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When I first read the title of this book I thought it would be about a subfield
of ergodic theory, but it is not. It is an introduction to ergodic theory that utilizes
computer experiments to illustrate the basic ideas and examples of the subject.
Given the historical roots of ergodic theory, this approach seems entirely appro-
priate. Ergodic theory grew out of problems arising in statistical and Hamiltonian
mechanics. In statistical mechanics the motivation is a container filled with a very
large number of gas molecules which evolves over time. Since it would be impos-
sible to describe the state of the system using classical differential equations, a
probabilistic approach was taken. Now the questions are ones such as, what is
the probability that the system is in a given state at a given time? What are the
recurrence and mixing properties of the system? What do measurements tell me
about the true state of the system? Will the system reach a steady state in the
long run?

For a mechanical system with n particles the phase space is a subset of R
6n

where each particle is assigned three position coordinates and three momentum
coordinates. The state of the system corresponds to a point in the phase space, and
the evolution of the system is a trajectory through the space. The evolution of all
possible states is a transformation from the phase space to itself. For a Hamiltonian
system Liouville’s theorem states that the usual R

6n volume is preserved by the
transformation. However, in a Hamiltonian system the surfaces of constant total
energy are preserved by the transformation so that attention should be restricted to
these surfaces. The ergodic hypothesis of Boltzmann was that each surface consists
of a single orbit. This is not true, but it was an effort to justify replacing an average
of observations along a trajectory over a period of time with the average observation
of the entire constant energy surface. One step in such a justification is the ergodic
theorem. While each total energy surface does not consist of a single trajectory
and not every trajectory visits every part of the surface, there is a measure on the
energy surface that is preserved by the transformation. This leads to the study of
dynamics of arbitrary flows or transformations on abstract measure spaces.

To begin let (X, µ) be an abstract measure space and assume it is a probability
space so µ(X) = 1. Then let T be a flow on X or a transformation of X to itself
which preserves the measure. We will assume it is a single transformation and
study the discrete time iterates, Tn for n ∈ Z when T is invertible and n ∈ N

when it is not. In this setting measure-preserving means µ(T−1(A)) = µ(A) for all
measurable sets A. This dynamical system is denoted by (X, µ, T ).

The first type of question which can be asked is what are the recurrence proper-
ties of T or how does T mix up the space? A basic recurrence property is ergodicity.
The transformation T is ergodic if there are “no” invariant subsets. In terms of
measure theory this means that if T (A) = A, then the measure of A is zero or one.
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Intuitively it means that T cannot be decomposed into two separate transforma-
tions. As an example let (X, µ) be the unit circle with one-dimensional Lebesgue
measure and let T be the rotation on the circle by the angle 2πγ. If γ is a rational
number the transformation is not ergodic, if γ is irrational the transformation is
ergodic. Mixing is a stronger recurrence property. A transformation is mixing if for
any two measurable sets A and B, µ(Tn(A)∩B) converges to µ(A) times µ(B). It
is easy to see that any rotation of the circle fails to be mixing. In P. Halmos’ 1956
book [Hal56] he described the difference in the taste of a martini if the stirring is
ergodic but not mixing versus the taste if the stirring is mixing. A stronger recur-
rence property is that of being independent or Bernoulli. To define this property
we define a Bernoulli shift. Suppose p̄ = (p0, . . . , pk−1) is a probability vector. It
defines a discrete probability measure on the finite set {0, . . . , k − 1} by letting
the measure of i be pi. Define a new probability space to be the product space
{0, . . . , k − 1}Z with the product measure µp̄ from p̄. The transformation on the
product space is the shift transformation σ defined by σ(x)i = xi+1 for all i ∈ Z.
It simply shifts each sequence to the left by one and so preserves the product mea-
sure. This measure is independent in that the probability of event i at time zero
and event j at time t �= 0 is the product of pi and pj . The Bernoulli shift defined
by the probability vector p̄ is denoted B(p̄). The Bernoulli shift B(1/2, 1/2) is
thought of as flipping a fair coin. A central idea in ergodic theory is that of isomor-
phic transformations. Two transformations (X, µ, T ) and (Y, ν, S) are isomorphic
if there is a measure-preserving map ϕ : X → Y that is a bijection between sets
of measure one in each space and ϕ ◦ T = S ◦ ϕ. This means that the transforma-
tions are dynamically indistinguishable. A transformation (X, µ, T ) is said to be
Bernoulli if it is isomorphic to a Bernoulli shift. There are intermediate recurrence
properties which are also important. Weak mixing is a property between ergodicity
and mixing, while K is a property between mixing and Bernoulli.

