
BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 44, Number 3, July 2007, Pages 361–391
S 0273-0979(07)01167-6
Article electronically published on April 23, 2007

FROM SUPERCONDUCTORS AND FOUR-MANIFOLDS TO
WEAK INTERACTIONS

EDWARD WITTEN

Abstract. The goal of this article is to describe the concept of “gauge sym-
metry breaking” and its applications to superconductors, four-manifold theory,
and particle physics.

1. Introduction

What is now understood as gauge symmetry breaking first appeared in 1950 in
the Landau-Ginzburg model of superconductivity [7]. From a modern point of view,
that model is largely correct as a macroscopic description of a superconductor, but it
took a long time for this to be clear. Schwinger [16] in 1962 was the first to propose
what we now think of as gauge symmetry breaking in the relativistic case, albeit
from a somewhat abstract point of view. Anderson [1] the following year linked
the two problems, showing that superconductivity gives a real-world illustration of
Schwinger’s ideas. In 1964, Higgs [12], as well as Englert and Brout [6], described
concrete and straightforward relativistic models of electroweak symmetry breaking,
analogous to the Landau-Ginzburg model of superconductivity. These models had
much impact because of their simplicity.

As for what they might be good for, early authors assumed that the applications
would be to the problem of understanding the strong interactions (which, among
other things, bind protons and neutrons to form atomic nuclei). This turned out to
be not quite right; the strong interactions are indeed described by a quantum gauge
theory, as became clear in the 1970’s, but the key ideas are different ones, more
difficult to describe in a classical language and beyond the scope of the present
article. Instead it turned out via the work of Weinberg [22] and Salam [15] (which
improved on previous constructions by Glashow [9] and Salam and Ward [14] with
partial symmetry) that gauge symmetry breaking is a key idea in understanding
the weak interactions. The weak interactions, which are responsible among other
things for the radioactive decay of certain atoms, are, roughly speaking, one of the
three main forces in the atomic world, along with electromagnetism and the strong
interactions.

Related ideas also appear in mathematics, an assertion that I will illustrate
with one important example. Taubes [20, 21] a decade ago obtained spectacular
results about symplectic four-manifolds by using a slightly perturbed version of

Received by the editors February 26, 2007.
2000 Mathematics Subject Classification. Primary 81Q99, 53D45.
Key words and phrases. Superconductors, weak interactions, four-manifolds.
Supported in part by NSF Grant PHY-0503584.

c©2007 American Mathematical Society

361



362 EDWARD WITTEN

the Seiberg-Witten equations. Though the equations studied by Taubes do not
precisely coincide with those of Landau and Ginzburg, they are close enough so
that a familiarity with the theory of superconductivity is excellent background for
understanding the work of Taubes.

This article1 will aim at an introduction to gauge symmetry breaking in super-
conductivity, four-manifold theory, and weak interactions. We discuss superconduc-
tors in section 2, four-manifolds in section 3, and the weak interactions in section 4.
We are able to give brief introductions to superconductivity and weak interactions
because we concentrate on aspects that do not depend deeply on quantum mechan-
ics. As Anderson wrote in [1], “the quantum nature of the gauge field is irrelevant”
for the basic idea of symmetry breaking.

As our brief historical sketch has probably indicated, the ideas that will be sur-
veyed here are not new, but they are still fresh. That is so in all three areas and is
certainly true in particle physics. Although most aspects of the Standard Model of
known elementary particle phenomena are well-tested experimentally, the mecha-
nism of gauge symmetry breaking is a conspicuous exception. In fact, learning how
this symmetry breaking comes about is one of the main goals of the Large Hadron
Collider (LHC), the new accelerator that will operate at CERN, the European
Laboratory for Particle Physics, starting at the end of 2007.

2. Superconductivity

2.1. Classical Electromagnetism. Classically, electromagnetism is described in
terms of the electric and magnetic fields �E and �B, which are one-forms or vec-
tor fields on space, that is on R

3. (R3 is endowed with the Euclidean metric,
so one-forms can naturally be associated with vector fields.) Relativistically, it is
convenient to combine �E and �B to a two-form F on spacetime.

In special relativity, spacetime is Minkowski spacetime R3,1, endowed with a flat
pseudo-Riemannian metric of the indicated signature. Picking a time coordinate t
and spatial coordinates �x = (x1, x2, x3), we write ds2 = −dt2+(d�x)2 for the metric.
Then �E and �B combine naturally to the two-form

F = �E · d�x ∧ dt +
1
2

�B · d�x × d�x.(2.1)

Another way to say this is that �E, regarded as a one-form, is −ι∂/∂tF , while �B
is obtained by restricting F to a slice of fixed time and then applying the three-
dimensional Hodge star operator.

Maxwell’s equations read

d � F = J

dF = 0,(2.2)

where J is the electromagnetic current and � is the Hodge star operator. In the
nineteenth century, it was found convenient, as a step toward solving these equa-
tions, to introduce a “vector potential”. By the 1920’s, with the advent of quantum

1Earlier versions were presented in lectures at the Fields Institute, the 90th Birthday Celebra-
tion of I. M. Gelfand at Rutgers University, and the Women and Mathematics program at the
IAS. All audiences made very helpful comments.
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mechanics, a formulation using the vector potential was not just convenient but nec-
essary; without the vector potential, one cannot write a Schrödinger equation for
an electron in a magnetic field.

From a modern point of view, the vector potential is a connection, which we will
call A, on a unitary complex line bundle L. F is interpreted as the curvature of
the connection; thus if A is represented locally as a one-form, we have F = dA.
The second Maxwell equation, dF = 0, is the Bianchi identity. The first Maxwell
equation, d � F = J , is regarded as the dynamical equation. It determines, for
given initial data and up to a gauge transformation, the time dependence of the
connection. This equation can be interpreted as the Euler-Lagrange equations for
the following action functional:

(2.3) I =
∫

R3,1

(
−1

2
F ∧ �F + A ∧ J

)
.

In other words, the condition for a stationary point of I is the Euler-Lagrange
equation d � F = J .

We define a gauge-covariant extension dA of the exterior derivative d by saying
that if w is a section of L, then2 dAw = (d − ieA)w. Here e is a real constant, the
electric charge of the electron (customarily considered to be negative); this factor
could be absorbed in the definition of A by setting Â = eA, but for the moment we
will not do so. Here, I should note that in conventional units, the definition of dA

reads

(2.4) dAw =
(

d − ieA

�c

)
w,

where � and c are Planck’s constant and the speed of light. We work primarily in
units with � = c = 1.

2.2. The Landau-Ginzburg Model. Now many materials, including familiar
metals such as lead, tin, and aluminum, become “superconducting” at low temper-
atures (typically a few degrees Kelvin).3 As will become clear, the key property of
a superconductor is the following. To describe the macroscopic state of a super-
conductor, in addition to the obvious macroscopic variables such as temperature,
pressure, magnetic field, and the like, we need also a section s of the line bundle
L̂ = L2. Moreover, superconductivity occurs when it is energetically favored to
have |s| = a and dAs = 0, where here a is a positive constant that depends on the
material as well as on the temperature and other variables.

It probably seems rather mysterious why such an abstract-sounding entity as s
would appear along with the more obvious variables in a macroscopic description of
a piece of lead. The answer to this question emerged from the microscopic theory
of superconductors, for which Bardeen, Cooper, and Schrieffer [2] won the 1972
Nobel Prize. Our purpose here, however, is not to explain why s is needed in the
macroscopic description of a superconductor, but to explain the peculiar properties
that follow from this.

2Physicists customarily think of A as a real one-form, and then unitarity of the connection
requires the factor of i =

√
−1.

3For more on some of the following and a treatment of topics that are omitted here, including
the Josephson effect and the microscopic BCS theory of superconductivity, the reader may wish
to consult section 21.6 of [23].
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The fact that s is a section of the square of L, rather than of L itself, is important
in the microscopic theory (it reflects the fact that a “Cooper pair” is a bound state
of two electrons). But it will not be important for us. For our purposes, we can
just think of L̂ as the fundamental line bundle of electromagnetism. However, we
will retain the factor of 2 in the key formulas, writing 2A for the connection on L̂
and writing the covariant differential as dAs = (d − 2ieA)s.

Under what conditions will it be true that the energy is minimized for |s| = a
and dAs = 0? The most obvious possibility is that the energy depends on s via the
Landau-Ginzburg functional:

(2.5) I(s) =
∫

R3
d3x

(
1
2
|dAs|2 +

γ

2
(
|s|2 − a2

)2
)

.

This certainly has its minimum for |s| = a and dAs = 0, assuming that γ > 0. We
have scaled s by a positive real factor so that the coefficient of |dAs|2 is precisely
1/2; the coefficient of the (|s|2−a2)2 term then involves the new constant γ. There
is no claim here that the energy function I(s) gives a particularly good description
of a superconductor; it is simply the most obvious way to make a model in which the
energy is minimized for |s| = a, dAs = 0. All such models lead to superconductivity.

2.3. The Meissner Effect. To have s �= 0 with dAs = 0 means that s gives a
covariantly constant trivialization of the line bundle L̂, and in particular it implies
that L̂ is flat when restricted to the interior of the superconducting material. Ex-
plicitly, dAs = 0 implies that 0 = d2

As = −2ieFs, so that the curvature F vanishes
wherever s is non-zero. This in particular gives us the Meissner effect: the magnetic
field vanishes deep inside a superconductor. (Near the surface of the superconduc-
tor there are edge effects that we will discuss more carefully in subsection 2.9. The
electric field also vanishes deep inside a superconductor, but this is less dramatic
as it occurs for ordinary conductors.) If a lead sphere is placed in a constant mag-
netic field, then at high temperatures the magnetic field is essentially unaffected by
the lead, but below a temperature of 7.2 degrees Kelvin, the lead sphere becomes
superconducting and the magnetic field is expelled, as sketched in fig. 1.

