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The quantum Yang-Baxter equation, which we will explicitly describe in a mo-
ment, surfaced in independent work of C.N. Yang and R.J. Baxter as a profound
structural equation behind certain physical models. Soon it was realized that the
quantum Yang-Baxter equation has numerous important applications in mathe-
matics and physics. For example, solutions of quantum Yang-Baxter equations
are used to produce integrable systems as well as topological invariants of knots,
links, and 3-manifolds. These insights have led to a host of new research, aiming at
the development of mathematical tools to produce nontrivial solutions of quantum
Yang-Baxter equations.

The theory of quantum groups, for instance, initiated by Drinfel’d and Jimbo,
leads to universal solutions of the quantum Yang-Baxter equation called universal
R-matrices. A significant ramification of this line of investigation is the rigor-
ous mathematical construction of Witten’s topological 3-manifold invariants, an
achievement which was highlighted by the Fields Medals of Drinfel’d, Jones and
Witten in 1990.

A second key development is mainly due to Ivan Cherednik. This theory produces
universal solutions of generalized quantum Yang-Baxter equations. The role of
quantum groups is taken over by Hecke algebras. The book under review provides
an extensive introduction to Cherednik’s theory and to its numerous applications.

Quantum Yang-Baxter equation. Let V be a complex vector space. An endo-
morphism R(x) of V ⊗V , depending meromorphically on x ∈ C

× = C \ {0}, is said
to satisfy the quantum Yang-Baxter equation (with spectral parameters) if

(1) R1,2(x)R1,3(xy)R2,3(y) = R2,3(y)R1,3(xy)R1,2(x)

as endomorphisms of V ⊗V ⊗V , where the two sub-indices of R indicate on which
two tensor legs of V ⊗ V ⊗ V it acts. For example, R1,2(x) = R(x) ⊗ IdV and
R2,3(x) = IdV ⊗ R(x).

Example. Take V two dimensional with distinguished basis {u+, u−}. With respect
to the ordered basis {u+ ⊗ u+, u+ ⊗ u−, u− ⊗ u+, u− ⊗ u−} of V ⊗ V ,

(2) R(x) =

⎛⎜⎜⎜⎝
1 0 0 0
0 (1−x)v

v2−x
v2−1
v2−x 0

0 (v2−1)x
v2−x

(1−x)v
v2−x 0

0 0 0 1

⎞⎟⎟⎟⎠
is a solution of the quantum Yang-Baxter equation (1) for all v ∈ C. This particular
solution can be constructed using quantum groups (concretely, using the quantum
affine algebra Uv(ŝl2), see e.g. [10, §9.6]), as well as using Hecke algebras, in which
case v is the Hecke algebra parameter (we return to this at a later stage).
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Integrable systems. We discuss here two basic constructions that indicate the
vital importance of solutions of quantum Yang-Baxter equations to integrable sys-
tems.

The first construction produces a generating function of commuting endomor-
phisms from a given invertible solution R(x) of (1). For N ∈ N, we consider the
endomorphism

L(x) := R1,N+1(x) · · ·R1,3(x)R1,2(x)

of V ⊗V ⊗N . As before, the indices indicate the two tensor legs on which R(x) acts
in the (N + 1)-fold tensor product V ⊗ V ⊗N . The transfer operator T (x) is the
endomorphism of V ⊗N obtained by taking the trace of L(x) over the first tensor
leg of V ⊗ V ⊗N . The quantum Yang-Baxter equation satisfied by R(x) implies the
commutativity of the transfer operators,

T (x)T (y) = T (y)T (x).

Thus T (x) may be thought of as a kind of generating function (in x) of commuting
endomorphisms of V ⊗N . In physical applications, the commuting endomorphisms
are interpreted as conserved quantities of some quantum spin chain. Applied for in-
stance to the solution (2), the associated transfer operator T (x) produces conserved
quantities for XXZ quantum spin chains; see e.g. [14].

The techniques and methods resulting from this construction, commonly referred
to as the quantum inverse scattering method [16], have been successfully applied to
numerous models, amongst which are various lattice models and quantum integrable
field theories. It has led to the introduction [9] of fundamental new mathematical
structures such as quantum groups, Yangians, and quantum affine algebras.

The second construction produces, from a given invertible solution R(x) of (1),
consistent systems of linear difference equations on the complex n-torus T =

(
C×)n.