Now we can return to the problem in Hamiltonian dynamics of replacing a time
average by a space average. We think of (X, µ, T ) as a physical system and an L1

function f : X → R as a measurement or observable. We can make measurements
as time evolves, f(x), f(T (x)), f(T 2(x)), . . . , f(Tn(x)) and then ask, what does the
average of these measurements tell us about the overall state of the system? That is
the ergodic problem which concerned Boltzmann. This leads to the ergodic theorem.

Theorem 0.1 (The Ergodic Theorem (G. D. Birkhoff, 1931)). Let (X, µ) be a
probability space, T : X → X a measure-preserving transformation and f : X → R

an L1 function. Then
(1) limn→∞(1/n)Σn−1

k=0f(T k(x)) = f̄(x) exists for almost all x ∈ X;
(2) f̄(T (x)) = f̄(x) almost everywhere;
(3) f̄ : X → R is an L1 function.

The function f̄ in the conclusion of the Ergodic Theorem is invariant under T ,
f̄(T (x)) = f̄(x) almost everywhere. For each real number r the subset {x ∈ X :
f̄(x) ≥ r} is invariant for T . Then if (X, µ, T ) is ergodic, the function f̄ is constant
almost everywhere and it is the integral of f over X. The conclusion of the Ergodic
Theorem becomes

lim
n→∞

1
n

Σn−1
k=0f(T k(x)) =

∫
X

fdµ.

The left side is the time average, and the right is the space average. In Hamiltonian
mechanics this says that if the transformation restricted to a total energy surface
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is ergodic, we are assured that the time averages converge to the integral of the
function. In many cases the transformation restricted to the total energy surface is
ergodic, but in many cases it is not.

In the discussion of recurrence properties there is so far no mention of the speed
of mixing, and in the discussion of the Ergodic Theorem there has been no mention
of the rate of convergence of the average over time. However, one measure of the
randomness of a dynamical system is entropy. The following definition of entropy
is due to A.N. Kolmogorov [Kol58], [Kol59], and Y. Sinai [Sin59b]. In information
theory entropy is thought of as a measure of information content, a viewpoint
which will be discussed later. Let (X, µ, T ) be a fixed dynamical system and P =
{P0, . . . ,Pk−1} a finite measurable partition of X. Each Pi is an atom of the
partition. Denote the measure of Pi by pi. Define the entropy of the partition to
be H(P) = −Σpi log2 pi. It is a measure of how finely and evenly the partition
cuts up the space. For instance, if P is a partition whose atoms have measures
{2/3, 1/3}, P ′ is a partition whose atoms have measures {1/2, 1/2} and P ′′ is
a partition whose atoms have measures {1/3, 1/3, 1/3}, then H(P) < H(P ′) <

H(P ′′). Next consider the new partition
∨n−1

j=0 T−j(P) which is made up of the
intersection of the atoms of P pulled back n times by T . An atom of the new
partition is Pi0 ∩ T−1(Pi1) ∩ · · · ∩ T−n+1(Pin−1). The quantity H(∨n−1

j=0 T−j(P)) is
a measure of how finely and evenly the partition cuts up the space under the action
of the transformation. This is computed asymptotically to get the entropy of the
partition P under the action of the transformation T ,

h(P, T ) = lim
n→∞

1
n

H(∨n−1
j=0 T−j(P)).