This explanation of the Meissner effect is reasonable only if the magnetic field
is not too strong. Let V be the volume of the sphere in fig. 1. If we set s = 0

Figure 1. A lead sphere in a magnetic field above the supercon-
ducting temperature (left) and below (right). On the right, the
magnetic field, indicated by the arrows, is expelled from the sphere.
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Figure 2. A superconducting material is repelled from a region
in which the magnetic field is strong. This can lead to magnetic
levitation.

throughout the sphere, then the magnetic field can freely penetrate. According to
(2.5), this has an energetic cost γa4V/2. On the other hand, if we take |s| = a
and dAs = 0, the magnetic field must be expelled from the sample; the energetic
cost of expelling a magnetic field B from a volume V is of order |B|2V/2. The
Meissner effect will occur if the energetic cost of expelling the field is less than the
cost of setting s to zero, or in other words if B is less than the critical magnetic
field Bcrit = γ1/2a2 (which typically is of order 10,000 times the magnetic field of
the Earth and relatively close to the strongest available magnetic fields). What
happens when B exceeds Bcrit is a little more complicated than one might expect
from this explanation; we return to this later.

Because the energy required to expel the magnetic field from a superconductor
is proportional to |B|2, this energy grows when B is increased. As a result, a
superconductor is repelled from a region in which the magnetic field is large. This
leads to the phenomenon of magnetic levitation (fig. 2), which is commonly seen
in science demonstrations and is used in maglev trains, such as the trains running
to and from the Shanghai airport.

Now let us understand why a material with the properties that we have assumed
is a superconductor. We actually can see this directly from the Meissner effect.
On the left-hand side of fig. 1, we have an ordinary conductor in a magnetic field
that is created by unspecified external currents. On the right-hand side of fig. 1,
the external currents are the same, but the configuration of the magnetic field is
different. This results from electric currents that flow in the superconductor in
such a way that inside the superconductor the combined magnetic field, due to the
external currents and those in the superconductor, will vanish. The electric currents
that flow in the superconductor will flow indefinitely, since it is energetically favored
to maintain the Meissner effect. The fact that electric currents flow indefinitely with
no energy required to maintain them is what we call superconductivity.

Maxwell’s equations, which in a time-independent situation read �∇ × �B = �J ,
show that as �B vanishes deep inside the superconductor, �J must also. Hence the
superconducting currents are carried on the surface of the material. We will be
more precise about this later.

2.4. A Superconducting Ring. However, it is instructive to also consider an-
other geometry, one in which superconducting current flows in a homotopically
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Figure 3. A ring U filled with superconducting material. The
circle C ⊂ U (indicated by the dotted line) is homotopically non-
trivial in U but is the boundary of a disc D ⊂ R

3 (not drawn
here).

non-trivial path. In addition to being closer to most applications of superconduc-
tors, this is conceptually simpler, with no need to consider an externally applied
field.

In fig. 3, we sketch a ring U of superconducting material. A circle running
around the ring, deep inside the superconductor, has been labeled C. C represents
a non-trivial homology class in U , but its homology class in R3 is, of course, zero.
So C is the boundary of a disc D in R3, though we cannot take D to lie in U .

The line bundle L̂ restricted to D is topologically trivial because D is con-
tractible. However, the section s of L̂ is non-zero inside U and hence gives a
trivialization of L̂ over C, that is, over the boundary of D. The pair (D, ∂D),
that is, D with its boundary collapsed to a point, is equivalent to S2. A complex
line bundle over S2 has a first Chern class. So L̂|D (that is, L̂ restricted to D)
has a “relative first Chern class” c1(L̂, s) defined relative to the trivialization s on
the boundary of D. We set n = c1(L̂, s). n can be measured by integrating the
magnetic flux through D. In conventional units,

(2.6) n = 2
∫

D

eB

2π�c
,

where the factor of 2 in front reflects the fact that L̂ = L2.
Since n is an integer, it cannot change in time as long as it is true that s is ev-

erywhere non-zero deep inside the superconductor. If an isolated superconducting
ring, far from any relevant charges and currents, is in a state with n �= 0, it will
soon settle down to its state of lowest energy with the given value of n. In view of
eqn. (2.6), a state with n �= 0 necessarily has a non-zero magnetic field. Maxwell’s
equations tell us that to have a non-zero magnetic field, there must be non-zero
electric currents. In the present case, these currents will be contained in the su-
perconductor itself (and in fact on its surface), since we assume it to be isolated.
To get a non-zero flux through the ring, the currents must flow on a homotopically
non-trivial path around the ring U (fig. 4). The currents are proportional to n,
with the constant of proportionality (and the details of where on the surface of U
the currents flow) depending on the detailed geometry.
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�J

�B

Figure 4. A magnetic flux through the ring arises, via Maxwell’s
equations, from a flow of current around the ring. The current,
labeled �J , runs on the surface of the ring.

To the extent that n is truly constant, the electrical currents that sustain the
magnetic field will persist forever, with no external input of energy. This again is
superconductivity.

2.5. Flux Lines. The reason that n eventually will change is that although there
is a cost in energy to have s = 0, this will sometimes happen by thermal or quantum
fluctuations. So let us consider a superconductor in which s = 0 somewhere. As
s is a section of a complex line bundle, by transversality, we expect to have s = 0
in real codimension two, as sketched in fig. 5. Thus, we expect s to vanish on a
line or one-manifold in space. Lines on which s = 0 are of great scientific and even
technological importance and are known as Abrikosov-Gorkov flux lines.

A flux line L is characterized by an integer according to essentially the same
reasoning that we used to analyze the superconducting ring. As sketched on the
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Figure 5. Shown on the left is a superconducting sphere with a
line L – known as a flux line – along which s = 0. On the right we
sketch a circle C that encloses the flux line. It is the boundary of
a disc D that intersects L transversely at a single point.
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right of fig. 5, we consider a circle C that is deep inside the superconducting
material, and disjoint from L, so that s �= 0 everywhere on C. We further choose C
to “link” L, so that a disc D with boundary C intersects L transversely at a single
point. The line bundle L̂, when restricted to D, has a relative first Chern class
n = c1(L̂, s), which characterizes the flux line. It can be evaluated by the integral
in eqn. (2.6).

We describe the flux line mathematically as a local minimum of the appropriate
energy function. In the Landau-Ginzburg model, the energy function is taken to
be the sum of the energy function for s, which was given in eqn. (2.5), and the
magnetic energy, which is the integral of |B|2/2. Thus the function that must be
minimized is

(2.7) V (s, B) =
∫

R3
d3x

(
|B|2
2

+
1
2
|dAs|2 +

γ

2
(
|s|2 − a2

)2
)

.

Making this expression stationary gives the Euler-Lagrange equations of Landau-
Ginzburg theory:

d∗AdAs + 2γs(|s|2 − a2) = 0

d � F + ie � (s̄dAs − (dAs̄)s) = 0.(2.8)

(Here d∗A = �dA� is the adjoint of dA. Also, we have written the equations in terms
of the curvature two-form F rather than the magnetic field B = �F .) To describe
a vortex line, we consider an idealized problem in which the superconductor fills all
of R3, and we look for a solution that is invariant under translation in one direction
and is “pulled back” from R2. The Landau-Ginzburg equations thus reduce to
partial differential equations with the same form as those in eqn. (2.8), but now
on R2. They can be further reduced to ordinary differential equations by assuming
rotational symmetry on R2. Solutions of these equations for which |s| → a and
dAs → 0 at infinity are labeled, as usual, by an integer n, the relative first Chern
class. The basic Abrikosov-Gorkov vortex line has n = 1. Such a solution exists
but cannot be described in closed form.

2.6. Decay of the Current. Now we can describe how the current in a super-
conducting ring relaxes. This happens when a flux line is “nucleated” on one side
of the ring (because of thermal or quantum fluctuations), migrates across the ring
and then disappears, as sketched in fig. 6. In this process, the relative first Chern
class n changes by ±1, depending on which way the flux line crosses the ring. The
case that is energetically feasible at very low temperatures is the case in which |n|
is reduced, so that the energy in the superconducting current becomes smaller.

If we include time in this description, then the superconductor fills out a four-
manifold Û = U × R in spacetime (where U is the spatial volume occupied by the
superconductor and R parametrizes the time), and the flux line, as it crosses the
ring, fills out a two-manifold D̂ ⊂ Û . We can think of D̂ as the submanifold of Û
characterized by s = 0. Topologically, for the process in which the current relaxes,
D̂ is a closed two-dimensional disc. If we forget the time, D̂ projects to the disc
D ⊂ U sketched in fig. 6. The quantum or thermal tunneling process by which
the flux line crosses the ring is very rare, but it is most likely to occur if D̂ is a
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Figure 6. A flux line is nucleated on the outside of a supercon-
ducting ring and “migrates” across to the inside, where it disap-
pears. In the process, it cuts across the disc labeled D. The two
vertical lines in D show the position of the flux line at two succes-
sive times.

two-manifold of minimal area in Û . Thus, to compute the rate at which the current
decays, one must find a minimal area two-manifold inside a four-manifold.4

In the real world, for a superconducting ring in Minkowski spacetime R3,1, the
four-manifold and two-manifold that appear here are very simple. If, however, it
were practical to study superconductors in a more general four-dimensional space-
time, an analysis of the current decay would lead to a much more general problem
of finding a minimal area two-manifold in four dimensions.