It is this construction that has played a fundamental role in the development of
Cherednik’s theory.

Fixing a quantum parameter q ∈ C×, we write τj : T → T for the q-dilation of
the jth torus coordinate. With given endomorphisms Aj(t) of a finite dimensional
vector space U , depending meromorphically on t ∈ T , we now associate a system
of linear q-difference equations on T by

(3) f(τjt) = Aj(t)f(t), j = 1, . . . , n,

where f is a U -valued meromorphic function on T . The system (3) is said to be
consistent if

Ai(τjt)Aj(t) = Aj(τit)Ai(t), i, j ∈ {1, . . . , n},

which, under mild conditions, is a sufficient condition for the existence of an ample
supply of solutions of (3).

Given an invertible endomorphism L of V , we define endomorphisms

(4) Aj(t) = Rj,j−1(qtj/tj−1) · · ·Rj,1(qtj/t1)LjRn,j(tn/tj)−1 · · ·Rj+1,j(tj+1/tj)−1

of U = V ⊗n, where Lj is the operator L acting on the jth tensor leg of V ⊗n. The
associated system (3) of linear q-difference equations is consistent if R(x) satisfies
the quantum Yang-Baxter equation (1) and if L ⊗ L commutes with R(x). Under
a mild additional condition on R(x) (unitarity), a simple conceptual proof will
present itself in a moment.



BOOK REVIEWS 145

The above type of systems of q-difference equations arise naturally in physics as
consistency equations for correlation functions of quantum spin chains (correlation
functions encode essential physical properties of the models). For instance, using
the particular solution (2), n-point correlation functions of the associated XXZ
spin chain solve such a system of q-difference equations; see [14]. These types of
q-difference equations first arose in work of Smirnov [25] on quantum integrable
field theories, and in the work of Frenkel and Reshetikhin [11] as natural quantum
analogs of the Knizhik-Zamolodchikov equations [15] (KZ equations for short). The
latter equations form the system of linear differential equations satisfied by the
n-point correlation functions of the Wess-Zumino-Novikov-Witten conformal field
theory in two dimensions (see the monograph [10] for a detailed exposition).

The cocycle construction. The symmetric group Sn acts on Zn via the permu-
tation representation. The extended affine Weyl group is the semi-direct product
group W = Sn � Z

n. Several of the above mentioned key structures involving the
quantum Yang-Baxter equation can be naturally formulated in terms of W -cocycles.

Let {εj}n
j=1 be the standard basis of Zn. The permutation action of Sn on T ,

together with εj �→ τj , defines a W -action on T . The W -cocycles we consider
are maps w �→ Cw(t) from W to a complex associative algebra H, depending
meromorphically on t ∈ T , and satisfying

Cww′(t) = Cw(t)Cw′(w−1t), ∀w, w′ ∈ W.

Denoting Ci(t) = Csi
(t) for the neighboring transposition si ∈ Sn interchanging i

and i+1, the cocycle condition entails the braid relations (with spectral parameter),

(5) Ci(t)Ci+1(sit)Ci(si+1sit) = Ci+1(t)Ci(si+1t)Ci+1(sisi+1t)

for i = 1, . . . , n−1. Furthermore, for a given finite dimensional complex H-module
U , the associated endomorphisms Aj(t) = Cεj

(τjt) (j = 1, . . . , n) of U gives rise to
a consistent system (3) of q-difference equations on T .

Suppose now that R(x) is an invertible solution of the quantum Yang-Baxter
equation (1) satisfying the unitarity condition R(x−1) = R2,1(x)−1 (for example,
(2) is unitary) and that L is an invertible endomorphism of V such that R(x)
commutes with L⊗L. Let σi be the transposition of the ith and (i+1)st tensor leg
of V ⊗n. Then there exists a unique cocycle w �→ Cw(t) with values in End(V ⊗n)
such that

Ci(t) = σiRi,i+1(ti+1/ti), Cπ(t) = L1σ1σ2 · · ·σn−1,

where π := τ1s1s2 · · · sn−1 ∈ W (we abuse notation by writing τj for εj , viewed as
an element in W ). In this situation, the braid relations (5) are a consequence of
the quantum Yang-Baxter equation (1) for R(x), and Aj(t) = Cεj

(τjt) is precisely
(4).