Finally define the entropy of the transformation to be the supremum over all finite
partitions

h(T ) = sup{h(P, T ) : P finite partition}.
Two isomorphic dynamical systems clearly have the same entropy. Entropy would
be of limited use were it not computable. A partition P generates the measurable σ-
algebra under T if it is the smallest σ-algebra which contains

∨n−1
j=0 T−j(P) for all n.

In 1959 Y. Sinai [Sin59b], [Sin59a] proved that if P is a partition that generates the
measurable σ-algebra under T , h(T ) = h(P, T ). A basic question at the time was
whether or not the Bernoulli shifts B(1/2, 1/2) and B(1/3, 1/3, 1/3) are isomorphic.
From Sinai’s theorem it follows immediately that if B(p̄) is a Bernoulli shift defined
by the probability vector p̄ = (p1, . . . , pk), then the entropy is −Σpi log2 pi. The
entropy of B(1/2, 1/2) is log2 2 and the entropy of B(1/3, 1/3, 1/3) is log2 3, which
shows they are not isomorphic. Later, in 1970 W. Krieger [Kri70] proved that if
(X, µ, T ) is an ergodic transformation with entropy h(T ) < log2 n, then there is
a partition P of X with n atoms that generates the measurable σ-algebra under
T . The next question became whether or not two Bernoulli shifts with the same
entropy are isomorphic. In 1970 D.S. Ornstein [Orn70] proved that two Bernoulli
shifts with the same entropy are isomorphic.

A good way to get an intuitive feel for entropy is through the Shannon-McMillan
Theorem, which states that for sufficiently large n the measure of most atoms in∨n−1

j=0 T−j(P) is governed by the entropy. If P is a finite partition, for sufficiently
large n, most ρ ∈

∨n−1
j=0 T−j(P) in total measure have µ(ρ) approximately equal to

2 to the power −h(P, T )n.
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Another view of entropy comes from information theory. In 1948 C. Shannon
[Sha48] defined the entropy of a Markov source and the capacity of an information
channel. Recall the sequence space for a Bernoulli shift, which is {0, . . . , k − 1}Z,
and the shift transformation on the space. The shift space is a metric space with
the metric d(x, y) = 2−�(x,y) where �(x, y) is 0 if x0 �= y0 and is max{� : xi =
yi, for all |i| < �} otherwise. With this topology the shift transformation is a home-
omorphism of the space to itself. The sequence space with the metric topology
and the shift transformation is called the full shift on k symbols. Define a closed,
shift invariant subset of the full shift on k symbols by transition rules. The rules
forbid certain symbols following others. The subset consists of all sequences that
obey the transition rules. For example, start with the sequence space {0, 1}Z and
forbid the symbol 0 following itself. The space together with the shift transforma-
tion is a topological Markov shift. Such a shift is conveniently specified by a k × k