Since the current in a superconducting ring does eventually decay (at least in
theory) by the process just described, one may ask precisely what it means to speak
of superconductivity. Is a superconductor simply a very good conductor? In fact,
like many really interesting concepts in statistical mechanics and condensed matter
physics, superconductivity acquires a precise meaning in the limit that the size of
the sample becomes large. Let w be the width of our superconducting ring and r
its radius. In a ring of given w and r, the current will eventually decay, regardless
of what material the ring is made from. In a normal material, the rate at which the
current decays is of order r/w2; the coefficient of r/w2, in the limit that r and w
are both large, is known as the resistivity. In a superconductor, the rate of current
decay is exponentially small for w large compared to atomic dimensions, and the
resistivity, defined in terms of the coefficient of the power law, vanishes. In practice,
the difference between power law decay of the current and exponentially slow decay
is that in an ordinary conducting loop, the decay of the current is obvious, while
a superconducting loop can carry current for months or years with no measurable
change.

2.7. Type I and Type II Superconductors. Now let us re-examine the Landau-
Ginzburg equations (2.8). As written, the equations depend on parameters e, γ, and
a (and units have already been chosen to eliminate � and c). However, by elemen-
tary rescalings, one can eliminate all parameters except for a single dimensionless

4The tunneling computation is most usefully done in Euclidean signature – with a Riemannian

rather than pseudo-Riemannian metric on Û – and then D̂ is simply the product of D ⊂ U with
a point in R.
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Figure 7. The vertical lines represent parallel flux lines in a superconductor.

ratio ψ = γ/e2. We simply introduce a new variable ŝ = s/a, new spatial coordi-
nates x̂ = eax, and a new connection Â = eA and curvature F̂ = eF . After these
rescalings (but omitting the “hats” to keep the equations readable), the Landau-
Ginzburg equations become

−dA
∗dAs + 2ψs(|s|2 − 1) = 0

d � F + i � (s̄dAs − (dAs̄)s) = 0,(2.9)

showing explicitly that ψ is the only relevant parameter.
A sort of phase transition occurs at ψ = 1. Consider a space-filling supercon-

ductor with many parallel flux lines (fig. 7). For ψ < 1, the flux lines attract each
other and combine together to form a single flux line of large n. Such a material is
called a Type I superconductor; examples include most pure metals except niobium.
For ψ > 1, the flux lines repel. A material with this property is called a Type II
superconductor; examples include niobium and many alloys. The borderline case
ψ = 1 is discussed later.

The difference between Type I and Type II superconductivity is of substantial
practical importance. To understand why, let us return to the Meissner effect
(fig. 1). What happens when the external magnetic field is increased to the critical
value Bcrit? Magnetic flux begins to penetrate the material, initially in the form
of flux lines. In the Type I case, the flux lines attract, forming a large region of
normal metal, and superconductivity is soon lost altogether. In the case of a Type II
superconductor, when one reaches the critical magnetic field, flux lines appear
inside the superconductor. But since they repel each other, they can form a stable
arrangement, a “lattice” of parallel flux lines, as sketched in fig. 8. As a result,

Figure 8. Part of a lattice of flux lines in a Type II superconduc-
tor, seen here from above.
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a Type II superconductor for B > Bcrit can reach a stable arrangement in which
part of an externally applied magnetic field is expelled to the outside world, while
part penetrates the superconductor in the form of the flux lattice. The material
remains superconducting in such a state, and as a result, Type II superconductors
can support considerably higher magnetic fields and currents, making them more
useful for many applications.

Superconductivity is finally lost at a higher value of the magnetic field called the
upper critical field. For more on this, see section 21.6 of [23].

2.8. The Borderline Case. Now as in [3] and [19], we are going to use the
Landau-Ginzburg theory to discuss the borderline case ψ = 1. As we will see
momentarily, this case has very special and beautiful properties. But if we are
interested in applications to real superconductors, there are a few things to bear in
mind.

First of all, a real superconductor will not ordinarily have ψ = 1; it will have
some other, more generic, value of ψ. In principle, one could try to manufacture a
material with ψ = 1 by adjusting the chemical composition of an alloy. Even if one
does construct such a material, the Landau-Ginzburg model may not be an adequate
model for answering subtle questions about its behavior. The Landau-Ginzburg
model is not a particularly good model of a superconductor; it is just, in a sense, the
simplest possible model. To answer a delicate question about superconductors, such
as a question about the boundary between Type I and Type II behavior, one should
expect that the Landau-Ginzburg model may be inadequate. The microscopic BCS
model might be a much better starting point.

Nevertheless, we will describe the predictions of Landau-Ginzburg theory for flux
lines at ψ = 1, both because the topic is pretty and because it is good preparation for
our study of four-manifolds in section 3. We write x1, x2 for Euclidean coordinates
on R2 and introduce the complex variable z = x1 + ix2. Also, write dA = ∂̄A + ∂A,
where ∂̄A is of type (0, 1) and ∂A of type (1, 0). Precisely at5 ψ = 1, after reduction
to two dimensions, the energy function of eqn. (2.7) can be written

(2.10) V =
∫

R2
d2x

(
|∂̄As|2 +

1
2
(�F − 1 + |s|2)2

)
+ πn,

where n is the usual topological invariant

(2.11) n =
∫

R2

F

π
.

One can also write a second formula that differs from the first by a reversal of
orientation:

(2.12) V =
∫

R2
d2x

(
|∂As|2 +

1
2
(− � F − 1 + |s|2)2

)
− πn.

From eqn. (2.10) it is clear that if the equations

∂̄As = 0

F = 1 − |s|2(2.13)

can be solved, we will get the absolute minimum of V for given n. Moreover,
the value of V at its minimum will be πn. Of course, the absolute minimum will

5Setting ψ = 1 after the preliminary scaling that eliminated e, γ, and a in favor of ψ is
equivalent to simply setting e = γ = a = 1 in eqn. (2.7).
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automatically give a solution of the Euler-Lagrange equations. Similarly, from eqn.
(2.12), we see that if we can solve

∂As = 0

F = −(1 − |s|2),(2.14)

then we will get the minimum of V , and the value at the minimum will be −πn.
Since the original formula (2.7) made clear that V is non-negative, we can only
hope to solve eqn. (2.13) if n > 0 or eqn. (2.14) if n < 0. The two cases are
related simply by a reversal of orientation of R

2, so we will consider just the case
that n > 0.

The equations (2.13) can be given a simple interpretation. In complex dimension
1, the operator ∂̄A automatically obeys ∂̄A

2 = 0, simply because there is no room
for a (0, 2)-form on R

2 ∼= C. So whatever A may be, the ∂̄A operator endows the line
bundle L̂ → C with a holomorphic structure. The integer n is the degree of this line
bundle, relative to its trivialization at infinity (where we assume that |s| approaches
1 and dAs vanishes). Since a holomorphic line bundle L̂ → C is holomorphically
trivial, we can trivialize it, whereupon s becomes an ordinary holomorphic function
of z. The integer n becomes the number of zeroes of s, which thus takes the form

(2.15) s = α
n∏

i=1

(z − zi),

where (z1, . . . , zn) are an n-plet of unordered and not necessarily distinct points in
C and α is a constant that can be set to 1 by suitably choosing the trivialization
of L̂.

Thus, up to the appropriate equivalence, the solutions of the first equation in
(2.13) are in one-to-one correspondence with such n-plets. One then shows [19] by
a symplectic or moment map argument that for each n-plet, the second equation
in (2.13) has a unique solution, up to a gauge transformation.

So there is a unique multi-vortex solution for each n-plet (z1, . . . , zn). We can
think of the zi as the positions of the individual vortex lines. Such a family of
solutions does not exist for ψ �= 1. If ψ is not 1, the vortex lines attract or repel
one another, and one cannot find a critical point of the energy with vortices at
prescribed positions.

2.9. The Boundary Layer. In its minimum energy state, a superconductor has
|s| = a, dAs = 0, and F = 0. Since F vanishes, we can pick a gauge (that is, a
trivialization of the line bundle L̂) relative to which the connection form is simply
A = 0. In this gauge, s is a constant, which by a further choice of gauge we can
take to be s = a.

Now we would like to understand solutions of the Landau-Ginzburg equations
that are close to this minimum energy solution. For this, we write s = a + h
and expand the Landau-Ginzburg equations to first order in h and A, around the
solution with h = A = 0.

In doing this, we can make a gauge choice such that h is real. The gauge group
acts by s → exp(if)s, for an arbitrary real-valued function f . Given that a is real
and positive, such a gauge transformation can clearly be chosen to make h real.
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Once h is real, the linearized Landau-Ginzburg equations simplify and give sep-
arate equations for h and for A. The equation for h becomes

(2.16)
(
∆ + 4a2γ

)
h = 0,

where ∆ = d∗d is the Laplacian. The solutions of this linear equation are not
difficult to analyze. For an important example, consider a superconductor that
occupies the half-space x ≥ 0, where x is one of the Euclidean coordinates of R3.
A solution depending only on x is a linear combination of

(2.17) h± = exp(±x/ξ),

where ξ = 1/2a
√

γ is known as the correlation length. To ensure that |s| = a deep
inside the superconductor, we must pick the solution h−, and then we see that |s|
departs significantly from a only within a distance of order ξ from the boundary.
This conclusion is unchanged if we allow dependence on the other variables.

The story is similar for A. The Landau-Ginzburg equations give(
∆ + 4e2a2

)
A = 0

d � A = 0.(2.18)

Now the solutions that depend only on one coordinate x are proportional to
exp(±x/λ), where λ = 1/2ea is called the penetration depth. Again, for a super-
conductor that fills a half-space, we must pick the exponentially decaying solution.
So A vanishes exponentially for x >> λ, as does the curvature F = dA. Thus
we get a more accurate statement of the Meissner effect: the magnetic field in a
superconductor is confined to a boundary layer with a thickness of order λ. In
view of Maxwell’s equation �∇ × �B = �J (or as one can see in more detail from
the Landau-Ginzburg equations), the electrical currents in a superconductor are
confined to the same boundary layer.

