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SYMBOLIC DYNAMICS FOR THE MODULAR SURFACE
AND BEYOND

SVETLANA KATOK AND ILIE UGARCOVICI

Regarding the fundamental investigations of mathematics,
there is no final ending ... no first beginning.

—Felix Klein

All new is well-forgotten old.

—A proverb

Abstract. In this expository article we describe the two main methods of
representing geodesics on surfaces of constant negative curvature by symbolic
sequences and their development. A geometric method stems from a 1898
work of J. Hadamard and was developed by M. Morse in the 1920s. It consists
of recording the successive sides of a given fundamental region cut by the
geodesic and may be applied to all finitely generated Fuchsian groups. Another
method, of arithmetic nature, uses continued fraction expansions of the end
points of the geodesic at infinity and is even older—it comes from the Gauss
reduction theory. Introduced to dynamics by E. Artin in a 1924 paper, this
method was used to exhibit dense geodesics on the modular surface. For 80
years these classical works have provided inspiration for mathematicians and
a testing ground for new methods in dynamics, geometry and combinatorial
group theory. We present some of the ideas, results (old and recent), and

interpretations that illustrate the multiple facets of the subject.
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1. Introduction

The origins of symbolic dynamics, according to many authors, including Birkhoff
[Bh, p.184], can be traced to the 1898 work of Hadamard [Ha], where the author
constructed (noncompact) surfaces in R3 of negative curvature and discovered that
geodesics on these surfaces can be described by sequences of symbols via a certain
“coding” procedure. Hadamard’s idea was developed by Morse, Artin, Koebe,
Nielsen and Hedlund in the 1920s and ’30s, and since then symbolic dynamics has
become one of the important tools in the study of systems with so-called “chaotic”
behavior, of which geodesic flows on Riemannian manifolds of negative sectional
curvature represent a major class of examples.

The goal of this survey is to describe from the historical perspective the devel-
opment of the study of geodesic flows on surfaces of constant negative curvature by
means of symbolic dynamics.

Let H = {z = x+iy : y > 0} be the upper half-plane endowed with the hyperbolic

metric ds =
√

dx2+dy2

y . Recall that a geodesic with respect to this metric is either
a vertical ray or a half-circle orthogonal to the real axis. The group of Möbius
transformations

{
z �→ az + b

cz + d
| a, b, c, d ∈ R, ad − bc = 1

}

acting on H by orientation-preserving isometries can be identified with the group
PSL(2, R) = SL(2, R)/{±12}, where 12 is the identity matrix. For a finitely gen-
erated Fuchsian group (i.e. a discrete subgroup Γ ⊂ PSL(2, R)), the factor space
M = Γ\H is a surface of constant negative curvature, possibly with some singu-
larities (fixed points of elliptic elements) and punctures (cusps), and, in case of
infinite volume, funnels. All necessary information about hyperbolic geometry and
Fuchsian groups can be found in [B, K2].

Let SH denote the unit tangent bundle of H. The geodesic flow {ϕ̃t} on H is
defined as an R-action on the unit tangent bundle SH which moves a tangent vector
along the geodesic defined by this vector with unit speed. Let v = (z, ζ) ∈ SH,
z ∈ H, ζ ∈ C, |ζ| = Im (z). Notice that SH can be identified with PSL(2, R) by
sending v to the unique g ∈ PSL(2, R) such that z = g(i), ζ = g′(z)(ι), where ι is
the unit vector at the point i to the imaginary axis pointing upwards (see Figure 1).

Under this identification the PSL(2, R)-action on H by Möbius transformations
corresponds to left multiplications, and the geodesic flow corresponds to the right
multiplication by the one-parameter subgroup

(1.1) at =
(

et/2 0
0 e−t/2

)
such that ϕ̃t(v) ↔ gat .

The orbit {gat} projects to a geodesic through g(i). The quotient space Γ\SH can
be identified with the unit tangent bundle of M , SM , although the structure of
the fibered bundle is violated at elliptic fixed points and cusps (see [K2, §3.6] for
details). The geodesic flow {ϕ̃t} on H descends to the geodesic flow {ϕt} on the
factor M via the projection π : SH → SM of the unit tangent bundles (see e.g.
[KH, §5.3 and §5.4] for more details).
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Figure 1. Geodesic flow on the upper half-plane H

In all our considerations, we assume implicitly that an oriented geodesic on M is
endowed with a unit tangent (direction) vector at each point and thus is an orbit of
the geodesic flow {ϕt} on M . For an oriented geodesic γ on M , its lift to H is any
oriented geodesic γ̃ on H such that π(γ̃) = γ. In this article we mainly study the
case when Γ = PSL(2, Z) = SL(2, Z)/{±12} is the modular group and M is the
modular surface which topologically is a sphere with one cusp and two singularities.

A cross-section C for the geodesic flow is a subset of the unit tangent bundle
SM visited by (almost) every geodesic infinitely often both in the future and in the
past. In other words, every v ∈ C defines an oriented geodesic γ(v) on M which
will return to C infinitely often. The function f : C → R giving the time of the
first return to C is defined as follows: if v ∈ C and t is the time of the first return
of γ(v) to C, then f(v) = t. The map R : C → C defined by R(v) = ϕf(v)(v) is
called the first return map. Thus {ϕt} can be represented as the special flow on the
space

Cf = {(v, s) | v ∈ C, 0 ≤ s ≤ f(v)}

given by the formula ϕt(v, s) = (v, s+t) with the identification (v, f(v)) = (R(v), 0).
Let N be a finite or countable alphabet, N Z = {x = {ni}i∈Z | ni ∈ N} be the

space of all bi-infinite sequences endowed with the Tikhonov (product) topology,

σ : N Z → N Z defined by {σx}i = ni+1

be the left shift map, and Λ ⊂ N Z be a closed σ-invariant subset. Then (Λ, σ)
is called a symbolic dynamical system. There are some important classes of such
dynamical systems. The whole space (N Z, σ) is called the Bernoulli shift. If the
space Λ is given by a set of simple transition rules which can be described with
the help of a matrix consisting of zeros and ones, we say that (Λ, σ) is a one-step
topological Markov chain or simply a topological Markov chain (sometimes (Λ, σ)
is also called a subshift of finite type). Similarly, if the space Λ is determined by
specifying which (k+1)-tuples of symbols are allowed, we say that (Λ, σ) is a k-step
topological Markov chain (a precise definition is given in Section 4).