zero-one transition matrix. The set just mentioned is specified by
[

0 1
1 1

]
. The

fact that the 00 entry is zero means that the transition is forbidden, and the one
in the other ij entries means the other transitions are allowed. Shannon viewed
this as a model for a channel through which the allowable strings of symbols can
be transmitted. He assumed that the transition matrix is primitive, meaning some
power of the matrix is strictly positive. He defined the capacity of the channel to be
limn→∞(1/n) log2 N(n) where N(n) is the number of allowed sequences of length
n. By the Perron-Frobenius theorem this converges to the logarithm of the largest
eigenvalue of the transition matrix. This number is now known as the topological
entropy of the transformation. Next he considered the source of the messages and
observed that not all allowable strings might be equally likely, and so he put a
Markov probability on the strings of length n to model the statistics of the source.
A Markov measure assigns to each transition between symbols a probability. If A
is the transition matrix, then a stochastic matrix P of the same size defines such
a probability if Pij > 0 implies Aij = 1. When P is primitive there is a unique
probability vector p with pP = p. The probability vector defines the probability
of the occurrence of a symbol and the matrix P the transition probability. The
measure of the set of points with x0 = i and x1 = j is piPij . Shannon proved
that there is a unique number h(P ) which satisfies the conclusion of the Shannon-
McMillan theorem, and he termed this the entropy of the source. He gave the
formula h(P ) = −ΣpiPij log2 Pij , then showed that the entropy of the source is less
than or equal to the capacity of the channel, that there is a unique Markov proba-
bility whose entropy is equal to the capacity and gave a formula for it. In ergodic
theory such a space with the shift transformation and this type of measure is known
as a Markov shift. The Markov measure that attains the topological entropy is the
measure of maximal entropy. Independently of Shannon, W. Parry in 1964 [Par64]
discovered the measure of maximal entropy and proved it to be unique among all
invariant probability measures.

Now consider some examples of measure-preserving transformations.
The first example is known as the baker’s transformation. The space is [0, 1)2,

the half-open unit square; the measure is Lebesgue measure; and the transformation
is defined by

T (x, y) =
{

(2x, 1
2y) if x < 1/2

(2x − 1, 1
2 (y + 1)) if x ≥ 1/2 .
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Figure 1. Baker’s transformation

Pictorially, see Figure 1, the transformation is reminiscent of kneading bread. The
entropy of the baker’s transformation is log2 2.

A basic and very important idea is the coding map. If (X, µ, T ) is a trans-
formation and P = {P0, . . . ,Pk−1} is a partition of X, define the coding map
α : X → {0, . . . , k − 1}Z by sending each point to its “itinerary”, which means
α(x)i is � if T i(x) ∈ P�. Then α(X) is a shift invariant subset of {0, . . . , k − 1}Z, it
has a shift invariant probability measure α∗(µ) and α ◦ T = σ ◦ α. If the partition
P generates the measurable σ-algebra under T , then the map α is an isomorphism.

For the baker’s transformation let P = {P0,P1} where P0 is the left half of the
square [0, 1/2) × [0, 1) and P1 is the right half of the square [1/2, 1) × [0, 1). The
coding map is easily seen to be an isomorphism between the baker’s transformation
and the Bernoulli shift B(1/2, 1/2).

The next example is similar but noninvertible. The space is the half open interval
[0, 1), the measure is Lebesgue measure and the transformation is multiplication by
2 modulo 1. The transformation is measure-preserving because T−1([a, b)) is equal
to the measure of [a, b) for all intervals. This transformation is ergodic and has
entropy log2 2. Let P = {P0,P1} be the partition where P0 is [0, 1/2) and P1

is [1/2, 1). The coding map α : [0, 1) → {0, 1}Z+ , where Z+ is the nonnegative
integers, sends each point to its dyadic decimal expansion. The ergodic theorem
implies that Lebesgue almost every number is normal in its dyadic expansion. The
same follows for base 10 using multiplication by 10 modulo 1.

Another family of examples is the toral automorphisms. The n-dimensional torus
T

n ∼= R
n/Z

2 is a compact abelian group where the group operation is inherited
from vector addition in R

n. Haar measure on the torus corresponds to Lebesgue
measure on the unit cube. An n×n matrix A with integer entries and determinant
plus or minus one acting on R