Motivated by these observations, we now shift our focus to the construction of
explicit W -cocycles, instead of solutions of the quantum Yang-Baxter equation.

Cherednik’s cocycle. Cherednik’s W -cocycle takes values in the extended affine
Hecke algebra. The extended affine Hecke algebra H = Hv is a complex, unital, as-
sociative algebra depending on v ∈ C×. It is generated by {Tj}j∈Z/nZ and invertible
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P with defining relations

TiTi+1Ti = Ti+1TiTi+1,

TiTj = TjTi, i − j �= ±1,

(Tj − v)(Tj + v−1) = 0,

PTj−1 = TjP.

Note that H is already algebraically generated by T1, . . . , Tn−1 and P . The subal-
gebra generated by Tj (j ∈ Z/nZ) is called the affine Hecke algebra.

For v = 1, the extended affine Hecke algebra H is the group algebra of W . In
this case we denote the corresponding generators Tj by sj ∈ W (j = 1, . . . , n − 1)
and P by π ∈ W ; the affine Weyl group elements we already encountered in the
previous paragraph.

The affine Hecke algebra is an indispensable tool in the representation theory
of the general linear group GL(n; k) over a non-archimidean local field k. This is
based on the fact [13] that the affine Hecke algebra, when v is the square root of
the cardinality of the residue field of k, is isomorphic to the convolution algebra of
complex, compactly supported I-bi-invariant functions on GL(n; k), where I is the
standard Iwahori subgroup of GL(n; k).

The algebra C[T ] of regular functions on T consists of Laurent polynomials in the
canonical coordinate functions zi (i = 1, . . . , n) on T . We view C[T ] as a W -module
by transposing the W -action on T . Cherednik [4] observed that the assignments

Ti �→ v + ci(si − 1), i = 1, . . . , n − 1,

P �→ π,
(6)

uniquely extend to an injective algebra embedding πq,v : Hv → End(C[T ]), where
ci is the rational function

ci = v−1

(
1 − v2ziz

−1
i+1

1 − ziz
−1
i+1

)
on T . The operators πq,v(Ti) are called Demazure-Lusztig operators.

Formally expressing si and π in terms of Ti and P in (6) leads to the elements

Ci(t) := ci(t)−1Ti + (1 − vci(t)−1), i = 1, . . . , n − 1,

Cπ(t) := P,
(7)

in the extended affine Hecke algebra Hv, depending rationally on t ∈ T . Cherednik
[2, 3] observed that (7) uniquely defines a (q-dependent) W -cocycle {Cw(t)}w∈W

with values in the extended affine Hecke algebra Hv. In particular, for a given Hv-
module U , the cocycle (7) produces solutions of the braid relations (5) in End(U).
The system (3) of q-difference equations with Aj(t) = Cεj

(τjt) is consistent and is
called the system of quantum affine Knizhnik-Zamolodchikov equations.

Example. We use the notations and conventions of the first example. The assign-
ments Ti �→ ci,i+1 (i = 1, . . . , n − 1) with

c =

⎛⎜⎜⎝
v 0 0 0
0 1 0 0
0 v − v−1 1 0
0 0 0 v

⎞⎟⎟⎠
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and P �→ L1σ1σ2 · · ·σn−1 with L an invertible endomorphism of V such that L⊗L
commutes with c, define a Hv-representation on V ⊗n. The resulting W -cocycle
Cw(t) is the one we constructed before using the particular solution R(x) of the
quantum Yang-Baxter equation from the first example.

The double affine Hecke algebra. A crucial ingredient in obtaining the W -
cocycle (7) is Cherednik’s double affine Hecke algebra Hq,v (of type GLn). It is the
subalgebra of End(C[T ]) generated by C[T ] (viewed as multiplication operators),
by π, and by the Demazure-Lusztig operators πq,v(Ti); see (6). The cocycle can
then be derived by inducing the regular representation of Hv to H̃q,v, where H̃q,v

is a suitable localization of the double affine Hecke algebra Hq,v (needed to be able
to invert the rational functions ci).