In order to represent the geodesic flow as a special flow over a symbolic dynamical
system, one needs to choose an appropriate cross-section C and code it, i.e. to find
an appropriate symbolic dynamical system (Λ, σ) and a continuous surjective map
C : Λ → C (in some cases the actual domain of C is Λ except a finite or countable
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set of excluded sequences) defined such that the diagram

Λ σ−−−−→ Λ

C

⏐⏐� ⏐⏐�C

C
R−−−−→ C

is commutative. We can then talk about coding sequences for geodesics defined
up to a shift which corresponds to a return of the geodesic to the cross-section C.
Notice that usually the coding map is not injective but only finite-to-one (see e.g.
[A, §3.2 and §5]).

There are two essentially different methods of coding geodesics on surfaces of
constant negative curvature. One method stems from the aforementioned work
of Hadamard, which was developed by Morse [M1, M2] and Koebe [Ko]. The
procedure described in Section 2 consists of recording the successive sides of a
given fundamental region cut by a given geodesic. It may be applied to any finitely
generated Fuchsian group Γ and assigns to the geodesic a bi-infinite sequence of
generators of Γ. However, in spite of its geometric nature and seeming simplicity,
this method has two major shortcomings: if the fundamental region has vertices
inside H, the geodesics passing through any of those vertices have multiple codes,
and the space of all admissible codes has a complicated structure. (We believe that
in general the space is not a topological Markov chain: corresponding results for the
modular surface with the standard fundamental region were proved in [GL, KU1];
see Section 4.)

The second method is specific for the modular group and is of an arithmetic
nature: it uses continued fraction expansions of the end points of the geodesic at
infinity and a so-called reduction theory. This method of study and classification of
indefinite binary quadratic forms goes back to 19th-century works of Gauss [Ga],
Dirichlet [D], Markoff1 [Ma] and Hurwitz [H3]. The reduction algorithm is a map
on the set of all oriented geodesics in H; it is given by a transformation of PSL(2, Z)
determined by the continued fraction expansion of the attracting end point. This
map has an attractor (i.e. a set where each geodesic finds itself after finitely many
iterations of the map and stays there after all further iterations). The geodesics in
this attractor are called reduced geodesics. Based on the arithmetic of the group
rather than the geometry of the fundamental region, this method produces codings
of particularly simple structure—topological Markov chains. It was introduced to
dynamics by Artin [Ar] in a 1924 paper, where the author used continued frac-
tions to exhibit dense geodesics on the modular surface. If applied literally, this
method gives a GL(2, Z)-invariant code, but it does not classify geodesics on the
modular surface. Artin’s method has been modified by Series in [S1] to eliminate
this problem. Arithmetic codes for the modular group, including Artin’s, and their
relations to corresponding reduction theories for binary indefinite quadratic forms
are discussed in Section 3, and the arithmetic coding for the congruence subgroup
Γ(2) is described in §7.5.

Considering the model of hyperbolic geometry in the unit disc U , Nielsen [N] gave
an analogue of continued fractions for representation of the points on the boundary

1This is the same Markov after whom Markov chains and Markov processes are named. The
old-fashioned transliteration Markoff was used in this early publication of his Ph.D. thesis.
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of U as infinite sequences of generators of the fundamental group Γ of a surface Ng

whose fundamental region is a symmetric 4g-sided polygon in U .
In [He1] Hedlund represented geodesics in U by juxtaposing the Nielsen expan-

sions of their end points and showed that geodesics are Γ-equivalent if and only if
the corresponding sequences are shift equivalent. The author used that to prove
the ergodicity of the geodesic flow on Γ\U with respect to the natural Liouville
measure. Artin’s code was used in [He2] to obtain similar results for the modular
surface. Notice that these proofs of ergodicity appeared prior to Hopf’s more gen-
eral analytic proof [Ho] known as “the Hopf argument”. The boundary expansions
method was further developed for other Fuchsian groups in [BoS, S2, S4] and is
discussed in §7.1.

Ratner [R] proved the existence of a Markov partition for the geodesic flow on
a compact surface of negative curvature, so that the geodesic flow is metrically
isomorphic to a special flow over a topological Markov chain with a Hölder contin-
uous ceiling function (see also [O, OW]). Ratner’s construction is similar to [AW]
for automorphisms of the torus based on heteroclinic connections between periodic
orbits. The relationship of this construction to geometry is tenuous.

A subsequent body of work was devoted to the task of making Markov partitions
geometrically explicit. In some situations the study of a first return map defined on
a two-dimensional cross-section of SM , also known as a cross-section map, can be
realized via a particular one-dimensional (non-invertible) factor-map. The latter is
closely related to a map defined on the boundary of the hyperbolic plane studied
by Bowen and Series [BoS], and then by Series [S2, S4]. Series showed that the
geodesic flow on a surface of constant negative curvature and finite hyperbolic
area is a factor of a special flow over a topological Markov chain by a continuous
map which is one-to-one except for a set of the first Baire category. The symbolic
dynamics derives from [BoS], and the results apply to a general class of surfaces of
constant negative curvature and finite area which, however, does not include the
modular surface with its standard fundamental region.

