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Let K be a commutative integral domain and let S = Kz, xa,...,2,] denote
the polynomial ring over K in the n variables z1,zo,...,z,. If H is a group of
automorphisms of the free K-module V' = Kxy + Kz + - - - + Kz, that is, if H is a
subgroup of GL(V) = GL,,(K), then the linear action of H on V extends uniquely
to a K-algebra action on S. The relationship between S, H, the H-stable prime
ideals of S, and the subring of H-invariants S = {s € S| s" = sforall h € H} is
the realm of (additive) invariant theory. The adjective “additive” is by no means
a standard part of the name, but it is useful in the context of this review. Note
that the full group of K-automorphisms of S is appreciably larger than GL,, (K),
since for example it contains maps of the form z; — x; for all i # 1 and x; —
x1 + f(za,...,z,), but, for the most part, additive invariant theory is concerned
with GL, (K) and its subgroups.

Now suppose we modify S slightly by adjoining the inverses xfl, x;l, et
Then the new ring R is usually written as R = K[zy, 27", 20,25 *, ..., Tn, 2, '], and
clearly few subgroups of GL, (K) will actually determine K-automorphism groups
of R. Indeed, if X = (z1,29,...,2,) = (x1) X {(®2) X + -+ X (x,,) is the multiplicative
subgroup of the unit group of R, then R is isomorphic to K[X], the group ring of
X over K, and the unit group R® of R is easily seen to be given by R* = K® x X.
In particular, any K-automorphism of R must stabilize R®* and act faithfully as
automorphisms on this group. Note that X is isomorphic to the additive lattice
Z", so Aut(X) = GL,,(Z), and if G is any subgroup of Aut(X), then the action of G
on X extends uniquely to a K-algebra action on R. The relationship between R, G,
the G-stable prime ideals of R, and the fixed ring RY is the stuff of multiplicative
invariant theory.

The two invariant theories are obviously similar, and yet they are different in
many ways. Additive invariant theory is classical, well over a hundred years old,
while the multiplicative version has a much shorter pedigree. Admittedly there are
earlier results to be found in the study of algebraic groups, field theory, Lie algebras
and group algebras, as we will see below, but multiplicative invariant theory itself
was literally born and named in the three fundamental papers [Fall [Fa2l [Fa3] by
D. R. Farkas in the mid 1980’s. Thus, the book under review discusses the state of
this subject at a mature, but still young, twenty years of age.

An interesting example in classical invariant theory is as follows. Suppose we
are given n = m?2 indeterminates xi; with 1 < 4,5 < m. We can think of these
elements as the entries of an m xm generic matrix [x;;], and we can let H = SL,, (K)
act linearly on these variables by h: [z;;] — [z;;]h for any h € H, where the latter
product is m x m matrix multiplication. If K is an infinite field, then H is an infinite
group that has no nontrivial finite homomorphic images and has no nontrivial fixed
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points on V' =}, Kz;;. Nevertheless, det[z;;] € K[z;; | all 7, j] = S is a nontrivial
H-fixed element in the ring.

On the other hand, this phenomenon cannot happen in the multiplicative case. If
G C GL,(Z) acts on R = K[X], then G permutes the basis X, and consequently the
fixed ring RY has as a K-basis the sums of the finite G-orbits on X. In particular,
R® C K[D], where D is the subgroup of X consisting of all elements having finitely
many G-conjugates. But X = Z", so D = Z™, for some m < n. Thus D is finitely
generated, and therefore G acts as a finite group G on D with RC = K[D]¥. This,
of course, reduces many questions in multiplicative invariant theory to the action
of finite groups. For example, it follows from the above that the fixed ring RY is
necessarily a finitely generated K-algebra.

There is, in fact, a decidedly nontrivial version of the above observation, at least
when K is a field. Namely, suppose P is a G-stable prime ideal of R and assume,
almost without loss of generality, that the map from X to its image X C R = R/P
is one-to-one. Then R = KX is a domain spanned over K by the group of units
X 2 X and, of course, G acts on R and stabilizes X. Note that D is a pure subgroup
of X, s0 X =D xY for some subgroup Y, and then a result of J. E. Roseblade
[Ro], based on the keen insight of G. M. Bergman [Be], asserts that R = (KD)[Y]
is the group ring of Y 22 Y over the subring KD. As a consequence, Farkas noted
that the G-fixed points in the field of fractions of R are all contained in the field of
fractions of KD, where again G acts like a finite group.

Let us consider another example. Again let S = K[z1, z3,...,z,] be a polynomial
ring, this time over a field K, and let the symmetric group H = Sym,, act on S
by permuting the variables. Then S is the ring of symmetric polynomials over
K and, as is well known, this is the polynomial ring in the elementary symmetric
functions oy, 09, ..., 0,. In other words, S¥ is also a polynomial ring. Indeed, the
celebrated result of G. C. Shephard, J. A. Todd and C. Chevalley [ST), Bo| asserts
that if K is any field and if H is a finite subgroup of GL, (K) with |H| # 0 in K,
then S is a polynomial ring if and only if H is generated by pseudo-reflections,
that is, by matrices of finite order fixing all the points in some hyperplane. To see
how S might fail to be a polynomial ring in general, just let K have characteristic
different from 2, let n > 2 and take H to be the group of order 2 whose nonidentity
element sends each z; to its negative. Then S¥ is spanned by all monomials in
Z1,%a,..., T, of even degree and, from the equation (x122)(z122) = (x121)(T222),
it follows that unique factorization does not hold in the fixed ring.