Typical values of ξ and λ are of order 10−5 or 10−6 centimeters – in other
words, very small by ordinary standards but hundreds of times the interatomic
distances. The dimensionless parameter ψ that distinguishes Type I and Type II
superconductors is ψ = (λ/ξ)2. For ξ > λ, one has a Type I superconductor, while
λ > ξ corresponds to Type II.

Though we have considered a half-plane, the structure of the boundary layer is
the same for any superconducting sample whose dimensions are much greater than
ξ and λ. (The surface of such a sample looks locally like the boundary of a half-
space.) In general, ξ and λ determine the rate of approach to the “ground state” of
a superconductor with |s| = a and dAs = 0. For example, although this statement
requires a little more study of the Landau-Ginzburg equations, the “thickness” of
an Abrikosov-Gorkov vortex line is the larger of ξ and λ.

In this article, we have formulated the Landau-Ginzburg model only in the time-
independent case. It is not difficult to generalize it to allow time-dependence and
to analyze the time-dependent fluctuations around the ground state. In this case,
at low frequencies, the results are qualititatively similar to what we have just de-
scribed: perturbations vanish exponentially outside a boundary layer near the sur-
face of the superconductor. But as explained in [1] and as we will describe in
section 4 in the relativistic case, above certain critical frequencies (which differ for
h and A), waves can propagate in the superconductor.
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3. Four-manifolds

3.1. Spinc Structures. Some of what we have explained for superconductors has a
rough analog in four-manifold theory, via the work of Taubes [20, 21] on a perturbed
version of the Seiberg-Witten equations. We will have to first explain a number
of preliminaries (all of which are presented in a more leisurely fashion in [17], for
example), though many of the details are ultimately not important for our main
point.

Let X be a smooth four-manifold endowed with a Riemannian metric g. The
structure group of the tangent bundle of X is SO(4). A spin structure on X is a
lifting of the principal SO(4)-bundle of trivializations of the tangent bundle to a
principal Spin(4)-bundle over X. Here Spin(4) is the simply-connected double cover
of SO(4). Since Spin(4) ∼= SU(2) × SU(2), it has two irreducible two-dimensional
representations. Associated to a spin structure are therefore a pair of rank two
complex vector bundles S+ and S−, known as the positive and negative spin bun-
dles. Conversely, the spin structure is determined by the bundle S+ (or S−) with
SU(2) structure group and a map σ that is defined in subsection 3.2.

In general, the four-manifold X may not admit a spin structure, but it always
admits a Spinc structure. A Spinc structure is a lifting of the principal SO(4)-
bundle associated to the tangent bundle to a principal Spinc(4) bundle, where
Spinc(4) = (Spin(4)×U(1))/Z2 = (SU(2)×SU(2)×U(1))/Z2. The group Spinc(4)
has two maps to (SU(2)×U(1))/Z2 = U(2) by forgetting one of the SU(2) factors.
Using the natural two-dimensional representation of U(2), we get a pair of two-
dimensional representations of Spinc(4). So a Spinc structure on X determines a
pair of rank two complex vector bundles V+ and V− over X. Again, the Spinc

structure is completely determined by V+ (or V−) and the map σ.
Locally, a spin structure does exist and is unique up to isomorphism, and one

can describe V± as S± ⊗R where R is a complex line bundle. Globally, S± and R
may not quite exist (and may not be unique if they exist), but the tensor product
does. A unitary connection A on R, together with the Riemannian or Levi-Civita
connection on S±, determines a connection on V±. By a Spinc connection on V±,
we mean a connection that is everywhere locally of this type for one (and therefore
any) local decomposition of V± as S± ⊗ R. The curvature of a Spinc connection
is a two-form valued in u(2), the Lie algebra of U(2). As u(2) = su(2) ⊕ u(1), the
curvature can be projected to su(2) or to u(1). The projection to su(2) gives part
of the Riemann tensor of X (because of the definition of a Spinc connection), while
the projection to u(1) is a closed two-form F . Locally, F can be regarded as the
curvature of the connection A on the line bundle R.

A Spinc structure determines a line bundle detV+. Hence it determines an
integral cohomology class c1(detV+). If V+ = S+ ⊗ R, then det V+ = R2 (the
determinant of S+ is trivial, since S+ has structure group SU(2)), so the natural
connection on detV+ has curvature 2F , and c1(det V+) is represented in de Rham
cohomology by 2 · F/2π.

3.2. Dirac Operator and Seiberg-Witten Equations. Now, let Γ(X, V±) be
the space of sections of V±. There is a natural Dirac operator D : Γ(X, V±) →
Γ(X, V∓). It is an elliptic, first-order differential operator. In local coordinates,
D =

∑4
i=1 γi D/Dxi, where γi (sometimes called the Dirac matrices) generate a

Clifford algebra. The Dirac operator was originally introduced by Dirac [4] in
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Quantum Electrodynamics. (This original framework for the Dirac operator is
closely related to our subject, since the Schrödinger equation for electrons, which
would be the starting point in a more precise treatment of superconductivity than
we gave in section 2, is a non-relativistic approximation to the Dirac equation.)
The Dirac operator is also a central example in the Atiyah-Singer index theorem.

The Seiberg-Witten equations are equations for a pair consisting of a section M
of V+ and a Spinc connection. Before writing the equations, we need one more
preliminary. If X is spin, then S+ ⊗ S+

∼= Ω0 ⊕ Ω2,+, where Ω0 is the bundle of
zero-forms and Ω2,+ is the bundle of self-dual two-forms (that is, two-forms that
are invariant under the action of the Hodge � operator, which in four dimensions
maps two-forms to two-forms). This statement follows from the representation
theory of Spin(4). So there is a natural bilinear map σ : S+ ⊗ S+ → Ω2,+. If we
write E for the complex conjugate of a complex vector bundle E, then on a four-
dimensional spin manifold, S+ is naturally isomorphic to S+ (this follows from
the fact that S+ is defined using a representation of SU(2) that is equivalent to
its complex conjugate). In the Spinc case, V+ and V + are not isomorphic, but
(since V+ is locally isomorphic to S+ ⊗R, where R is a complex line bundle with a
unitary structure, that is a trivialization of R⊗R), the tensor product V+ ⊗V + is
isomorphic to S+ ⊗ S+. So there is a natural map σ : V+ ⊗ V + → Ω2,+. We write
σ(M) for σ(M ⊗ M), where M is the complex conjugate of M , a section of V +.

With this understood, the Seiberg-Witten equations are

DM = 0

F+ = σ(M).(3.1)

Here F+ = 1
2 (1 + �)F is the self-dual projection of F , a section of Ω2,+.

The Seiberg-Witten equations are elliptic differential equations. They can be
used to define invariants of smooth four-manifolds in close analogy with Donaldson
theory. Donaldson [5] defined invariants of a smooth four-manifold X by, roughly
speaking, counting the instanton solutions in SU(2) gauge theory for a given choice
of an SU(2)-bundle E → X. Similarly one defines the Seiberg-Witten invariants
by counting the solutions of the Seiberg-Witten equations on X for a given choice
of the Spinc structure. The physics of supersymmetric gauge theories [18] leads
one to expect that the four-manifold information contained in the Seiberg-Witten
invariants is the same as that contained in the Donaldson invariants. This has been
explained most fully in [13].

3.3. Perturbed Equations. The Seiberg-Witten equations can usefully be per-
turbed using a closed two-form ω. An important case considered by Taubes [20, 21]
is that X is a symplectic four-manifold, with symplectic form ω. Moreover, we ori-
ent X using the four-form ω ∧ ω, in which case it is possible to pick a metric on X
such that ω is self-dual, that is �ω = ω, and the Riemannian volume form coincides
with ω∧ω. (The space of such metrics is contractible, so a choice of one contains no
topological information.) Having done so, we perturb the Seiberg-Witten equations
to

DM = 0

F+ = σ(M) +
b

2
ω(3.2)
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with real b. Since the equations are first-order elliptic equations and the pertur-
bation is of zeroth order, general results about elliptic operators (together with
compactness properties of the Seiberg-Witten equations) ensure that the counting
of solutions is independent of b, and hence the Seiberg-Witten invariants can be
computed by counting the solutions of (3.2) for any b. At b = 0, we get the original
definition. The goal will be to get an alternative description by taking b large.

Let us first consider some important examples of solutions of the perturbed
equations. We take X to be R4 with the Euclidean metric and endowed with a
standard symplectic form ω = dx1 ∧ dx2 + dx3 ∧ dx4. We look for a solution of the
equations on R4 that is invariant under translations in the x3 and x4 directions and
is “pulled-back” from the x1−x2 plane. R

4 is a spin manifold; the spin bundles S±
are trivial and endowed with a flat connection. So V+ is simply the tensor product
of a line bundle R with a two-dimensional vector space S0,+. The rotations of
the x1 − x2 plane act in a natural way on S0,+, decomposing it as a sum of one-
dimensional eigenspaces. Relative to this decomposition, M splits as the direct sum
of a pair of sections s and u of R.

As in subsection 2.8, we set z = x1 + ix2, and we write the covariant differential
as dA = ∂̄A +∂A, where ∂̄A and ∂A are of types (0, 1) and (1, 0), respectively. After
suitably normalizing and labeling s and u, the equations (3.2) take the form

∂̄As = 0

∂Au = 0(3.3)

�F = b − |s|2 + |u|2.
The value of b is inessential as long as it is not zero, since a dilation or homothety of
R2 multiplies b by a positive real number, and a reversal of orientation of R2 reverses
the sign of b (while exchanging s and u and reversing the sign of the � operator).
For definiteness, we take b positive. If we now set6 u = 0, the equations reduce
apart from obvious scalings to the familiar equations (2.13) of Landau-Ginzburg
theory at the critical value ψ = 1.