Notice that both Bowen-Series and Morse methods can be applied only to geode-
sics in H intersecting the given fundamental region D of Γ, which we call D-reduced.
Of course, any geodesic is Γ-equivalent to a D-reduced one. In [K1] the first author
developed an algorithm which D-reduces closed geodesics on quotients by cocom-
pact Fuchsian groups via a “reduction” map that combines two Bowen-Series-type
maps on the boundary. Unfortunately, on the set of D-reduced geodesics this map
usually differs from the Bowen-Series map and the Morse map (a shift of the Morse
coding sequence).

Adler and Flatto [AF1, AF2] worked on the modular surface case and obtained a
representation of the geodesic flow as a special flow over a topological Markov chain
by using the cross-section corresponding to the Morse code and by “linearizing” the
cross-section map. In [AF4] they make a similar construction for the geodesic flow
on compact surfaces of genus g with a particular 8g − 4-sided fundamental region.

This paper is organized as follows. In Section 2 we present the Morse method
of coding geodesics for Fuchsian groups and its description via numerical sequences
for the modular group — the geometric code. In §2.3 we describe the cross-section
and its infinite partition for the geometric code.

In Section 3 we describe three arithmetic codes for geodesics on the modular
surface obtained via generalized minus continued fractions [KU2], called the Gauss



92 SVETLANA KATOK AND ILIE UGARCOVICI

code (G-code), the Artin code (A-code), and the Hurwitz code (H-code). All three
coding procedures are actually reduction algorithms which may be considered as
reduction theories for real indefinite quadratic forms translated into the matrix
language. The most elegant of the three codings is the Gauss arithmetic code
obtained in [K3, GuK] using minus continued fraction expansions of the end points
and interpreted in [GuK] via a particular cross-section of SM . The set of such
arithmetic coding sequences was identified in [GuK]: it is a symbolic Bernoulli
system on the infinite alphabet NG = {n ∈ Z | n ≥ 2}, i.e. consists of all bi-
infinite sequences constructed with symbols of the alphabet NG. We give similar
interpretations for the Artin and the Hurwitz codes and show that the space of
admissible sequences for each code is a one-step topological Markov chain with
countable alphabet. We describe the corresponding symbolic representations of the
geodesic flow on the modular surface as a special flow over a topological Markov
chain on infinite alphabet using these arithmetic codes and give an explicit Markov
partition for each code in §3.3.

In Section 4 we further analyze the geometric code for the modular group. In
contrast with arithmetic codes, the set of admissible geometric coding sequences
is quite complicated and, as has been proved in [KU1], is not a finite-step topo-
logical Markov chain (see Theorem 4.9). Therefore, there are geodesics whose
geometric code differs from any arithmetic code. In [KU1] we identified a class of
admissible geometric codes which, as well as the corresponding geodesics, we call
geometrically Markov. We proved that geometrically Markov geodesics constitute
a maximal one-step topological Markov chain in the set of all admissible geometric
codes (Theorem 4.5), which is the maximal symmetric (i.e. given by a symmetric
transition matrix) topological Markov chain (Theorem 4.6). It is worth noting that
the H-code comes closest to the geometric code: for geometrically Markov geodesics
whose codes do not contain 1’s and −1’s, the H-code coincides with the geometric
code (Theorem 4.4). The last part of this section is devoted to a survey of the work
by Grabiner and Lagarias [GL].

In Section 5 we survey other codings and interpretations for the modular group:
a description of the Minkowski lattice basis reduction and connections with the geo-
metric code and H-code, a Farey tiling interpretation of the A-code after Moeckel
and Series (§5.2), a horocycle interpretation of the H-code after Fried (§5.3), and
also works of Adler and Flatto (§5.4) and Arnoux (§5.5).

Section 6 is devoted to applications of arithmetic codes. In §6.2 we use the
invariant Liouville measure of the geodesic flow to calculate invariant measures of
one-dimensional factor-maps. In §6.3 we describe how classical results (density of
closed geodesics and topological transitivity of the geodesic flow on the modular
surface) can be proved using the G-code. In §6.4 we mention the work of Pollicott
[P] on the asymptotic growth of the number of closed geodesics and their limit
distribution proved using Artin’s code. And finally, in §6.5 we explain how to
obtain estimates of the topological entropy of the geodesic flow restricted to certain
flow-invariant subsets of SM .

In Section 7 we describe the Bowen-Series boundary expansion for finitely gener-
ated Fuchsian groups and illustrate it with an example of the congruence subgroup
Γ(2). We develop Morse, boundary expansion, and arithmetic (via even continued
fractions) codes for this group and show that in this particular case they coincide.
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In this article we will consider only oriented geodesics which do not go to a cusp
of M in either direction. In what follows, when we say “every oriented geodesic”, we
refer to every geodesic from this set. The set of excluded geodesics is insignificant
from the measure-theoretic point of view, as explained in [KU2].

2. Geometric coding

2.1. The Morse method. We first describe the general method of coding geodesics
on a surface of constant negative curvature by recording the sides of a given funda-
mental region cut by the geodesic. This method first appeared in a paper by Morse
[M1] in 1921. However, in a 1927 paper, Koebe [Ko] mentioned an unpublished
work from 1917, where the same ideas were apparently used. Starting with [S4]
Series called this method Koebe-Morse, but since this earlier work by Koebe has
not been traced, we think it is more appropriate to call this coding method the
Morse method. We will follow [K3] in describing the Morse method for a finitely
generated Fuchsian group Γ of cofinite hyperbolic area.

A Dirichlet fundamental region D of Γ always has an even number of sides
identified by generators of Γ and their inverses; we denote this set by {gi}. We
label the sides of D (on the inside) by elements of the set {gi} as follows: if a side
s is identified in D with the side gi(s), we label the side s by gi. By labeling all
the images of s under Γ by the same generator gi, we obtain the labeling of the
whole net S = Γ(∂D) of images of sides of D such that each side in S has two labels
corresponding to the two images of D shared by this side. We assign to an oriented
geodesic in H a bi-infinite sequence of elements of {gi} which label the successive
sides of S this geodesic crosses.

