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The study of exponential sums of over finite fields goes back to Gauss’ compu-
tation of

(1)
p−1∑
n=0

ζn2
,

where p is prime and ζ is a pth root of unity. Approaching (1) naively as a p-
step random walk, one might expect it to have absolute value on the order of

√
p.

Surprisingly, it turns out that the absolute value is always exactly
√

p. (The proof
is not difficult, being the finite field analogue of the computation of

∫ ∞
−∞ e−x2

dx

via double integrals.)
In general, we would like to understand the behavior of sums of the form∑

x∈V (F)

ρ(x),

where F is a finite field, V is an algebraic variety over F, and ρ(x) is a root of unity
which depends in some algebraic way on x. Often, ρ(x) is of the form χ(f(x)),
where f is a function on X, and χ is a character of the additive or multiplicative
group of F. The Kloosterman sums are typical:

(2)
∑

x∈F
×
p

ψ(ax + b/x),

where ψ : Fp → C× is the additive character sending 1 ∈ Fp to e2πi/p, and a, b ∈ F×
p

are constants. We can regard V in this case as the hyperbola xy = 1 (equivalently,
the affine line with 0 removed) and f as the function ax + by on this hyperbola.
Another typical example is

(3)
∑
x∈Fp

χ(x3 + ax + b),
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where χ(c) denotes the Legendre symbol
(

c
p

)
. As χ(c) is 1 less than the number of

solutions of y2 = c in Fp, this sum counts the number of points on the affine elliptic
curve y2 = x3 + ax + b, less p.

The sums (2) and (3) no longer have absolute value
√

p, but neither do they
behave as one would expect if they were really random walks. In each case, the
Riemann hypothesis for curves over finite fields implies that the absolute value is
less than 2

√
p. To analyze the statistical behavior of such sums, we need to take

limits, which means that we need to study infinite families of sums. The obvious
way to achieve this is to let p tend to infinity. Until very recently, this seemed
beyond reach. There has been some remarkable recent progress [5, 6, 7] on the
Sato-Tate conjecture, which predicts the statistical behavior of sums of type (3)
as p → ∞, so now, perhaps, one should say that it is merely very difficult. There
is an easier alternative, however: we can fix the characteristic of our finite fields,
but allow the fields themselves to grow, suitably extending the definition of the
summands. (In the additive case, this means replacing ψ(f(x)) by ψ(Trace(f(x)));
in the multiplicative case, it means replacing χ(f(x)) by χ(Norm(f(x))).) As ex-
amples (2) and (3) illustrate, the sums usually have parameters, or more precisely,
a parameter variety X, defined over a finite base field Fq. For every positive integer
n, every point x ∈ X(Fqk) determines a sum value S(k, x). We study the value
distribution as k and x vary.

Deligne proved in [2] that such families of exponential sums satisfy a generalized
Sato-Tate law. In favorable situations, this means that there exists an integer w, a
compact Lie group G, and a complex representation (ρ, V ) of G with character χ,
such that the distribution of values of

q−kw/2S(k, x),

as k ranges over the positive integers and x ranges over X(Fqk), approaches the
distribution of values of χ(g) for g uniformly distributed on G, as k → ∞. We
can express the same thing by saying that an N -tuple of points on the unit circle
gives a conjugacy class in U(N), and the set of N -tuples of eigenvalues of Frobenius
elements gives the same distribution on conjugacy classes in U(N) as the elements
ρ(g) ∈ U(N) as g ranges over G. The group G can be regarded as the geometric
monodromy group of the family of exponential sums (or at least the compact real
form of geometric monodromy).