For u = 0, there is a trivial solution with A = F = 0 and s =
√

b. There are also
non-trivial solutions. The most important of these, still with u = 0, is the solution
that in a superconductor is interpreted as the Abrikosov-Gorkov vortex line. In this
particular solution, s has a simple zero at, say, the origin, and |s| →

√
b at infinity.

The correlation length, in the language of subsection 2.9, is 1/
√

b, so the difference
of |s| from its asymptotic value vanishes for large z like exp(−

√
b|z|).

In its embedding as a solution of the Seiberg-Witten equations, the vortex line
has thus been scaled or dilated so that its “width” is of order 1/

√
b. This result

just reflects the dilation or homothety by which we could set b = 1.

3.4. Symplectic and Almost Complex Structures. On a symplectic four-
manifold X, with g any metric such that ω is self-dual and the Riemannian measure
agrees with ω ∧ ω, the expression J = g−1ω defines an almost complex structure
for which ω is of type (1, 1). A special case of this is that X may be a Kähler

6 If b is negative, we instead set s = 0, and compare to (2.14) after exchanging s and u.
Actually, solutions of the equations (3.3) with b > 0 and suitable behavior at infinity all have

u = 0. The appropriate conditions are that |s| and |u| are constant at infinity and not both zero,
and that dAs = dAu = 0 at infinity. Vanishing of u for such solutions is proved using the argument
sketched in subsection 3.6 below, which more generally shows vanishing of u on a Kähler manifold.
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manifold with complex structure J and Kähler form ω. However, in general, J is
not integrable, and g is a hermitian metric but not necessarily Kähler.

Without assuming integrability of J , one can decompose the space of complex-
valued n-forms as the direct sum of spaces of forms of type (p, q) with p + q =
n. In particular, an almost complex four-manifold X has a canonical line bundle
K whose sections are forms of type (2, 0). X is spin if and only if K admits a
square root; indeed, a square root of K determines a spin bundle on X, namely
S+ = K1/2 ⊕ K−1/2. The analogous decomposition on a Spinc manifold is V+ =
K1/2 ⊗ R ⊕ K−1/2 ⊗ R, where K±1/2 and R do not exist globally, but the line
bundles T± = K±1/2 ⊗ R do. We have T 2

+ = K ⊗ detV+, so K ⊗ detV+ always
admits a natural square root.

Even though J may not be integrable, there is a natural notion [10] of a pseudo-
holomorphic curve: a two-dimensional submanifold D ⊂ X whose tangent space is
J-invariant. If X is Kähler, this coincides with the usual definition of a holomorphic
curve. Like holomorphic curves, pseudo-holomorphic curves are curves of minimal
area in their homology class.

The equation defining a pseudoholomorphic curve is elliptic, and counting of
such curves gives powerful invariants of symplectic manifolds. As we will describe
momentarily, Taubes [20, 21] shows that in the four-dimensional case, these are
closely related to the Seiberg-Witten invariants.

3.5. Analogy with Superconductors. Relative to the decomposition V+
∼=

K1/2 ⊗ R ⊕ K−1/2 ⊗ R, M decomposes as s ⊕ u, where s and u are respectively
sections of K1/2 ⊗R and K−1/2 ⊗R.

Taubes analyzes solutions of the perturbed Seiberg-Witten equations (3.2) with
a parameter b >> 1. The following picture emerges. In such a solution, u is
uniformly small for large b; indeed, it is everywhere of order 1/b. For topological
reasons, being a section of T+ = K1/2 ⊗ R, s must vanish on a two-dimensional
cycle D that is Poincaré dual to c1(K1/2 ⊗ R) = 1

2 (c1(K) + c1(detV )). In the
limit of large b, D turns out to be a pseudoholomorphic curve. The structure in
the normal bundle to D is everywhere given by the fundamental Abrikosov-Gorkov
vortex solution, embedded in Seiberg-Witten theory as we have just described. In
other words, the structure in each normal plane to D looks like this solution, scaled
to size 1/

√
b. Except in a small layer near D with a width of order 1/

√
b, |s| is very

close to
√

b. The picture is sketched in fig. 9.
Conversely, given a pseudoholomorphic curve in this homology class (with a

certain restriction on detV+), Taubes constructs a solution of the Seiberg-Witten
equations. This construction gives much information about the Seiberg-Witten
invariants of symplectic four-manifolds, along with a powerful existence theorem
for pseudo-holomorphic curves in them. It has had many consequences for the
study of symplectic four-manifolds, which are important examples in the theory of
smooth four-manifolds.

The large b behavior that we have just summarized is strikingly similar to the
description of how the current relaxes in a superconductor (fig. 6). Each problem,
that is the superconductor or the symplectic four-manifold, involves an abelian
gauge field A coupled to an additional field, which we have called s in each case. s

is a section of a complex line bundle that we have called L̂ or T+, as the case may be.
(The equations involving the symplectic four-manifold also contain another variable
u that ultimately is small and does not play an important role.) The equations
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Figure 9. A schematic depiction of a pseudo-holomorphic curve
D in a symplectic four-manifold X.

favor a certain value for |s| (which we have called a or
√

b in the two cases). One
can look for a solution in which s is covariantly constant and has the appropriate
magnitude. However, such a solution exists only if the topology is right. In the
case of the superconductor, if one wants a process in which the superconducting
current changes, s must vanish along a two-manifold D. The same happens for the
symplectic four-manifold if c1(T+) �= 0. In either case, the important solution looks
like the vortex solution near D and like the trivial solution elsewhere.

This simple picture arises for the superconductor if the size of the sample is much
larger than ξ and λ. Otherwise, we need to use a more microscopic description. For
the symplectic four-manifold, the analogous simplification occurs if |b| >> 1. In
either case, the simplification occurs when the vortex line can be considered thin,
compared to the superconducting sample or the four-manifold.

3.6. The Weitzenbock Formula. We perhaps should conclude by giving some
idea of how one shows that u is uniformly small for large b. This enables the
symplectic four-manifold to be studied using the same variables A, s as the super-
conductor. The starting point is a Weitzenbock formula. Clearly, the quantity

(3.4) I =
∫

X

d4x
√

g

((
F+ − σ(M) − b

2
ω

)2

+ |DM |2
)

is non-negative and vanishes precisely for a solution of the perturbed Seiberg-Witten
equations. On the other hand, after integrating by parts, we have7

(3.5) I =
∫

X

d4x
√

g

(
|F+|2 + |DM |2 + |σ(M) + bω/2|2 +

1
4
R|M |2

)
.

R is the scalar curvature of X, and DM is the covariant derivative of M , a section
of T ∗X ⊗ V+.

7The functional I is a certain limit of the bosonic part of the effective action of N = 2 super
Yang-Mills theory [18]. (To physicists, “Seiberg-Witten theory” is the deduction of this action
from an underlying SU(2) gauge theory.) The representation of I as a sum of squares in several
different ways is part of the supersymmetric structure of the theory.
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In terms of M = s ⊕ u, we have

(3.6) |σ(M) + bω/2|2 = 4|s|2|u|2 + (|s|2 − |u|2 − b)2 = |u|4 + |u|2(2b + 2|s|2) + . . .

where the ellipsis represents terms that are independent of u. To explain the next
step in a simplified fashion, suppose that one wishes to minimize as a functional of
u an expression

(3.7) J =
∫

X

d4x
√

g
(
|u|4 + |u|2(2b + 2|s|2) + P |u|2 + Re(Qu)

)
,

where P and Q are bounded functions on X and independent of b. We write ||Q||
for the maximum value of the function |Q|. The minimum of J is at a value of u
that is bounded above, for large b, by ||Q||/b. In fact P is unimportant for large b;
the |u|4 and |s|2|u|2 terms only make |u| smaller at the minimum of J ; and if we
simply drop the terms |u|4, |s|2|u|2, and P |u|2, the minimum of J is at u = −Q/4b,
so |u| is bounded above in that case by ||Q||/4b.

Now consider minimizing the functional I as a function of u for fixed A and s
(as a step toward finding an absolute minimum of I). The problem is similar to
the problem considered in the last paragraph, and |u| is bounded above by 1/b for
similar reasons. The analog of

∫
d4x

√
gP |u|2 is

∫
d4x

√
g

(
|Du|2 + R|u|2/4

)
. The

second term is of the form P |u|2 from the last paragraph, and though the first term
(since it involves derivatives of u) is not quite of this form, it is positive semi-definite
and hence has the effect of making |u| smaller at the minimum. Finally, a term
of the form

∫
X

d4x
√

g Re(Qu) comes from the |DM |2 term in I, which gives rise
to cross terms8 between s and u. After integrating by parts to remove derivatives
from u, these terms can be put in the form

∫
X

d4x
√

gRe(Qu) for some Q.
The way that physicists would describe this is to say that because of the b|u|2

term in I, u is for b >> 1 a “massive field” or (in the language of the renormalization
group) an “irrelevant variable” that can be “integrated out”. After doing so, the
perturbed Seiberg-Witten equations for symplectic four-manifolds can be described
in terms of A and s, the same variables that enter the Landau-Ginzburg theory of
superconductivity.

This process of integrating out inessential variables is ubiquitous in physics.
For example, a really precise description of a superconductor would involve the
Schrödinger equation for electrons and nuclei (or an even more complete theory
incorporating additional elementary particle forces). To arrive at the Landau-
Ginzburg theory of a superconductor, one has “integrated out” a vast assortment of
inessential variables. The four-manifold problem is simpler than superconductivity
(and many other realistic problems in physics) in that the process of integrating
out irrelevant variables can be carried out in a much more precise way.