We describe the Morse coding sequence of a geodesic in H under the assumption
that it does not pass through any vertex of the net S; we call such general position
geodesics. (Morse called the coding sequences admissible line elements, and some
authors [S4, GL] referred to them as cutting sequences.) We assume that the geo-
desic intersects D and choose an initial point on it inside D. After exiting D, the
geodesic enters a neighboring image of D through the side labeled, say, by g1 (see
Figure 2). Therefore this image is g1(D), and the first symbol in the code is g1. If
it enters the second image of D through the side labeled by g2, the second image

g1(D)

g1g2(D)

D
g1

g2 g3

g1
−1

g1
g−

2
1

g1
−1

g2g3
−1

g4
−1

g3

g4

Figure 2. Morse coding
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is (g1g2g
−1
1 )(g1(D)) = g1g2(D), and the second symbol in the code is g2, and so

on. Thus we obtain a sequence of all images of D crossed by our geodesic in the
direction of its orientation: D, g1(D), g1g2(D), . . . , and a sequence of all images
of D crossed by our geodesic in the opposite direction: g−1

0 (D), (g0g−1)−1(D), . . . .
Thus, the Morse coding sequence is

[. . . , g−1, g0, g1, g2, . . . ].

By mapping the oriented geodesic segments between every two consecutive crossings
of the net S back to D (as shown in Figure 2), we obtain a geodesic in D. The
coding sequence described above may be obtained by taking generators labeling the
sides of D (on the outside) the geodesic hits consequently.

An element g ∈ Γ is called hyperbolic if the associated Möbius transformation
has two fixed points on the boundary of H (one repelling and one attracting). A
geodesic on M is closed if and only if it is the projection of the axis of a hyperbolic
element in Γ. For general position geodesics, a coding sequence is periodic if and
only if the geodesic is closed. If a geodesic is the axis of a primitive hyperbolic
element g ∈ Γ, i.e. a hyperbolic element which is not a power of another element
in Γ, we have

g = g1g2 . . . gn

for some n. In this case the sequence is periodic with the least period [g1, g2, . . . , gn].
An ambiguity in assigning a Morse code occurs whenever a geodesic passes

though a vertex of D: such geodesics have more than one code, and closed geodesics
have nonperiodic codes along with periodic ones (see [GL, KU1] for relevant dis-
cussions).

For free groups Γ with properly chosen fundamental regions, all reduced (here
this simply means that a generator gi does not follow or precede g−1

i ) bi-infinite
sequences of elements from the generating set {gi} are realized as Morse coding
sequences of geodesics on M (see [S4]), but, in general, this is not the case. Even
for the classical example of Γ = PSL(2, Z) with the standard fundamental region

(2.1) F = {z ∈ H | |z| ≥ 1, |Re z| ≤ 1/2}
no elegant description of admissible Morse coding sequences is known and probably
does not exist. Important results in this direction were obtained in [GL], where the
admissible coding sequences were described in terms of forbidden blocks. The set
of generating forbidden blocks found in [GL] has an intricate structure attesting
the complexity of the Morse code (see §4.3 for more details).

2.2. Geometric code for the modular surface. Let Γ = PSL(2, Z) and M =
Γ\H be the modular surface. Recall that the generators of PSL(2, Z) acting on H
are T (z) = z + 1 and S(z) = − 1

z . The Morse code with respect to the standard
fundamental region F can be assigned to any oriented geodesic γ in F (which does
not go to the cusp of F in either direction) and can be described by a bi-infinite
sequence of integers as follows. The boundary of F consists of four sides: left
and right vertical, identified and labeled by T and T−1, respectively; left and right
circular, both identified and labeled by S (see Figure 3). It is clear from geometrical
considerations that any oriented geodesic (not going to the cusp) returns to the
circular boundary of F infinitely often. We first assume that the geodesic is in
general position, i.e. does not pass through the corner ρ = 1

2 + i
√

3
2 of F (see

Figure 3). We choose an initial point on the circular boundary of F and count
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T−1 F
T

S Si

u1
2

1
2

w

ρ

−

Figure 3. The fundamental region and a geodesic on M

the number of times it hits the vertical sides of the boundary of F moving in the
direction of the geodesic. A positive integer is assigned to each block of hits of the
right vertical side (or a block of T ’s in the Morse code), and a negative to each
block of hits of the left vertical side (or a block of T−1’s). Moving the initial point
in the opposite direction allows us to continue the sequence backwards. Thus we
obtain a bi-infinite sequence of nonzero integers

[γ] = [. . . , n−2, n−1, n0, n1, . . . ] ,

uniquely defined up to a shift, which is called the geometric code of γ. Moving
the initial point in either direction until its return to one of the circular sides of F
corresponds to a shift of the geometric coding sequence [γ]. Recall that a geodesic
in general position is closed if and only if the coding sequence is periodic. We
refer to the least period [n0, n1, . . . , nm] as its geometric code. For example, the
geometric code of the closed geodesic on Figure 3 is [4,−3].

A geodesic with geometric code [γ] can be lifted to the upper half-plane H (by
choosing the initial point appropriately) so that it intersects

T±1(F ), . . . , Tn0(F ), Tn0S(F ), . . . , Tn0STn1S(F ), . . . ,

in the positive direction (the sign in the first group of terms is chosen in accordance
with the sign of n0, etc.) and

S(F ), ST∓1(F ), . . . , ST−n−1(F ), . . . , ST−n−1ST−n−2(F ), . . . ,

in the negative direction.
The case when a geodesic passes through the corner ρ of F was described to

a great extent in [GL, §7]. Such a geodesic has multiple codes obtained by ap-
proximating it by general position geodesics which pass near the corner ρ slightly
higher or slightly lower. If a geodesic hits the corner only once, it has exactly two
codes. If a geodesic hits the corner at least twice, it hits it infinitely many times
and is closed. If it hits the corner n times in its period, it has exactly 2n + 2
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codes, i.e. shift-equivalence classes of coding sequences, some of which are not pe-
riodic. It is unknown however whether there is an upper bound on the number of
shift-equivalence classes of coding sequences corresponding to closed geodesics [GL,
§9].