The idea behind all of this is that a family of exponential sums is encoded by
a geometric object over the parameter space X. In the simplest cases, this object
is just a lisse sheaf on X, i.e. an �-adic representation of the fundamental group
of X. Every point x ∈ X(Fqk) defines a map x = Spec Fqk → X and therefore
a map from the fundamental group of x to that of the fundamental group of X.
The fundamental group of the spectrum of a field F is the absolute Galois group
of F , which in the case F = Fqk is generated by the Frobenius automorphism
x �→ xqk

. We can therefore think of x as determining a “Frobenius element” (or
at least a Frobenius conjugacy class) of π1(X); the sheaf determines the trace
of this element. Roughly, G can be thought of as the monodromy group of the
sheaf. (We remark parenthetically that while lisse sheaves are the simplest and
most natural kind of coefficient systems to consider, they unfortunately have poor
stability properties under the cohomological formalism. In [2], Deligne showed
that it is technically better to work in a much broader setting, namely complexes
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of sheaves of Z�-modules, taken up to quasi-isomorphism. Perverse sheaves, in
the sense of Bĕılinson-Bernstein-Deligne [1], based on earlier work of Goresky and
Macpherson [3], provide a good compromise, having good stability properties and
also fitting well into the weight formalism. In what follows, we shall ignore this
subtlety.)

To see how a lisse sheaf can be attached to a family of exponential sums, consider,
for example, (3). Let S(n, a, b) denote the value of the sum over Fpk , where a and b
are parameters in that field. The Lefschetz trace formula tells us that the number
of points on a (projective) elliptic curve E over Fpk is the alternating sum of traces
of the pk-Frobenius acting on the (étale) cohomology groups of Ē (the same elliptic
curve, with scalars extended to F̄pk). This sum can be written 1 − apk + pk. The
projectivization of the affine curve y2 = x3 + ax + b has one point on the line at
infinity, so apk = −S(n, a, b) gives the trace of Frobenius acting on H1(Ē). We can
define a universal elliptic curve over the parameter space (a, b) (at least on the open
subvariety 4a3 + 27b2 �= 0), a family whose fiber at (a, b) is the projectivization of
y2 = x3 + ax + b. The lisse sheaf producing the values of −S(n, a, b) is therefore
the relative H1 of this universal curve.

The key problem is to determine the monodromy groups G ⊂ U(N) of the
sheaves of interest (up to conjugation). In many cases of particular interest, these
monodromy groups are known, thanks to earlier work of Katz ([9], [10], [11]). In the
great majority of these cases, G turns out to be SU(N), SO(N), O(N), or Sp(N).
The last three possibilities occur when the representation in question is self-dual
(i.e., when the exponential sums in the family are real-valued), and in this case,
the self-duality, whether symmetric or anti-symmetric, is generally obvious. Setting
aside the subtle distinction between SO(N) and O(N), one finds that “in nature”,
monodromy groups are nearly always “as large as possible,” given the constraints
of dimension and duality.

There are two main sources of information in monodromy calculations. On
the one hand, the computation of local monodromy provides conjugacy classes in
GL(N, C) which intersect G (or at least its complexification) nontrivially. Such
classes can give a great deal of information; for instance, it is very useful to know
that G contains a reflection or that its complexification contains a transvection. On
the other hand, if V is the restriction of the standard N -dimensional representation
of U(N) to G, one can often compute the dimension of the space of G-invariants
of V ⊗a ⊗ (V ∗)⊗b when a and b are sufficiently small non-negative integers. These
dimensions can be viewed as moments of the measure µG,V associated to the pair
(G, V ):

dim(V ⊗a ⊗ (V ∗)⊗b)G =
∫

G

χ(g)aχ̄(g)b dg =
∫

C

zaz̄bµG,V .

For example, by Schur’s lemma, the aq = b = 1 moment equals 1 if and only if V is
irreducible. In his earlier books on monodromy, Katz mostly used local monodromy
information, with a small admixture of moment data. A major novelty in the book
under review is that it places the primary emphasis on moment calculations.