The natural analog in multiplicative invariant theory is to consider when R® =
K[X]¢ is a group ring over K. But this almost never occurs. Indeed, using the
fact that R® has a K-basis consisting of finite G-orbit sums and using the fact
that R®* = K*® x X is so meager, it follows easily that R is a group ring if and
only if G acts trivially on D. In other words, in our previous notation, this occurs
precisely when G =1, so that RC = K[D]¢ = K[D]. On the other hand, suppose
R=Klzy, 27 20,25, ..., 2y, 2] and let G be the diagonal subgroup of GL,,(Z),
so that G is an elementary abelian group of order 2" whose elements map z; to
x;t for all . Then it is not hard to see that R® is the ordinary polynomial ring
Kly1,v2, ..., yn) with y; = x; + z; ! Thus, the more appropriate question here is
to determine when R® is a polynomial ring or more generally a monoid algebra.
Note that if n > 2 and if g € G maps each x; to its inverse, then it is known that
the fixed ring R{9 is not even a monoid algebra.
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An old result of N. Bourbaki [Bo] constructs interesting examples in a rather
beautiful manner based on classical Lie algebra theory. Specifically, let X = A(®)
be the weight lattice of a reduced root system ® and let G be the Weyl group of
®. Then the fixed ring Z[X]¢ is a polynomial algebra over Z with the G-orbit
sums of a set of fundamental weights being algebraically independent generators.
This fact actually holds over all domains K and the converse, due to Farkas [Fal]
for K = C and implicit in the work of R. Steinberg [St], is true for most ground
rings. Indeed, let G be a finite group of automorphisms of X and let K be a regular
commutative ring with |G| # 0 in K. If K[X]% is a polynomial algebra over K, then
X is isomorphic to the weight lattice of some reduced root system with G acting
as the Weyl group.

A surprising difference between the two theories shows up in the structure of
the Picard group of the fixed ring. Recall that if 7" is a commutative ring, then a
T-module P is said to be invertible if P @7 Q = T for some T-module @), and then
Pic(T) is the set of isomorphism classes of invertible T-modules with tensor product
multiplication. If K is a field, then it is known that the embeddings K — K[X] = R
and K — Kz, za, ..., 2,] = S determine isomorphisms Pic(R) 2 Pic(K) = Pic(5),
and of course Pic(K) = 0. Furthermore, if H C GL,(K), then M-C. Kang [Kal] has
shown that the embedding S — S yields an isomorphism Pic(SH) 2 Pic(S) = 0.
In other words, the Picard group of S is always trivial. On the other hand, if G is
a finite subgroup of GL,,(Z), then there is a cohomological formula that describes
Pic(R%), and computations show that this group can be nontrivial.

Of course, the field of fractions of R = K[X] and of S = K[z1, 2, ...,2,] are the
same. Thus, when it comes to studying rational function fields, the multiplicative
and additive invariant theories merge to some extent. There are two basic questions
here, the first being Noether’s problem. Let F//K be a rational extension of fields, so
that F' = K (t1,ta,...,t,) with algebraically independent generators 1, ta, ..., t,. If
G is a finite group of K-automorphisms of F', then Noether’s problem asks whether
the fixed field F© is also rational over K. The answer here is generally negative.
An interesting special case occurs when the finite group G regularly permutes the
generators of F/K. Specifically, let K be a field and let K(z, | g € G) be the
rational extension of K having one generator z, for each g € G. The natural action
of G is given by (z4)" = xyp, and we let K(G) denote the fixed field. In [Ln], H. W.
Lenstra Jr. determined precisely when K(G)/K is rational for any abelian group
G. For example, if K = Q, then K(G)/K is not rational for G = Cj, the cyclic
group of order 8, and for infinitely many cyclic groups C}, of prime order.

In view of these counterexamples, it is more appropriate to ask whether E = F&
necessarily satisfies some weaker version of rationality over K. For example, F/K
is said to be stably rational if there exists a rational extension E’ of E that is also
rational over K, and E/K is said to be retract rational if E is the field of fractions
of some K-algebra T that is a retract of a localized polynomial ring. Specifically,
the latter means that 7" is a subring of some 7" = K[z1, x2, ..., z,][1/s] and there is
a homomorphism 7: 7" — T that is the identity on 7. While the above mentioned
counterexamples are not even stably rational, D. J. Saltman [Sa2] has shown that
Q(C,)/Q is retract rational for all primes p.