Canonical codes considered in [K3] were obtained by the convention that a
geodesic passing through ρ in the clockwise direction exits F through the right
vertical side of F labeled by T (this corresponds to the approximation by geodesics
which pass near the corner ρ slightly higher). According to this convention, the
geometric codes of the axes of transformations A4 = T 4S, A3,6 = T 3ST 6S and
A6,3 = T 6ST 3S are [4], [3, 6] and [6, 3], respectively. However, all these geodesics
have other codes. For example, the axis of A4 has a code [2,−1] obtained by
approximation by geodesics which pass near the corner ρ slightly lower, and two
nonperiodic codes for the same closed geodesic are

[. . . , 4, 4, 4, 4, 3,−1, 2,−1, 2,−1, 2, . . . ] and [. . . , 2,−1, 2,−1, 2,−1, 3, 4, 4, 4, . . . ].

For more details, see [GL, KU1].

Symbolic representation of geodesics via geometric code. Let

N Z = {x = {ni}i ∈ Z | ni ∈ N}

be the set of all bi-infinite sequences on the alphabet N = {n ∈ Z | n 	= 0},
endowed with the Tykhonov product topology, and σ : N Z → N Z the left shift
map given by {σx}i = ni+1. Let X0 be the set of admissible geometric coding
sequences for general position geodesics in M , and X be its closure in the Tykhonov
product topology. It was proved in [GL, Theorem 7.2] that every sequence in X is
a geometric code of a unique oriented geodesic in M and every geodesic in M has
at least one and at most finitely many codes (see examples above). Thus X is a
closed σ-invariant subspace of N Z.

2.3. The cross-section for the geometric code. Since every oriented geodesic
which does not go to the cusp of F in either direction returns to the circular
boundary of F infinitely often, the set B ⊂ SM consisting of all unit vectors in
SM with base points on the circular boundary of F and pointing inside F (see
Figure 4) is a cross-section which captures the geometric code.

θ
B φ

F

Figure 4. The cross-section B
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The partition of the cross-section B. We parameterize the cross-section B
by the coordinates (φ, θ), where φ ∈ [−π/6, π/6] parameterizes the arc and θ ∈
[−φ, π − φ] is the angle the unit vector makes with the positive horizontal axis
in the clockwise direction. The elements of the partition of B are labeled by the
symbols of the alphabet N , B = ∪n∈NCn and are defined by the following con-
dition: Cn = {v ∈ B | n0(v) = n}; i.e. Cn consists of all tangent vectors v in B
such that, for the coding sequence of the corresponding geodesic in H, n0(x) = n.
Let R : B → B be the first return map. Since the first return to the cross-
section exactly corresponds to the left shift of the coding sequence x associated
to v, we have n0(R(v)) = n1(v). The infinite geometric partition and its image
under the return map R are sketched in Figure 5. Boundaries between the ele-
ments of the partition shown in Figure 5 correspond to geodesics going into the
corner; the two vertical boundaries of the cross-section B are identified and corre-
spond to geodesics emanating from the corner. They have more than one code. For

C1

C2

C3

(π/6, −π/6)

(−π/6, π/6)

(π/6, π−π/6)

(−π/6, π+π/6)

C−3

C−2

R(C1)

R(C2)
R(C3)

R(C−3)

R(C−2)

R(C−1)

C−1

...

...

...

...

Figure 5. The infinite geometric partition and its image under
the return map R
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example, the codes [4] and [. . . , 2,−1, 2,−1, 2,−1, 3, 4, 4, 4, . . . ] correspond to the
point on the right boundary of B between C4 and C3, and the codes [2,−1] and
[. . . , 4, 4, 4, 4, 3,−1, 2,−1, 2,−1, 2, . . . ] correspond to the point on the left boundary
between C2 and C3 which are identified and are the four codes of the axis of A4.

The coding map for the geometric code. It was proved in [GL, Lemma 7.1]
that if a sequence of general position geodesics is such that the sequence of their
coding sequences converges in the product topology, then the sequence of these
geodesics converges to a limiting geodesic uniformly. Since the tangent vectors
in the cross-section B are determined by the intersection of the corresponding
geodesics with the unit circle, we conclude that the sequence of images of the
coding sequences under the map C : X → B converges to the image of the limiting
coding sequence. This implies that the map C is continuous.

2.4. Which geometric codes are realized? Not all bi-infinite sequences of
nonzero integers are realized as geometric codes. For instance, the periodic sequence
{8, 2} is not a geometric code since the geometric code of the axis of T 8ST 2S is
[6,−2], as can be seen in Figure 6 [K3].

Figure 6. The geometric code of the axis of T 8ST 2S is [6,−2]

Figure 5 gives an insight into the complexity of the geometric code, where the
elements Cn and their forward iterates R(Cn) are shown. Each Cn is a curvilinear
quadrilateral with two vertical and two “horizontal” sides, and each R(Cn) is a
curvilinear quadrilateral with two vertical and two “slanted” sides. The horizontal
sides of Cn are mapped to vertical sides of R(Cn), and the vertical sides of Cn

are stretched across the parallelogram representing B and mapped to the “slanted”
sides of R(Cn).

If n0(v) = n and n1(v) = m for some vector v ∈ B, then R(Cn) ∩ Cm 	= ∅.
Therefore, as Figure 5 illustrates, the symbol 2 in a geometric code cannot be
followed by 1, 2, 3, 4 and 5.

