith. 87

(1998), 89-102. MR1665198|/(2000c:11103)

P. Morton and J. Silverman, Rational periodic points of rational functions, Inter. Math. Res.
Notices 2 (1994), 97-110. MR1264933//(95b:11066)

D. Northcott, Periodic points of an algebraic variety, Ann. Math. 51 (1950), 167-177.
MR0034607|/(11:615¢)

B. Poonen, The classification of rational preperiodic points of quadratic polynomials over Q:
a refined conjecture, Math. Z. 228 (1998), 11-29. MR1617987//(99j:11076)

J. Rivera-Letelier, Dynamique des fonctions rationnelles sur des corps locaux, Astérisque 287
(2003), 147-230. MR2040006//(2005f:37100)

R. Rumely and M. Baker, Analysis and dynamics on the Berkovich projective line, preprint,
math.NT/0407433, 2004.

J. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, New York, 1986. MR817210
(87g:11070)

J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer-Verlag, New
York, 1994. MR1312368|/(96b:11074)

ROBERT L. BENEDETTO

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, AMHERST COLLEGE, AMHERST,
MASSACHUSETTS 01002

E-mail address: r1lb@cs.amherst.edu


http://www.ams.org/mathscinet-getitem?mr=1794277
http://www.ams.org/mathscinet-getitem?mr=1794277
http://www.ams.org/mathscinet-getitem?mr=488287
http://www.ams.org/mathscinet-getitem?mr=488287
http://www.ams.org/mathscinet-getitem?mr=1369424
http://www.ams.org/mathscinet-getitem?mr=1369424
http://www.ams.org/mathscinet-getitem?mr=1721240
http://www.ams.org/mathscinet-getitem?mr=1721240
http://www.ams.org/mathscinet-getitem?mr=1665198
http://www.ams.org/mathscinet-getitem?mr=1665198
http://www.ams.org/mathscinet-getitem?mr=1264933
http://www.ams.org/mathscinet-getitem?mr=1264933
http://www.ams.org/mathscinet-getitem?mr=0034607
http://www.ams.org/mathscinet-getitem?mr=0034607
http://www.ams.org/mathscinet-getitem?mr=1617987
http://www.ams.org/mathscinet-getitem?mr=1617987
http://www.ams.org/mathscinet-getitem?mr=2040006
http://www.ams.org/mathscinet-getitem?mr=2040006
http://www.ams.org/mathscinet-getitem?mr=817210
http://www.ams.org/mathscinet-getitem?mr=817210
http://www.ams.org/mathscinet-getitem?mr=1312368
http://www.ams.org/mathscinet-getitem?mr=1312368

	1. Rational preperiodic points
	2. Heights and canonical heights
	3. Places and reduction
	4. This book
	References