We have here discussed only the minimization of I as a function of u, with s
and A held fixed. The aim has been to explain how u disappears from the problem
for large b, which greatly improves the analogy with superconductivity. However,
we will conclude by giving a hint of how [20, 21] to solve the equations for s and
A. If X = R

4, we know of two types of solutions. One is the trivial solution
with A = 0 and s =

√
b, and the second is the Abrikosov-Gorkov vortex. If X is

compact and not necessarily flat but T+ is trivial, then we can find a solution that
is everywhere close to the trivial solution. If T+ is non-trivial, we cannot do this

8The cross terms vanish if X is Kähler, so in that case u simply vanishes at the minimum of I.



380 EDWARD WITTEN

everywhere, but we can do it away from a two-manifold D, near which we use the
vortex solution. This gives an approximate solution everywhere. To get an exact
solution, we must minimize I with respect to the choice of D, and this leads to D
being a pseudoholomorphic curve.

4. The weak interactions

4.1. Particle Physics and Supeconductivity. There is a close analog of su-
perconductivity in the world of elementary particle physics. (Historical references
were presented in the introduction.) The forces that are important for ordinary
interactions of atoms and subatomic particles are electromagnetism, the weak in-
teractions (which are responsible, for example, for certain forms of radioactivity),
and the strong interactions (which, for example, bind protons and neutrons into
atomic nuclei). In the Standard Model of particle physics, which was put in its
modern form in the 1970’s, all of these forces are described via gauge theory. We
will focus here on the weak and electromagnetic interactions, as a discussion of the
strong interactions would take us too far afield. Moreover, we will omit the quarks
and leptons, so our discussion will be highly oversimplified.9

Electromagnetism can be described by U(1) gauge theory, as undergraduates are
taught, though not always in precisely that language. According to the Standard
Model, a more complete description of nature, including the weak interactions as
well as electromagnetism, can be obtained by starting with a gauge group that is
U(2) (or SU(2) × U(1)); the global structure will not be very important in our
discussion and depends on considerations that we will omit, such as the existence
of quarks).

If U(2) gauge theory is a better approximation to nature than U(1) gauge theory,
why is it that undergraduates learn about U(1)? The answer to this is gauge
symmetry breaking. For largely unknown reasons, it is energetically favored for
a phenomenon to occur that effectively reduces the structure group from U(2) to
U(1). Physically, this means that most observations at distances and times that
are large compared to the nuclear scale can be adequately described by U(1) gauge
theory.

The simplest way to achieve symmetry breaking is quite analogous to the Landau-
Ginzburg theory of superconductivity. Thus, some of the key ideas have already
been described in section 2. However, before trying to understand the Standard
Model of weak and electromagnetic interactions, we will practice with some simpler
examples of field theory.

4.2. Brief Review of Field Theory. The most elementary example of all is a
point particle in mechanics. If t is the time, m is the particle mass, x is the position,
and ẋ is the velocity, then the kinetic energy is T = 1

2mẋ2. If the particle has also
a potential energy V , then the action is I =

∫
dt(T − V ) with an important minus

sign. The minus sign in the action is needed so that the Euler-Lagrange equations
come out to be Newton’s laws mẍ = −V ′(x), or equivalently so that the conserved
energy is T + V with a plus sign.

9 A much more complete account of the Standard Model can be found, for example, in [23].
When we speak of “ordinary interactions” of particles, we are omitting gravity, which becomes
important for large assemblies of particles but is negligible for a few particles at accessible energies.
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Now let us practice with an elementary example of field theory. We consider a
real massless scalar field φ. We write xµ, µ = 0, . . . , 3 for coordinates on R3,1, such
that the metric is ds2 =

∑
µ,ν ηµνdxµ dxν , with

(4.1) ηµν = diag(−1, 1, 1, 1).

If a and b are tangent vectors to R3,1, we write a ·b for their Lorentz invariant inner
product

∑
µν ηµνaµbν , and we write a2 (or occasionally |a|2) for a·a. To compare to

non-relativistic experience, we also separate the time and space coordinates t = x0

and �x = (x1, x2, x3). Now an action for a massless scalar field can be written

(4.2) I = −1
2

∫
R3,1

d4x
∑
µ,ν

ηµν∂µφ ∂νφ = −1
2

∫
dφ ∧ �dφ.

The second version is elegant, but the first version will help in understanding in
what sense field theory generalizes elementary mechanics. With our explicit choice
(4.1) for the metric, we can write

(4.3) I =
∫

R3,1
d4x

(
1
2

(
∂φ

∂t

)2

− 1
2

3∑
i=1

(
∂φ

∂xi

)2
)

.

We see that if we are going to interpret this as I =
∫

dt(T − V ), then T should be
1
2

∫
d3x(∂φ/∂t)2, and V should be 1

2

∫
d3x

∑3
i=1(∂φ/∂xi)2. Thus, T is the integral

over all space (as opposed to spacetime) of half the square of the time derivative of
the field, while as in mechanics, V contains the terms that lack time derivatives.

A “mass” term for φ is a term in the action proportional to φ2. Since this
contains no time derivatives, it will be a contribution to V and hence must appear
in the action with a minus sign (if we want the energy to be positive). So our action
should be

(4.4) I =
∫

R3,1
d4x

(
−1

2

3∑
µ,ν=0

ηµν ∂φ

∂xµ

∂φ

∂xν
− 1

2
m2φ2

)
,

where m2 should be positive.
To learn more, let us study the Euler-Lagrange equations. These take the form

(4.5)
(
� + m2

)
φ = 0,

where

(4.6) � = d∗d = −
∑
µ,ν

ηµν ∂2

∂xµ∂xν

is the d’Alembertian (the analog of the Laplacian for Lorentz signature). As these
are linear equations with constant coefficients, we can solve them by Fourier anal-
ysis, beginning by finding the “plane wave” solutions of the form φ = exp(ik · x)
with real k. We find that

(4.7) −k2 = m2.

In non-relativistic terminology, one would write φ = exp(−iωt) exp(i�k ·�x), where ω

is called the angular frequency of the wave and �k is the wave-vector. So ω = −k0

and (4.7) reads

(4.8) ω2 = �k2 + m2.
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For real �k, there is a minimum possible value of ω, namely |ω| = m. If ω is
smaller than this, we have to let �k acquire an imaginary part, and then the solution
grows exponentially in some direction in R3,1. This is not physically sensible for
a relativistic field in Minkowski spacetime. However, for a field that is defined
only in part of space, solutions with imaginary �k can be physically sensible. In
subsection 2.9, we used solutions to the Landau-Ginzburg equations with imaginary
�k to describe the boundary layer of a superconductor. (In that discussion, we did
not include the time-dependence, so in effect we considered only the case ω = 0.)

Quantum mechanically, though an explanation of this would take us too far
afield, the waves that we have just described are re-interpreted in terms of particles
with energy ε = �ω and momentum �p = ��k. So from (4.8), the energy becomes
ε =

√
p2 + m2; one must take the positive sign of the square root, as one learns

upon carrying out the quantization procedure. We have here set the speed of
light to 1, but if we restore it, the formula becomes ε =

√
(pc)2 + (mc2)2, which

may be familiar from Special Relativity. The minimum frequency corresponds to a
minimum energy εmin = mc2, usually called the rest energy. The parameter m is
called the mass of the particle.

The particular action that we just considered was rather special in that it leads
to linear Euler-Lagrange equations. What additional terms could one add to the
action? The answer is highly constrained. We want to maintain Poincaré invariance,
that is, invariance under the Poincaré group of isometries of R

3,1. If we count
dimensions so that φ has dimension 1 and a derivative also has dimension 1, then it
turns out that the quantum theory, in 4 spacetime dimensions, behaves badly if one
adds to the action a term of dimension greater than 4. (In general, in n spacetime
dimensions, with a slightly different definition of the dimension, one wants to add
to the action only terms with dimension at most n.) We are also not interested
in terms that can be eliminated by redefining φ by φ → aφ + b, a, b ∈ R, or by
integration by parts. Nor are we interested in a possible additive constant (in the
density whose integral is the action), as this affects neither the classical theory nor
its quantization.

Given all this, there are actually only two more parameters by which (4.4)
can be usefully modified. The important one for us is that one can add a term
−(γ/4)

∫
d4x φ4 for some real γ. The action thus becomes

(4.9) I =
∫

R3,1
d4x

(
−1

2

3∑
µ,ν=0

ηµν ∂φ

∂xµ

∂φ

∂xν
− 1

2
m2φ2 − γ

4
φ4

)
.

This gives a much-studied field theory model known as φ4 theory. The potential
energy of φ4 theory is minus the spatial integral of the part of the action that does
not involve time derivatives:

(4.10) V =
∫

d3x

(
1
2

3∑
i=1

(
∂φ

∂xi

)2

+
1
2
m2φ2 +

γ

4
φ4

)
.

For V to be bounded below, we need γ ≥ 0, since the γφ4 term is the dominant
one for large φ. However, if γ > 0, either sign of the parameter m2 is physically
sensible. (If γ = 0, positivity of the energy requires, as above, that m2 ≥ 0.)
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It is useful to reparametrize the action (4.9) as follows:

(4.11) I =
∫

R3,1
d4x

(
−1

2

3∑
µ,ν=0

ηµν ∂φ

∂xµ

∂φ

∂xν
− γ

4
(φ2 − a2)2

)
.

(An irrelevant constant has been added to the action density.) We assume that γ
is positive. The model makes sense for either sign of the parameter a2, but the
interesting case for us is that a2 > 0; we thus consider a to be real and positive.
The potential energy is now

(4.12) V =
∫

d3x

(
3∑

i=1

(
∂φ

∂xi

)2

+
γ

4
(φ2 − a2)2

)

and is minimized if φ = a.
By setting φ = a to minimize the classical energy, we get a classical approxi-

mation to the quantum vacuum state. To learn what it looks like to live in such
a world, we write φ = a + h, where we assume that h is small. In expanding the
action near h = 0, there is no linear term in h, because h = 0 is a solution of the
Euler-Lagrange equations. There is, however, a quadratic term:

(4.13) I2(h) =
∫

R3,1
d4x

(
−1

2
|dh|2 − γa2h2

)
.