n induces a continuous group automorphism TA of
the torus. All continuous automorphisms arise in this way. The matrix preserves
Lebesgue measure in the plane, and the automorphism preserves Haar measure on
the torus. P.R. Halmos introduced these automorphisms into ergodic theory in
1943 [Hal43] and proved that the automorphism is ergodic if and only if the matrix
has no eigenvalues that are roots of unity. The entropy of a toral automorphism is
log2 |λ1 · · ·λt|, where λ1, . . . , λt are the eigenvalues of the matrix A with modulus
bigger than one. In 1971 Y. Katznelson [Kat71] proved that every ergodic toral
automorphism is isomorphic to a Bernoulli shift. A subclass of the ergodic toral
automorphisms are the hyperbolic toral automorphisms which have no eigenvalues
of modulus one. Dynamically each point on the torus has a hyperbolic structure
under the action of the automorphism. At each point one local subspace contracts
exponentially and a complementary subspace expands exponentially. A well-known

example on T
2 of such an automorphism is defined by

[
2 1
1 1

]
and is often referred

to as Arnold’s cat map [AA68] because he used a cat’s face in the unit square to
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Figure 2. Toral automorphism

illustrate the uniform stretching and contracting which occurs under the action of
the transformation. It is illustrated in Figure 2.

Hyperbolic toral automorphisms have been important in the study of smooth
dynamical systems. Markov partitions were first discovered for automorphisms of
the two torus by K. Berg in 1967 [Ber67]and R. Adler and B. Weiss in 1970 [AW70].
They were shown to exist in a much wider variety of cases by Y. Sinai [Sin68] and
R. Bowen [Bow70]. A Markov partition is a partition of the space so that the
closure of the image of the coding map is a topological Markov shift. There is a
geometric characterization of such partitions which allows one to construct them.

Recall that a rotation on the circle is ergodic but not mixing when the angle of
rotation is an irrational multiple of 2π. The entropy of any rotation is zero. Fix an
irrational γ < 1 and consider the rotation by 2πγ. Define a partition P = {P0,P1}
of the circle where P0 = {eiθ : 0 ≤ θ < 2πγ} and P1 = {eiθ : 2πγ ≤ θ < 1}. Let
Xγ be the closure of the image of the coding map in {0, 1}Z . This is a Stürmian
minimal set. A zero occurs once in the itinerary of a point for every trip it makes
around the circle. A map of a topological space onto itself is minimal if the orbit of
every point is dense in the entire space. The original rotation on the circle is also
minimal.

The following example is a Denjoy type map of the circle to itself. Begin with
the rotation of the circle above. The orbit of e2π0 = 1 is to be surrounded by
a countable collection of open intervals with total measure one that map linearly
onto each other. It is done so that the orbits of all other points are unchanged,
form a Cantor set and have measure zero. At the point e2π0 = 1 insert the interval
{e2πθ : −1/6 < θ < 1/6} pushing back the rest of the circle to have measure 2/3.
Then at the points that were e±2πγ insert open intervals of length 1/4 centered
at the points and push back the rest of the circle to have measure 1/6. Working
along the orbit of e2π0 inserting two intervals of length (1/4)k at the kth stage
results in a circle with all of the original points still there but a new countable
collection of intervals with total length one inserted. The new map on the circle
maps the old points to themselves as in the rotation by 2πγ, and the new intervals
are mapped to themselves center to center and linearly from there out. The result is
a homeomorphism of the circle to itself. The intervals are wandering, which means
that no image of one of the intervals ever intersects itself. The wandering intervals
make up an open dense set of measure one. The rest of the points form a Cantor
set of measure zero. The example has zero entropy. The map that collapses each
of the intervals to a point maps the circle to the circle, and the resulting map is
the original rotation by 2πγ.
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The final example is a substitution minimal set. First define a one-sided sequence
of 0’s and 1’s. Begin with a 0. Then form a new string of 0’s and 1’s by replacing
each occurrence of 0 by 01 and each occurrence of 1 by 10. There will be a limiting
one-sided infinite sequence. It is

.01101001100101101001011001101001 . . . .

This sequence has many names, some of which are the Thue sequence, the Morse
sequence, the Thue-Morse sequence and others. Let W denote the collection of
all finite substrings (or words) that occur in the sequence and define a closed,
shift invariant subset of {0, 1}Z. A two-sided sequence is in the set if and only if
every word that occurs in the sequence is in W . This set together with the shift
transformation is often referred to as the Thue-Morse minimal set. The number of
words of given length in W grows linearly as a function of the length so the entropy
of the transformation is zero.