We say that Cm and R(Cn) intersect “transversally” if their intersection is a
curvilinear parallelogram with two “horizontal” sides belonging to the horizontal
boundary of Cm and two “slanted” sides belonging to the slanted boundary of
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R(Cn). Notice that for each transverse intersection R(Cn)∩Cm its forward iterate
under R stretches to a strip inside R(Cm) between its two vertical sides. Hence,
the symbol m can follow symbol n in a coding sequence.

We also observe that the elements Cm and R(Cn) intersect transversally if and
only if |n| ≥ 2, |m| ≥ 2, and

|1/n + 1/m| ≤ 1/2.

This is a flow-invariant subset which constitutes the essential part of the set of
geometrically Markov codes; see Theorems 4.2 and 4.5 in Section 4.

3. Arithmetic coding

3.1. Reduction theory for indefinite quadratic forms. Let us consider a ge-
odesic in H which is a semicircle orthogonal to the real axis R. It can be given by
an equation of the form

(3.1) A|z|2 + B(Re z) + C = 0,

with A, B, C real, A 	= 0 scaled so that D = B2 − 4AC = 1. We associate to this
geodesic a real quadratic form

(3.2) Q(x, y) = Ax2 + Bxy + Cy2

of discriminant D = 1. Conversely, each real quadratic form with discriminant 1
of the form (3.2) defines a geodesic in H given by (3.1). We denote the geodesic
corresponding to the quadratic form Q by γ(Q).

The group SL(2, Z) acts on quadratic forms by substitutions. For g =
(

a b
c d

)
∈

SL(2, Z) we set x = ax′ + by′, y = cx′ + dy′, and define Q′ = g ·Q by the following
equation:

Q′(x, y) = Q(x′, y′),
i.e.

g · Q = Q ◦ g−1.

Thus, the set of all real quadratic forms of discriminant 1 is decomposed into
SL(2, Z)-equivalence classes. It is easy to see that this action corresponds to the
action of SL(2, Z) on geodesics by Möbius transformations: for any g ∈ SL(2, Z),
γ(g · Q) = g(γ(Q)). In other words, SL(2, Z)-equivalent quadratic forms yield
SL(2, Z)-equivalent geodesics in H, hence projecting to the same geodesic in M .
Therefore, we obtain a bijection between the set of geodesics in M and the set of
SL(2, Z)-equivalence classes of real indefinite quadratic forms of discriminant 1. In
order to classify geodesics in M we can use a version of reduction theory for binary
quadratic forms.

In the most general terms, a reduction theory is an algorithm for finding canonical
representatives in each equivalence class. Such representatives are called “reduced”
elements. Each equivalence class contains a nonempty canonical set of reduced ele-
ments that form a bi-infinite sequence (which in some cases is periodic). Following
the reduction algorithm one can pass from a given element to a reduced equivalent
element in a finite number of steps. An application of the reduction algorithm to a
reduced element yields the neighboring element on the right in the sequence.

This concept was first used by Gauss [Ga] in 1801 to classify integral binary
quadratic forms of a given positive discriminant. In 1854 Dirichlet [D] described
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Gauss’s reduction algorithm both for GL(2, Z)- and SL(2, Z)-equivalence using reg-
ular continued fraction expansions of the roots of the corresponding quadratic equa-
tion. Dirichlet’s version of Gauss’s algorithm was extended by Markoff [Ma] to
quadratic forms with real coefficients. Hurwitz [H1] noticed that minus (backward)
continued fractions were more suited for SL(2, Z)-equivalence and expressed the
reduction theory for real binary quadratic forms of positive discriminant via the
closest integer minus continued fractions (see also [Fr2]).

Zagier [Z, Chapter 13] gives a complete account of the Gauss reduction the-
ory for indefinite integral binary quadratic forms of a given discriminant D > 0
(which is not a perfect square) via the theory of minus continued fractions; for
its translation into the matrix language see [K3]. Recall that closed geodesics on
M are in one-to-one correspondence with conjugacy classes of primitive hyperbolic
matrices in PSL(2, Z) (see [K3] for details). We associate to a hyperbolic matrix

A =
(

a b
c d

)
∈ SL(2, Z) (which means |a + d| > 2) an integral quadratic form

QA(x, y) = cx2 − (d− a)xy− by2 of discriminant D = (a+ d)2 − 4 > 0 (it is easy to
see that D is not a perfect square). Two matrices with the same trace are SL(2, Z)-
conjugate if and only if the corresponding quadratic forms are SL(2, Z)-equivalent.
Conversely, to each integral quadratic form Q(x, y) of discriminant D > 0 (which
is not a perfect square) corresponds a geodesic in H connecting the roots of the
quadratic equation Q(z, 1) = 0. Its image in M is closed since there exists a hyper-
bolic matrix A ∈ SL(2, Z) with the same axis (the set of integral matrices having
this axis is a real quadratic field Q(

√
D), where A corresponds to a nontrivial unit

of norm 1). Two closed geodesics of the same length correspond to quadratic forms
of the same discriminant; therefore the Gauss reduction theory classifies closed
geodesics on M of given length.

3.2. Continued fractions method of reduction. In this section we describe a
method of constructing arithmetic codes for geodesics on the modular surface M
using expansions of the end points of their lifts to H in what we call generalized
minus continued fractions [KU2]. Notice that if a geodesic does not go to the cusp
of M in either direction, then the end points of all its lifts to H are irrational.

It was proved in [KU1, Lemma 1.1] that given a sequence of nonzero integers
{ni}, i = 0, 1, . . . , such that

(3.3) |ni| = 1 implies ni · ni+1 < 0,

the formal minus continued fraction expression constructed out of this sequence
gives a well-defined real number

(3.4) x = n0 −
1

n1 −
1

n2 −
1
. . .