This is equivalent to (4.4), but now with m2 = 2γa2. The mass of the particle is
thus (in this approximation) mh = a

√
2γ. What in subsection 2.9 was called the

correlation length in a superconductor is the analog of 1/mh.
Of course, (4.13) is only an approximation to the action for h. There actually are

non-linear corrections to the action, as a result of which the particles obtained by
quantizing this Lagrangian scatter each other. The reader who wishes to understand
this, however, will have to study Quantum Field Theory.

The action (4.11) has the Z2 symmetry φ → −φ. This symmetry is “sponta-
neously broken”, since it does not leave invariant the minimum energy state at
φ = a. We could just as well minimize the energy by taking φ = −a. Of course, in
expanding around φ = −a, we would have found the same value for mh.

The second term we could have added in (4.9) is a term linear in φ. This spoils
the symmetry and leaves a unique state of least energy. In the weak interaction
problem that we come to later, no such term is possible.

4.3. More on Electromagnetism. Now we will even more briefly consider the
analog of some of this for electromagnetism. In the electromagnetic case, with con-
nection A and curvature F = dA, the action should be a Poincaré-invariant integral
of a density that is polynomial in F and its derivatives. We define dimensions so
that F has dimension 2 and a derivative has dimension 1, and (in 4 spacetime
dimensions) we construct the action from terms of dimension 4 or less. With these
rules, the only possible terms in the action are

∫
F ∧ �F and

∫
F ∧ F . The second

term is a topological invariant (a multiple of the square of the first Chern class)
and as such will not be important for our purposes, though it does play a role in
the theory. We will likewise omit terms involving the Chern classes when we get to
the Standard Model.
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Consequently, as long as the only field considered is the connection, the general
form of the action is

(4.14) IA = − 1
2e2

∫
R3,1

F ∧ �F,

where e is a “coupling constant”, interpreted in a more complete version of the
theory as minus the electric charge of the electron. Our notation differs slightly
from subsection 2.1, where we omitted the factor of 1/e2 in the action (2.3) but
included a factor of e in the definition of the covariant derivative in (2.4). This
gives the formulas that one is most likely to see in an undergraduate course, but
ultimately it is more convenient to place the coupling parameters in the action
rather than in the definition of the covariant derivatives. The two descriptions
differ by A → Â = eA, which is a change of variables that we actually made, for
related reasons, in subsection 2.7.

Now let us describe the plane wave solutions of electromagnetism. Maxwell’s
equations d � F = 0 are equivalent to d � dA = 0. We can supplement them with
a gauge condition d � A = 0. Maxwell’s equations plus the gauge condition imply
�A = 0, where � = d∗d + dd∗ is the d’Alembertian acting on differential forms.
For a plane wave of the form A = ε · dx exp(ik · x) (with constants ε and k), we
have �A = k2A, so a plane wave solution of Maxwell’s equations must have

(4.15) k2 = 0.

This is the m2 = 0 case of (4.7), so there is no minimum frequency for electromag-
netic waves, and the particles (known as photons) that are obtained by quantizing
them have zero mass.

That is actually an essential part of why electromagnetism is obvious in everyday
life. The electromagnetic waves that we detect with our eyes have a very long
wavelength by atomic standards. We experience electromagnetic effects that have
a human scale and greater: lightning, the magnetic field of the Earth, etc. By
contrast, an elementary particle of mass m produces significant effects only at a
frequency above mc2/� (the minimum frequency of a plane wave, as we found
above) or at a distance scale below �/mc (the analog of the penetration depth in
a superconductor, as described in subsection 2.9). The frequency is normally far
too high and the distance too small to be accessible without modern experimental
equipment.

4.4. The Standard Model. Now we come to the Standard Model of weak and
electromagnetic interactions. It is based on U(2) gauge theory, which means to
begin with that we are given a rank two complex vector bundle E → R3,1, with
a hermitian metric ( , ) and thus structure group U(2). The basic field of U(2)
gauge theory is a connection that we will call C. In terms of Lie algebras, u(2) =
su(2)⊕u(1), leading to a decomposition C = C⊕B, where C and B are respectively
su(2)-valued and u(1)-valued. Following the usual physics convention, we interpret
C and B as, respectively, a traceless hermitian 2×2 matrix of one-forms and a real
one-form. Moreover, we normalize these fields so that the gauge-covariant exterior
derivative dC , acting on a section H of E, is

(4.16) dCH =
(

d − iC − 1
2
iB

)
H.



FROM SUPERCONDUCTORS AND 4-MANIFOLDS TO WEAK INTERACTIONS 385

The factor of 1/2 multiplying B is for our purposes just a convenient normaliza-
tion.10 The factors of i =

√
−1 make the connection unitary.

We write FC and FB for the curvatures of C and B, respectively. By the same
sort of reasoning that leads to (4.14) as the action for a U(1) connection, we deduce
that the part of the action that depends only on C should be the natural analog of
that formula:

(4.17) IC = −
∫

R3,1
d4x

(
1
g2

Tr FC ∧ �FC +
1

2(g′)2
FB ∧ �FB

)
.

Here g and g′ are real parameters known as coupling constants.
To achieve symmetry breaking, we introduce a field H which is a section of E.

Its role will be analogous to that of the field that we called s in the theory of
superconductivity. The energy function will be chosen so as to be minimized if
H �= 0, reducing the structure group from U(2) to U(1). The same reasoning that
led to (4.11) as the general action for a real scalar field gives us the general possible
form of the part of the action that depends on H, namely

(4.18) IH =
∫

R3,1
d4x

(
1
2
|dCH|2 − γ

4
(
|H|2 − a2

)2
)

with real parameters γ and a2. Here |H|2 = (H, H) is defined using the hermitian
metric on E, and |dCH|2 is defined using this metric and the Lorentz metric of
R3,1. Just as in our discussion of (4.11), the model is only physically sensible if
γ ≥ 0. If γ is positive, as we will assume, the model makes sense for either sign of
the parameter a2. However, the case we want is a2 > 0, so we will take a to be real
and positive. The total action of the system is

I = IC + IH .(4.19)

Rather as in our discussion of superconductivity, the action has been chosen
so that the energy is minimized if the connection is trivial and H is a non-zero
constant of appropriate magnitude. Up to a gauge transformation, the minimum
energy is for B = C = 0 and

(4.20) H =
(

0
a

)
.

Mathematically, one would say that the choice of the everywhere non-zero section
H of the rank two complex vector bundle E reduces the structure group of E from
U(2) to the subgroup U(1) consisting of gauge transformations of the form

(4.21)
(
∗ 0
0 1

)
.

Physically, one says the same thing, except one says that this reduction occurs at
low energy. It is because of this low energy reduction of the structure group that
undergraduates learn about U(1) gauge theory, not U(2) gauge theory.

As in the practice problems of subsection 4.2, as well as the discussion of the
boundary layer of a superconductor in subsection 2.9, once we have found the state
of minimum energy, the next step is to look at the small fluctuations around this

10One might interpret it to mean that the global form of the gauge group is not SU(2)×U(1)
but (SU(2) × U(1))/Z2 = U(2). However, this interpretation does not work nicely when quarks
and leptons are included, and as noted earlier, the global form of the gauge group will not be
important in this article.
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state. Furthermore, as in the superconducting case, a judicious gauge choice greatly
simplifies the analysis. By a gauge transformation, we can put H in the form

(4.22) H =
(

0
a + h

)
with real h. This is not a complete choice of gauge; it is invariant precisely under
U(1)-valued gauge transformations of the form (4.21). So we will do some further
gauge-fixing later.

As in the case of a superconductor, the advantage of this gauge condition is
that it partially diagonalizes the equations for small fluctuations: h can be treated
separately from B and C. For example, we can find the mass of h by inserting the
ansatz (4.22) for H in the action IH and finding the terms that are quadratic in
h. One quickly finds that the analysis is exactly equivalent to the analysis that we
have already made of (4.11). The quadratic action for h is precisely the one already
written in (4.13), and the mass of the h particle is

(4.23) mh = a
√

2γ.

To make the equivalent analysis for the gauge fields, we need to work a little
harder. We explicitly write C as a matrix of one-forms:

(4.24) C =
1
2

(
C3 C1 + iC2

C1 − iC2 −C3

)
.

A priori, the quadratic part of the action might be a general bilinear expression
in C1, C2, C3, and B. However, we can partially diagonalize the problem using
the unbroken U(1) symmetry, that is the symmetry (4.21) that leaves H invariant.
In the Lie algebra u(2), this U(1) symmetry has two one-dimensional eigenspaces
corresponding to the complex conjugate one-forms

(4.25) W± =
C1 ± iC2√

2

and a two-dimensional eigenspace spanned by the real one-forms C3 and B. To
diagonalize the quadratic part of the action in that two-dimensional space, one
introduces the linear combinations

A =
(g′)2C3 + g2B

g2 + (g′)2

Z = C3 − B.(4.26)

It will also be useful momentarily to parametrize g and g′ by

(4.27) g =
e

sin θW
, g′ =

e

cos θW
,

where (in a more complete form of the model) −e turns out to be the electric charge
of the electron and θW is called the weak mixing angle.