To understand the structure of the double affine Hecke algebra Hq,v better,
we briefly recall some essential properties of the Bernstein-Zelevinsky presentation
[18] for Hv. It characterizes the algebraic structure of Hv in terms of an abelian
subalgebra A (isomorphic to C[T ]) and in terms of the subalgebra H0

v generated by
T1, . . . , Tn−1. It is the Hecke algebra equivalent of the semi-direct product structure
W = Sn�Z

n of the affine Weyl group. It plays a profound role in the representation
theory of Hv.

The commutative algebra A is the algebra of Laurent polynomials in the (nor-
malized) Y -operators Yi ∈ Hv (i = 1, . . . , n). They can be obtained as limits of
Cherednik’s cocycle (7) by

Yi = lim
t→∞

Cτi
(t),

where t → ∞ means |tj/tj+1| → 0 for j = 1, . . . , n − 1. Granted the existence of
the limit, the commutativity of the Yi’s is immediate from the cocycle condition!

A crucial property of the doube affine Hecke algebra is the linear isomorphism

Hq,v � A⊗ H0
v ⊗ C[T ],

called the Poincaré-Birkhoff-Witt property of Hq,v, where the isomorphism is real-
ized by multiplication of the tensor factors in Hq,v. It is one of many properties of
Hq,v suggesting that it is a natural generalization of the Weyl algebra. The fact that
πq,v(H0

v ) and C[T ] generate another copy of Hv in Hv,q justifies the terminology
“double affine Hecke algebra”.

Cherednik operators and Fourier transforms. The preceding paragraph leads
to the following natural questions: Is there an automorphism of Hq,v that inter-
changes A and C[T ] (and in fact, interchanges the two copies of Hv inside Hq,v)?
If so, is there a Fourier transform on C[T ] that realizes this automorphism? Both
questions are answered in the affirmative.

The key step is the diagonalization of the commuting subalgebra πq,v(A) of linear
operators on C[T ]. The operators πq,v(Yi) ⊂ End(C[T ]) (i = 1, . . . , n) are pairwise
commuting q-difference reflection operators on T , called Cherednik operators. The
Cherednik operators are q-analogs of trigonometric Dunkl operators [1, 12]. The
fact [1] that Dunkl operators are connected to (degenerate) affine Hecke algebras
is one of the crucial insights which has led Cherednik to the introduction of the
double affine Hecke algebra.

The Cherednik operators, acting on C[T ], can be simultaneously diagonalized.
The spectrum is simple for generic q and v. The common eigenfunctions Pλ, natu-
rally parametrized by λ ∈ Zn, are called the nonsymmetric Macdonald polynomials
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[20, 6]. Under suitable restrictions on q and v, they are orthogonal with respect to
an explicit complex measure on a compact torus Tu ⊂ T , which is absolutely con-
tinuous with respect to the Haar measure on Tu. It allows one to define a Fourier
transform f �→ f̂ for f ∈ C[T ], where f̂(λ) for λ ∈ Zn is obtained by integrating
fPλ against the above mentioned measure. This Fourier transform realizes the au-
tomorphism interchanging the two copies of Hv in Hq,v; in particular, it turns the
Cherednik operators into multiplication operators on the space of finitely supported
functions on Zn. The double affine Hecke algebra plays a key role in deriving the
explicit Plancherel and inversion formulas of the Fourier transform (see [6]).

The Macdonald theory. By a symmetrization procedure, the nonsymmetric
Macdonald polynomials turn into the famous Sn-invariant Macdonald polynomials
P+

λ . The Macdonald polynomials P+
λ [19, Chpt. VI] were introduced as interpola-

tion between Schur functions, Jack polynomials, and Hall-Littlewood polynomials.
They are common eigenfunctions for an explicit commuting family of q-difference
operators called Ruijsenaars-Macdonald operators, which can in fact be obtained
by symmetrizing the Cherednik operators. The Ruijsenaars-Macdonald operators
were initially obtained by Ruijsenaars [24] as the conserved quantities of a relativis-
tic version of the quantum integrable Calogero-Moser system, the latter describing
pairwise interacting quantum particles on the circle.

On the other hand, solutions of the quantum affine KZ equation, considered as
a system of q-difference equations with values in the principal series module of Hv,
produce eigenfunctions of the Ruijsenaars-Macdonald operators by the so-called
Cherednik-Matsuo correspondence [3]. This puts us right back to the first theme
of the review!