The small moments of “large” monodromy groups are well known from classical
invariant theory [13]. For SU(N) and a + b < N , they are given by

(4) dim(V ⊗a ⊗ (V ∗)⊗b)SU(N) =

{
a! if a = b,

0 otherwise.
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For G ∈ {SO(N), O(N), Sp(N)} and a + b < N , they are given by

(5) dim(V ⊗a ⊗ (V ∗)⊗b)SU(N) =

{
(a + b − 1)!! if a + b is even,

0 if a + b is odd.

Interestingly, the moments of the measures µG,V arising from classical groups stabi-
lize to give the moments of Gaussian distributions (complex or real), which implies
that, although each individual measure is compactly supported, they tend in the
large-N limit to (complex or real) Gaussian measures.

An optimist might ask if (G, V ) is determined up to isomorphism, or equivalently,
if G is determined up to conjugation in U(N), by its moments alone. In general,
the answer is no. For example, if G is a finite group of order N and V is its
regular representation, the only information encoded in the moments of µG,V is
the order of G. Even for connected semisimple Lie groups, there are examples of
nonisomorphic pairs (G, V ) (i.e., nonconjugate subgroups of U(N)) with the same
Sato-Tate measure [12]. However, in most interesting cases, it appears that (G, V )
is uniquely determined by µG,V and indeed by a small number of moments. In
particular, it has been known for at least a decade that any pair (G, V ) which
gives the same invariants as (4) (resp. (5)) for a + b ≤ 4 must satisfy |G| < ∞
or SU(N) ⊂ G ⊂ U(N) (resp. G ∈ {SO(N), O(N), Sp(N)}). Recently, Guralnick
and Tiep [4] proved that one can rule out finite groups entirely by considering all
moments with a+b ≤ 12, or even a+b ≤ 8 if one knows the value of N . Thus, in most
cases that actually arise, the monodromy of an exponential sum can be deduced
from moments with a + b ≤ 8, provided that the determinant representation and
the sign of the self-duality (if any) is known.

By analogy with the circle method, which becomes easier the more parameters
are available, for exponential sums over finite fields, moment computations become
easier when the dimension of the parameter variety grows. This marks another
difference between this book and previous work of the author, which emphasizes
the case in which the parameter variety is a curve. A typical parameter variety here
is the space of all polynomials of sufficiently high degree on an underlying vector
space or the space of effective divisors on a projective curve linearly equivalent to
a divisor of sufficiently high degree.

The goal is to prove that the monodromy groups of the exponential sums in
question are as large as possible, given duality and determinantal conditions. The
book discusses a number of different kinds of sums, connected with additive and
multiplicative characters and with elliptic curves. For an example of the first type,
given a prime p and integers n ≥ 1 and e ≥ 3, one defines a function on the variety
A

m/Fp of polynomials on An/Fp of degree ≤ e given by

P (x) ∈ A
m(Fpk) �→

∑
x∈Fn

pk

ψ(Trace(P (x))).

This turns out to be given by a perverse sheaf, but after restriction to a suitable
dense open set, it is given by a lisse sheaf of rank N . If p ≥ 7, then the real compact
form of the monodromy group G of this sheaf contains SU(N). A similar result
holds in the setting of multiplicative characters χ: here, the sums in question are∑

x∈Fn
pk

χ(Norm(P (x))).
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A third class of sums extensively considered are those connected with counting
points on families of elliptic surfaces defined over a fixed base curve C/Fp. These
cases are especially interesting since they make it possible to compute the average
analytic rank of various families of elliptic curves over a function field in character-
istic p.

Given the weight of machinery necessary just to parse the title Moments, Mon-
odromy, and Perversity: a Diophantine Perspective, one might expect the book to
be heavy going. On the contrary, it is written in a clear, concrete style, with the
emphasis on examples and a wealth of interesting and illuminating digressions. It
should appeal strongly to any mathematician interested in the cohomological the-
ory of exponential sums. On the other hand, it is not really an introduction to the
subject. The reader in search of such an introduction might profitably consult one
of the earlier monographs by the same author, such as [8] or [9].
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