The point of introducing the linear combinations A, Z, and W± is that in the
quadratic approximation, the action for the gauge fields is the sum of an action
IA for A, an action IZ for Z, and an action IW for W±. As an example of this
diagonalization, a short computation shows that in the quadratic approximation,

(4.28) |dCH|2 = |dh|2 +
a2|W |2

2
+

a2Z2

4
.
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Here Z2 =
∑

µ,ν ηµνZµZν = Z · Z, and likewise |W |2 = W− · W+. (This simple
and “diagonal” result depends on the gauge condition (4.22).) In the quadratic
approximation, the rest of the action for the gauge fields has a similar diagonal
structure, and we find:

IA = − 1
2e2

∫
R3,1

FA ∧ �FA

IZ =
1

2(g2 + (g′)2)

∫
R3,1

(
−FZ ∧ �FZ − a2

8
Z ∧ �Z

)
(4.29)

IW =
1
g2

∫
R3,1

(
−FW− ∧ �FW+ − a2

4
W− ∧ �W+

)
.

Here for L equal to A, Z, or W±, we write FL for dL.
Now let us discuss the consequences of this. Since IA is the usual action of

Maxwell theory, the analysis of electromagnetism is unchanged (in this quadratic
approximation) by the embedding in a larger theory. One uses the residual gauge
symmetry (4.21) to impose a gauge condition

(4.30) d � A = 0.

The Euler-Lagrange equations are simply Maxwell’s equations

(4.31) 0 = d � FA = d � dA.

Just as in the derivation of (4.15), these imply that �A = 0, where � is the
d’Alembertian. A plane wave solution A = ε · dx exp(ik · x) must thus have

(4.32) k2 = 0,

describing the propagation of electromagnetic waves of arbitrarily small frequency.
Next we consider the field Z. The Euler-Lagrange equations derived from IZ

read

(4.33) d � dZ +
a2(g2 + (g′)2)

4
� Z = 0.

By acting with d, we can deduce from this equation that

(4.34) d � Z = 0.

This is precisely analogous to (4.30), though it was deduced as an equation of
motion rather than as a gauge condition.11 Once we know that d � Z = 0, we can
write d � dZ = ��Z in terms of the d’Alembertian � = d∗d + dd∗ = �d � d + d � d�.
So the Euler-Lagrange equations imply that (�+a2(g2 +(g′)2)/4)Z = 0, and hence
in a plane wave solution Z = ε · dx exp(ik · x), we get

(4.35) −k2 =
a2(g2 + (g′)2)

4
.

Accordingly, the particles obtained by quantizing these plane waves have mass

(4.36) mZ =
a
√

g2 + (g′)2

2
.

11A better explanation of (4.34) and the analogous condition for W± is as follows. After
making a gauge transformation to put H in the form of eqn. (4.22), we should not merely forget
about the remaining part of H. We must impose Euler-Lagrange equations for the fields that have
been set to zero. This leads to (4.34) and the analog for W±.
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For W±, the story is precisely analogous. The Euler-Lagrange equations are

(4.37) d � dW +
a2g2

4
� W± = 0.

From this, we deduce that d � W± = 0 and that (� + a2g2/4)W± = 0. So the
particles obtained by quantizing the W field have mass

(4.38) mW =
ag

2
.

Comparing these formulas, we get

(4.39)
mW

mZ
=

g√
g2 + (g′)2

= cos θW .

All these results, which we have obtained by classical reasoning, are subject to small
quantum corrections.

A qualitative explanation of what we have learned is that from a low energy point
of view, the relevant gauge group is not the underlying gauge group U(2), but only
the subgroup U(1) that leaves H invariant. Associated with the “unbroken” U(1)
is the massless gauge field A. The other gauge fields W and Z receive mass from
symmetry breaking, or in other words from the non-zero value of H.

4.5. Experimental Values. In a more complete version of the model including
quarks and leptons, the parameter e is the electric charge of the proton (or minus
the electric charge of the electron). The experimental value is

(4.40)
e2

4π�c
=

1
137.0359991(46)

.

The best measurement of the weak mixing angle is

(4.41) sin2 θW = .23120 ± .00015.

The W and Z particles were discovered at the CERN accelerator in the early 1980’s.
Experimental data give

mW = 80.403 ± .029 GeV/c2

mZ = 91.1876 ± .0021 GeV/c2.(4.42)

Here GeV/c2 is a unit of mass, perhaps best described by saying that the proton
mass is a little less than 1 GeV/c2:

(4.43) mp = .938272029(80) GeV/c2.

Thus, the W and Z masses are nearly 100 times the proton mass. The unbroken
U(1) group (4.21) is the group of electromagnetic gauge transformations, so Z is
electrically neutral and W± have charges ±e.

The W and Z masses make a dramatic difference in the real world. Classical
W and Z fields have a minimum frequency of oscillation mc2/� ∼ 1026 sec−1, so
high that we do not see classical W and Z fields (as we see electromagnetic fields)
but only individual quanta or particles. Moreover, it takes sophisticated modern
technology to produce or detect these particles. The W and Z masses also cause
weak interaction processes (which include decays of various unstable atomic nuclei
and elementary particles) to be extremely slow or rare, compared to other subatomic
processes.
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Thus, according to the Standard Model, electromagnetism and weak interactions
have a common origin in gauge theory. But symmetry breaking – the reduction in
the low energy gauge group occasioned by the non-zero value of H – causes them
to be completely different in the real world.

In most respects, the Standard Model is extremely well-tested experimentally;
for an up-to-date survey, see the website [11]. Regrettably, the topic is too vast to
be summarized here. To do so, we would need to complete the Standard Model
(including the quarks and leptons) and to explain much more about quantization
of fields, the resulting particle interactions, and particle physics in general.

4.6. The Symmetry-Breaking Mechanism. The exception to the statement
that the Standard Model is generally well-tested is that we have almost no experi-
mental information about how the gauge symmetry is broken. The particle that we
have labeled as h – generally known as the Higgs particle – has not yet been dis-
covered, and so its mass mh has not been measured. mh depends on the parameter
we called γ, which does not enter any of our other formulas, so from a theoretical
point of view, we do not get any immediate way to predict mh in terms of the data
summarized above.

From a general point of view, should we expect that the Standard Model of
gauge symmetry breaking is correct? In the case of a superconductor, we do not
expect the Landau-Ginzburg model that we explored in section 2 to be a precise
description. Rather, a superconductor can be described more precisely via the
microscopic BCS theory [2], or even more precisely (but much less usefully) via the
Schrödinger equation for electrons and nuclei. The role of the Landau-Ginzburg
model is not that it is a very accurate model of a superconductor, but that it is,
in some sense, the simplest conceivable model of gauge symmetry breaking in a
superconductor, and hence it accounts for the many important phenomena that
depend only on gauge symmetry breaking.

The analogy suggest that the simple Standard Model of U(2) symmetry breaking,
via the field H, might be only an approximation to something much more elaborate.
(For a brief introduction to such ideas, see section 21.4 of [23].) Most Standard
Model tests are mainly sensitive to properties of W and Z particles (and photons,
quarks, and leptons) rather than the Higgs particle, and so we have only limited
experimental information about the question.

However, what experimental evidence we have seems to hint that for weak in-
teractions, unlike superconductivity, the simple model with the H-field may be a
good quantitative description of how symmetry breaking comes about. For one
thing, the relation (4.39) is well-obeyed (especially once one evaluates some small
quantum corrections to it). This relation would not work in a generic competing
model of gauge symmetry breaking. More generally, detailed studies of the weak
interactions fit the Standard Model well [11] and have been troublesome for pro-
posed alternatives. But it is always possible that the right alternative has not yet
been proposed.

At any rate, the question should be resolved within a few years. If the Standard
Model description of gauge symmetry breaking is correct, then the mass of the
Higgs particle is at least 115 Gev/c2 (or it would have already been found) and
no more than 200 GeV/c2 (or the detailed fits to experimental data [11] do not
work). The unknown range from 115 to 200 GeV/c2 will be accessible to the Large
Hadron Collider (LHC), which is to begin operating at CERN at the end of 2007.
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Indeed, the LHC can reach far beyond this range, so in case the Standard Model
description of electroweak symmetry breaking is incorrect or incomplete, we should
learn quite a lot about what happens instead.

4.7. Further Unification? Having at least partly unified the weak and electro-
magnetic interactions in a U(2) or SU(2)×U(1) gauge theory, one naturally wonders
if it is possible to do better. There are two immediate directions in which one might
hope for more. It would be desirable to also include the strong interactions, which
in the Standard Model are described by SU(3) gauge theory (though to explain
how this works would take us far deeper into the wilds of quantum theory than we
have required for the present article). Also, technically U(2) and SU(2)×U(1) are
not simple Lie groups, as a result of which the action of the Standard Model has
independent gauge couplings g and g′. It would be nicer to use a simple Lie group.

The most obvious simple Lie group that contains SU(3)×SU(2)×U(1) – which
describes the strong, weak, and electromagnetic interactions – is SU(5). We simply
consider SU(5) matrices of the form:

(4.44)

⎛⎜⎜⎜⎜⎝
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
0 0 0 ∗ ∗
0 0 0 ∗ ∗

⎞⎟⎟⎟⎟⎠ .

A simple model [8] based on SU(5) gauge theory is remarkably successful at ac-
counting for the quantum numbers of quarks and leptons. In a supersymmetric
extension, it also gives a very successful prediction for the weak mixing angle θW

(whose experimental value was recorded in eqn. (4.41)). It may well be that this
model is part of a more complete description of nature.

In the SU(5) model, gauge symmetry breaking is carried out in two stages, each
of them much like what we have described in the present article. At high energies,
the structure group is reduced from SU(5) to SU(3) × SU(2) × U(1), and then at
much lower energies SU(2) × U(1) is reduced to U(1) by the field that we have
called H. What happens to the SU(3) factor cannot, unfortunately, be usefully
described in classical terms.

Beyond unifying the usual elementary particle forces, one would like to also
include gravity. Much is achieved in this direction in string theory, but elucidation
of this would again take us too far afield.
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