Another problem in ergodic theory is the description of the invariant probability
measures for a fixed transformation. The space is often a topological space or a
manifold, and the transformation is a homeomorphism or a diffeomorphism. We
consider this question for the previous examples. The support of a measure on a
topological space is the smallest closed set that has measure one

A nontrivial full shift or a (primitive) topological Markov shift clearly has un-
countably many invariant measures. It is easy to write down measures whose sup-
port is the entire space and measures whose support is a proper subset of the space.
However, each has a unique measure with maximal entropy, and its support is the
entire space. In fact, we will see that in some sense the full shifts contain “all”
invariant measures.

The baker’s transformation also has uncountably many invariant measures be-
cause any Bernoulli measure on {0, 1}Z can be transferred to the unit square using
the coding map. The baker’s transformation has one measure with maximal en-
tropy and it is Lebesgue measure. Hyperbolic toral automorphisms likewise have
uncountably many invariant measures because a Markov partition can be used to
transfer measures from a topological Markov shift. Lebesgue measure is also the
unique measure with maximal entropy for a hyperbolic toral automorphism.

An irrational rotation of the circle is minimal, preserves Lebesgue measure and
has no other invariant measures. A transformation with only one invariant measure
is uniquely ergodic. A Stürmian minimal set is also minimal and uniquely ergodic.

The Denjoy transformation of the circle described above is something else. It
is not minimal because it has wandering intervals, but it is uniquely ergodic. Any
invariant measure must give the invariant Cantor set measure one because its com-
plement is a collection of wandering intervals. The map that collapses the intervals
onto the irrational rotation would push any other invariant measure down to an
invariant measure for the irrational rotation and it would not be Lebesgue measure.

The Thue-Morse minimal set arrived at by using a substitution rule is minimal
and uniquely ergodic.

To close the discussion of invariant measures we state the Jewitt-Krieger Theo-
rem [Jew70], [Kri72]. It states that every ergodic transformation and its invariant
measure live in a full shift. Precisely, any ergodic transformation on any space is
isomorphic to a closed, shift-invariant subset of a full shift that is minimal and
uniquely ergodic.
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In the last thirty years there have been spectacular developments in ergodic
theory, and many unexpected connections with other fields have been discovered.
There has been the development of Bernoulli theory and orbit equivalence, the
theory of finitary equivalence; there has been a tremendous amount of work on the
actions of the classical matrix groups and the relationships to number theory; there
have been applications to smooth dynamical systems and differential equations
concerning hyperbolic and partially hyperbolic systems as well as the theory of
Lyapunov exponents and invariant measures. There have been uses in complex
dynamics, the study of maps of the interval and renormalization. There has also
been the application of recurrence theorems to problems in combinatorial number
theory. On the practical side ergodic theory has had an impact on information
theory problems, particularly in channel coding and data compression.

The book under review is, as stated at the beginning of the review, an intro-
duction to ergodic theory that utilizes computer experiments to illustrate the basic
ideas and examples of ergodic theory. The book is designed so that the Maple
experiments are an integral part of the book. The author includes actual Maple
programs. There are numerical simulations, symbolic computations and graphics
programs. The subjects covered in the book are chosen so that the Maple experi-
ments can give insight into the examples and theorems. Most of the basic ideas and
examples of ergodic theory are covered and all have Maple programs to illustrate
them. Some more advanced topics are also covered, including homeomorphisms
of the circle, Lyapunov exponents, Hausdorff dimension and data compression. It
provides a mathematical introduction to ergodic theory coupled with a hands-on
experimental approach. It is a well thought-out book and illustrates very well how
computer experiments can shed light on many aspects of ergodic theory.
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