(between n0 − 1 and n0 + 1) denoted by (n0, n1, . . . ) for short.
For a well-chosen integer-valued function (·), any irrational number x can be

expressed uniquely in the form (3.4) where the digit n0 is an integer equal to (x),
and the digits ni (i ≥ 1) are nonzero integers determined recursively by ni =
(xi), xi+1 = − 1

xi−ni
, starting with x1 = − 1

x−n0
. In [KU2] we described three
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such functions (·) producing different continued fraction expansions whose digits
incidentally satisfy the condition (3.3).

G-expansion. Let �x� be the integer part of x (or the floor function), i.e. the
largest integer less than or equal to x. The function (x) = �x� = �x� + 1 (which
differs for integers from the classical ceiling function) gives the minus continued
fraction expansion2 described in [Z] and used in [K3] for coding closed geodesics.
Since the coding procedure for closed geodesics is the same as the Gauss reduction
theory for indefinite integral quadratic forms, we refer to this expansion as the
Gauss- or G-expansion and call the corresponding code G-code. G-codes for oriented
geodesics, not necessarily closed, were introduced in [GuK]. The digits n0, n1, . . .
of a G-expansion satisfy the condition ni ≥ 2 if i ≥ 1. Conversely, any infinite
sequence of integers n0, n1, n2, . . . with ni ≥ 2 for i ≥ 1 defines a real number
whose G-expansion is �n0, n1, n2, . . . �.

A-expansion. The function (x) = �x� =

{
�x� if x > 0
�x� if x < 0

gives an expansion

which was used in [KU2] to reinterpret the classical Artin code (A-code). This
expansion has digits of alternating signs, and we call it the A-expansion. Conversely,
any infinite sequence of nonzero integers with alternating signs n0, n1, n2, . . . defines
a real number whose A-expansion is �n0, n1, n2, . . . �.

The G- and A-expansions satisfy the following properties:
(1) Two irrationals x, y are PSL(2, Z)-equivalent ⇐⇒ their expansions have

the same tail; that is, if x = (n0, n1, . . . ) and y = (m0, m1, . . . ), then
ni+k = mi+l for some integers k, l and all i ≥ 0.

(2) A real number x is a quadratic irrationality ⇐⇒ (n0, n1, . . . ) is eventually
periodic.

(3) Let x and x′ be conjugate quadratic irrationalities, i.e. the roots of a
quadratic polynomial with integer coefficients. If x = (n0, n1, . . . , nk), then
1
x′ = (nk, . . . , n1, n0).

Let us remark that properties (2) and (3) are also valid for regular continued fraction
expansions, while property (1) holds if one replaces PSL(2, Z) by PGL(2, Z).

H-expansion. The third expansion is obtained using the function (x) = 〈x〉
(the nearest integer to x). It was first used by Hurwitz [H1] in order to es-
tablish a reduction theory for indefinite real quadratic forms, and we call it the
Hurwitz- or H-expansion. The digits ni (i ≥ 1) of an H-expansion satisfy |ni| ≥ 2,
and if |ni| = 2, then nini+1 < 0. Conversely, any infinite sequence of inte-
gers n0, n1, n2, . . . with the above property defines an irrational number whose
H-expansion is 〈n0, n1, n2, . . .〉.

The H-expansion satisfies property (2), but not (1) and (3). There is a minor
exception to property (1) which was overlooked in [KU2]: it is possible for two irra-
tionals not sharing the same tail to be PSL(2, Z)-equivalent, but this can happen
if and only if one irrational has a tail of 3’s in its H-expansion and the other one
has a tail of −3’s; i.e. the irrationals are equivalent to r = (3 −

√
5)/2 ([H1, Fr2]).

Property (3) is more serious. In order to construct a meaningful code, we need to

2The paper [ScSh] presents a more general form of such continued fractions used in the study
of Hecke groups.
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use a different expansion for 1/u (introduced also by Hurwitz) so that a property
similar to (3) is satisfied. It uses yet another integer-valued function

〈〈x〉〉 =

{
〈x〉 − sgn(x) if sgn(x)(〈x〉 − x) > r = (3 −

√
5)/2,

〈x〉 otherwise

and is called the H-dual expansion. Now if x = 〈n0, n1, . . . , nk〉, then 1
x′ has a

purely periodic H-dual expansion 1
x′ = 〈〈nk, . . . , n1, n0〉〉. The formula for 〈〈·〉〉 comes

from the fact that if x = 〈n0, n1, . . .〉, then the entries ni satisfy the asymmetric
restriction: if |ni| = 2, then nini+1 < 0 (for more details, see [H1, Fr2, KU2]).

Convergents. If x = (n0, n1, . . . ), then the convergents rk = (n0, n1, . . . , nk) can
be written as pk/qk where pk and qk are obtained inductively as:

p−2 = 0 , p−1 = 1 ; pk = nkpk−1 − pk−2 for k ≥ 0
q−2 = −1 , q−1 = 0 ; qk = nkqk−1 − qk−2 for k ≥ 0 .

The following properties are shared by all three expansions:
• 1 = q0 ≤ |q1| < |q2| < . . . ;
• pk−1qk − pkqk−1 = 1, for all k ≥ 0.

The rates of convergence, however, are different. For the A- and H-expansions we
have

(3.5)
∣∣∣∣x − pk

qk

∣∣∣∣ ≤ 1
q2
k

,

while for the G-expansion we have only

(3.6)
∣∣∣∣x − pk

qk

∣∣∣∣ ≤ 1
qk

.

A quadratic irrationality x has a purely periodic expansion if and only if x and x′

satisfy certain reduction inequalities which give us the notion of a reduced geodesic
for each code.

Definition 3.1. An oriented geodesic in H going from u to w (with u, w irrationals)
is called

• G-reduced if 0 < u < 1 and w > 1;
• A-reduced if |w| > 1 and −1 < sgn(w)u < 0;
• H-reduced if |w| > 2 and sgn(w)u ∈ [r − 1, r].

Now we can describe a reduction algorithm which works for each arithmetic code,
α-code, where α = G, A, H. For the H-code we consider only geodesics whose end
points are not equivalent to r.