In a famous preprint [21] from 1987 Macdonald generalized his polynomials to
families of q-orthogonal polynomials associated to arbitrary root systems. The
Macdonald polynomials discussed in this review are related to the root system of
type A. The Macdonald polynomials associated to arbitrary root systems generalize
the Weyl characters of simple Lie algebras as well as the elementary spherical
functions on compact Lie groups and on simple p-adic Lie groups. They arise
as elementary spherical functions on compact quantum symmetric spaces; see e.g.
[23, 17].

The introduction [21] of the Macdonald polynomials associated to arbitrary root
systems was complemented with a collection of deep conjectures, called the norm,
evaluation, and duality conjectures. The norm conjecture generalizes the celebrated
Macdonald constant term conjecture for root systems. A remarkable achievement of
Cherednik is his proof of the Macdonald conjectures in a series [4, 5, 6] of papers us-
ing double affine Hecke algebras. Some essential steps of his proof of the conjectures
have in fact been touched upon in this review. For instance, the norm conjecture
turns out to be a direct consequence of the explicit inversion and Plancherel formula
for the Fourier transform mentioned in the previous paragraph.

The book. The book consists of an introduction and three long chapters. Each
chapter is essentially self-contained. In the remarkable introduction the author
offers a personal and highly original view on various current developments in math-
ematics and physics which interact with the theory of double affine Hecke alge-
bras. The discussion includes among others the following subjects: hypergeometric
functions, Kazhdan-Lusztig theory, modular representation theory, fusion products,
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quantum groups, integrable lattice models, conformal field theory, and the geomet-
ric Langlands program. The author also pays attention to potentially important
future developments in these directions.

The first chapter is based on lectures [7] of the author at Kyoto University in
1996–1997, and was written in collaboration with T. Akasaka, E. Date, K. Iohara,
M. Jimbo, M. Kashiwara, T. Miwa, M. Noumi, Y. Saito and K. Takemura. This
chapter discusses various generalizations of the KZ-equations, their connections to
affine Hecke algebras and the correspondence to quantum many body problems
(Cherednik-Matsuo correspondence). It amplifies the role of the (double) affine
Hecke algebras in KZ-type connections, as we have discussed at some length for
quantum KZ equations in the first part of this review.

Chapters 2 and 3 focus on the role of the double affine Hecke algebra in Fourier
analysis and in Macdonald’s theory (we scratched the surface of this in the second
part of the review). Chapter 2 is based on a lecture series of the author at Harvard
University in 2001, and the paper [8]. It discusses the rank one double affine Hecke
algebra of type A in great length, together with its applications to Fourier analysis
and Macdonald theory. In this case the Macdonald polynomials are the continuous
q-ultraspherical polynomials, also known as Rogers polynomials, which date back to
1893. Chapter 3 discusses the generalization of Chapter 2 to general root systems.
It concludes with a study of the representation theory of the double affine Hecke
algebra.

It has become clear in recent years that Cherednik’s double affine Hecke alge-
bra and its degenerations have fundamental applications in a variety of directions.
Two monographs on the subject have appeared: the book [22] by Macdonald and
the book under review. These books nicely complement each other. Macdonald’s
book is entirely devoted to the applications of double affine Hecke algebras to the
theory of Macdonald polynomials, leading up to complete proofs of the norm, eval-
uation, and duality conjectures. Written with great uniformity and clarity, it is a
good account of the impressive algebraic and combinatorial power hidden behind
Cherednik’s definition of the double affine Hecke algebra. Cherednik’s book on the
other hand has a much wider scope, paying attention to the deep roots of the sub-
ject in mathematical physics as well as to the rich list of recent developments and
applications of these new techniques. Both volumes are warmly recommended to
all scholars and students who want to learn about this fascinating structure and its
applications.