We remark that Noether’s problem was originally motivated by considerations
in constructive Galois theory, the inverse Galois problem. Indeed, when K(G)/K is
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rational, then G must be a Galois group over K. Furthermore, it was shown by Salt-
man [Sall for K infinite and by F. DeMeyer and T. McKenzie [DM] in general that
even if K(G)/K is merely retract rational, then there exists a generic polynomial
with Galois group G. In other words, there exists a rational field K(t1,t2,..., %)
and a separable polynomial f(t1,t2,...,tm)(x) € K(t1,t2,...,tm)[x] with Galois
group G that has the following universal property. If E/F is any Galois extension
with Galois group G and with F' O K, then there exist a1, as, ..., a, € F so that F
is the splitting field over F' of the separable polynomial f(a1,as,...,an)(z) € Flz].

One can argue that the real relationship of this problem to multiplicative in-
variant theory occurs when F' = K(X) is the field of fractions of K[X] and when
G acts multiplicatively on X = Z". In this case, Farkas [Fa3] has shown that if
G C GL,(Z) is a reflection group, that is, if G is generated by pseudo-reflections
of order 2, then K (X)¢ is rational over K. More recently, N. Lemire [Lm] proved
that if ® is a reduced root system, G = Aut(®), and if X is rationally isomorphic
to A(®), then again K(X)Y is rational over K.

The second basic problem is intimately related to the structure of matrix rings.
Let K be an algebraically closed field, write M, for the ring M, (K) of n x n
matrices over K, and let > 2 be an integer. Then G = PGL,,(K) acts on M, the
space of r-tuples of M, by simultaneous conjugation, so that (A;, As,..., A,)9 =
(A, A3, ..., A9), where A] = g~ A,g. It follows that G also acts on O(M}), the
ring of polynomial functions on M,. Specifically, the latter ring is generated over K

by the variables ng), where ng) (A1, As, ..., A,) is the (4,7)th entry of the matrix
Ap. IF (M) is the field of fractions of O(M]), then the goal is to study the fixed
subfield K(M)“. As was shown by C. Procesi [Pr2], this fixed subfield is actually
isomorphic to the center of the generic division algebra UD(K, n,r), and hence it
is of great interest in noncommutative ring theory. Furthermore, multiplicative
invariant theory comes into play here since a result of E. Formanek [Fol] and
Procesi [Pr] asserts that k(M )PGn () = K(L,, )5 ™ for some lattice L, , over
the symmetric group Sym,,. The rationality of the extension K(L,, )%™ /K is a
particularly intractable problem. It is known to be true for n = 2 by the work of
J. J. Sylvester [Sy], and for n = 3 and 4 by the work of Formanek [Foll [Fo2]. Stable
rationality for n = 5 and 7 is due to C. Bessenrodt and L. Le Bruyn [BL]. Retract
rationality of the extension when n is prime is due to Saltman [Sa2].

Finally, the polynomial ring S = K[z1,2,...,2,] is graded by total degree,
with each component being a finitely generated free K-module. Furthermore, if
H C GL,,(K), then H preserves the grading. Thus H acts in a locally finite manner
on S, and S is a graded subring. In particular, additive invariant theory can use
the surprisingly powerful techniques of graded ring theory to good advantage. On
the other hand, if G C GL,(Z), then G does not preserve any natural grading on
R =K[X] and, if G is infinite, then it does not act in a locally finite manner.

In spite of this, multiplicative invariant theory does have its own unique features
and special tricks. For one thing, there is little dependence on the base ring here.
Indeed, R = K ®z Z[X] and the nature of the basis for the fixed ring implies
that R = K ®z Z[X]®. Thus properties of the fixed ring, like being finitely
generated, transfer immediately from the integer case to the more general situation.
Furthermore, when studying the fixed ring, it suffices to assume that G is finite, and
a classical result of C. Jordan [Jo| asserts that, for fixed n, there are only finitely
many conjugacy classes of finite subgroups of GL,(Z). Thus it is theoretically
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possible, using computer algebra applications like GAP, to tabulate all relevant
information for small values of n. For example, in the book being reviewed, the
Picard groups are computed for all n < 3 and the fixed rings are described for all
n < 2, indicating which of these are monoid algebras.

Multiplicative Invariant Theory by Martin Lorenz is a beautiful book on an
exciting new subject, written by an expert and major contributor to the field.
Indeed, Chapter 4 on class groups is substantially due to the author [Lol], as
is much of the progress discussed in Chapter 8 on understanding when the fixed
ring RY inherits the Cohen-Macaulay property [Lo3]. Chapter 5 on Picard groups
benefits greatly from his insight [Lo2]. The book includes all of the above dis-
cussed material and a good deal more. Most of the proofs have been completely
reworked, and many of the results appear to be new. The author is especially
careful to explain where each chapter is going, why it matters, and what back-
ground material is required. The last chapter on open problems, with a good
deal of annotation, is certainly welcome, since there is much yet to be done. Be
aware, this is definitely a research monograph. The subject matter is broad and
deep, and the prerequisites on the reader can sometimes be daunting. Still, it
is wonderful stuff and well worth the effort. I found almost no typos and just a
few printing errors apparently due to formatting changes. The author has a web
page, http://www.math.temple.edu/ lorenz/MITcorrections.pdf, where some
corrections are listed.
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