References

[1] I. Cherednik, A unification of Knizhnik-Zamolodchikov equations and Dunkl operators via
affine Hecke algebras, Invent. Math. 106 (1991), 411–432. MR1128220 (93b:17040)

[2] I. Cherednik, Double affine Hecke algebras, Knizhnik-Zamolodchikov equations, and Macdon-
ald’s operators, Internat. Math. Res. Notices 1992, no. 9, 171–180. MR1185831 (94b:17040)

[3] I. Cherednik, Induced representations of double affine Hecke algebras and applications, Math.
Res. Lett. 1 (1994), 319–337. MR1302647 (96i:17022)

[4] I. Cherednik, Double affine Hecke algebras and Macdonald’s conjectures, Ann. of Math. (2)
141 (1995), no. 1, 191–216. MR1314036 (96m:33010)

[5] I. Cherednik, Macdonald’s evaluation conjectures and difference Fourier transform, Invent.
Math. 122 (1995), no. 1, 119–145. MR1354956 (98i:33027a)

[6] I. Cherednik, Nonsymmetric Macdonald polynomials, Internat. Math. Res. Notices 1995, no.
10, 483–515. MR1358032 (97f:33032)

http://www.ams.org/mathscinet-getitem?mr=1128220
http://www.ams.org/mathscinet-getitem?mr=1128220
http://www.ams.org/mathscinet-getitem?mr=1185831
http://www.ams.org/mathscinet-getitem?mr=1185831
http://www.ams.org/mathscinet-getitem?mr=1302647
http://www.ams.org/mathscinet-getitem?mr=1302647
http://www.ams.org/mathscinet-getitem?mr=1314036
http://www.ams.org/mathscinet-getitem?mr=1314036
http://www.ams.org/mathscinet-getitem?mr=1354956
http://www.ams.org/mathscinet-getitem?mr=1354956
http://www.ams.org/mathscinet-getitem?mr=1358032
http://www.ams.org/mathscinet-getitem?mr=1358032


150 BOOK REVIEWS

[7] I. Cherednik, Lectures on Knizhnik-Zamolodchikov equations and Hecke algebras. In: Quan-
tum many-body problems and representation theory, 1–96, MSJ Mem., 1, Math. Soc. Japan,
Tokyo, 1998. MR1724948 (2001g:20004)

[8] I. Cherednik, V. Ostrik, From double affine Hecke algebra to Fourier transform, Selecta
Math. (N.S.) 9 (2003), no. 2, 161–249. MR1993484 (2004f:20011)

[9] V.G. Drinfel’d, Quantum Groups. Proceedings of the International Congress of Mathemati-
cians, Vol. 1, 2 (Berkeley, Calif., 1986), 798–820, Amer. Math. Soc., Providence, RI, 1987.

MR934283 (89f:17017)
[10] P.I. Etingof, I.B. Frenkel, A.A. Kirillov Jr., Lectures on representation theory and Knizhnik-

Zamolodchikov equations. Mathematical Surveys and Monographs, 58. Amer. Math. Soc.,
Providence, RI, 1998. MR1629472 (2001b:32028)

[11] I.B. Frenkel, N. Yu. Reshetikhin, Quantum affine algebras and holonomic difference equa-
tions, Comm. Math. Phys. 146 (1992), no. 1, 1–60. MR1163666 (94c:17024)

[12] G.J. Heckman, An elementary approach to the hypergeometric shift operators of Opdam,
Invent. Math. 103 (1991), 341–350. MR1085111 (92i:33012)

[13] N. Iwahori, H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke

rings of p-adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 5–48.
MR0185016 (32:2486)

[14] M. Jimbo, T. Miwa, Algebraic analysis of solvable lattice models, CBMS Regional Conference
Series in Mathematics, 85. Amer. Math. Soc., Providence, RI, 1995. MR1308712 (96e:82037)

[15] V.G. Knizhnik, A.B. Zamolodchikov, Current algebra and Wess-Zumino model in two di-
mensions, Nuclear Phys. B 247 (1984), 83–103. MR853258 (87h:81129)

[16] V.E. Korepin, N.M. Bogoliubov, A.G. Izergin, Quantum Inverse Scattering Method and Cor-
relation Functions, Cambridge Monographs on Mathematical Physics, Cambridge University
Press 1993. MR1245942 (95b:81224)

[17] G. Letzter, Quantum zonal spherical functions and Macdonald polynomials, Adv. Math. 189,
no. 1 (2004), 88–147. MR2093481 (2005i:33019)

[18] G. Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989),
no. 3, 599–635. MR991016 (90e:16049)

[19] I.G. Macdonald, Symmetric functions and Hall polynomials, second edition. Oxford Math.
Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press,
New York, 1005. MR1354144 (96h:05207)

[20] I.G. Macdonald, Affine Hecke algebras and orthogonal polynomials. Séminaire Bourbaki, Vol.
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