Reduction algorithm. Let γ be an arbitrary geodesic on H with end points u
and w, and w = (n0, n1, n2, . . . ). We construct the sequence of real pairs {(uk, wk)}
(k ≥ 0) defined by u0 = u, w0 = w and:

wk+1 = ST−nk . . . ST−n1ST−n0w , uk+1 = ST−nk . . . ST−n1ST−n0u .

Each geodesic with end points uk and wk is PSL(2, Z)-equivalent to γ by construc-
tion.

Theorem 3.2. The above algorithm produces in finitely many steps an α-reduced
geodesic PSL(2, Z)-equivalent to γ; i.e. there exists a positive integer � such that
the geodesic with end points u� and w� is α-reduced.
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To an α-reduced geodesic γ we associate a bi-infinite sequence of integers

(γ) = (. . . , n−2, n−1, n0, n1, n2, . . . ),

called its arithmetic code, by juxtaposing the α-expansions of 1/u = (n−1, n−2, . . . )
and w = (n0, n1, n2, . . . ) (for the H-code we need to use the dual H-expansion of
1/u).

Remark 3.3. Any further application of the reduction algorithm to an α-reduced
geodesic yields α-reduced geodesics whose codes are left shifts of the code of the
initial α-reduced geodesic.

The proof of Theorem 3.2 follows the same general scheme for each code, but
the notion of reduced geodesic is different in each case, and so are the properties of
the corresponding expansions and estimates.

Now we associate to any oriented geodesic γ in H the α-code of a reduced geodesic
PSL(2, Z)-equivalent to γ, which is obtained by the reduction algorithm described
above.

Theorem 3.4. Each geodesic γ in H is PSL(2, Z)-equivalent to an α-reduced geo-
desic (α = G, A, H). Two reduced geodesics γ and γ′ in H having arithmetic codes
(γ) = (ni)∞i=−∞ and (γ′) = (n′

i)
∞
i=−∞ are PSL(2, Z)-equivalent if and only if for

some integer l and all integers i one has n′
i = ni+l.

In [KU2] we present a geometric proof of Theorem 3.4 by constructing a cross-
section Cα (α = G, A, H) for each code directly related to the notion of α-reduced
geodesics. We explain the main ideas below.

3.3. Construction of the cross-sections for arithmetic codes. Let Cα =
P ∪ Q1 ∪ Q2 be a subset of the unit tangent bundle SM , where P consists of all
tangent vectors with base points in the circular boundary of F and pointing inward
such that the corresponding geodesic is α-reduced; Q1 consists of all tangent vectors
with base points on the right vertical side of F pointing inwards such that if γ is
the corresponding geodesic, then TS(γ) is α-reduced; Q2 consists of all tangent
vectors with base points on the left vertical side of F pointing inwards such that if
γ is the corresponding geodesic, then T−1S(γ) is α-reduced. If π : SH → SM is
the natural projection of the unit tangent bundles, notice that Cα = π(Ca) where
Ca is the set of all unit tangent vectors with base points on the unit semi-circle
|z| = 1 and pointing outward such that the associated geodesic on H is α-reduced
(Figure 7). It is easy to see that for the G-code the part Q2 is absent.

Every oriented geodesic γ on M can be represented as a bi-infinite sequence of
segments σi between successive returns to Cα. To each segment σi we associate
the corresponding α-reduced geodesic γi on H. Thus we obtain a sequence of
reduced geodesics {γi}∞i=−∞ representing the geodesic γ. If one associates to γi

its α-code, (γi) = (. . . , n−2, n−1, n0, n1, n2, . . . ), then γi+1 = ST−n0(γi) and the
coding sequence is shifted one symbol to the left. Thus all α-reduced geodesics γi

in the sequence produce the same, up to a shift, bi-infinite coding sequence, which
we call the α-code of γ and denote by (γ). The left shift of the sequence corresponds
to the return of the geodesic to the cross-section Cα.

Example 3.5. Let γ be a geodesic on H from u =
√

5 to w = −
√

3. The G-
expansions are

w = �−1, 2, 2, 3� , 1/u = �1, 2, 6, 2, 2� .
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−2 −1 0 1 2

P

Q1Q2

Figure 7. The cross-section Cα = P ∪ Q1 ∪ Q2

First, we need to find an equivalent G-reduced geodesic. For this we use the re-
duction algorithm described above for G-expansions and construct the sequence
(u1, w1), (u2, w2), . . . , until we obtain a G-reduced pair equivalent to (u, w). We
have

w1 = ST (w) = (1 +
√

3)/2, u1 = ST (u) = (1 −
√

5)/4 ,

w2 = ST−2(w1) = 1 + 1/
√

3, u2 = ST−2(u1) = (7 −
√

5)/11 ,

and the pair (u2, w2) is already G-reduced. The G-expansions of 1/u2 and w2 are

w2 = �2, 3� , 1/u2 = �3, 2, 2, 6, 2� ,

hence �γ� = �2, 6, 2, 2, 3, 2, 3� = �. . . , 2, 2, 6, 2, 2, 2, 6, 2, 2, 3, 2, 3, 2, 3, 2, 3, . . . �.

3.4. Symbolic representation of geodesics via arithmetic codes. Let N Z

G

be the Bernoulli space on the infinite alphabet NG = {n ∈ Z | n ≥ 2}. We proved
that each oriented geodesic which does not go to the cusp of M in either direction
admits a unique G-code, �γ� ∈ N Z

G which does not contain a tail of 2’s. Taking
the closure of the set of such G-codes, we obtain the entire space N Z

G. Now, each
bi-infinite sequence x ∈ N Z

G produces a geodesic on H from u(x) to w(x), where

(3.7) w(x) = �n0, n1, . . . � ,
1

u(x)
= �n−1, n−2, . . . � .

Notice that if a sequence has a tail of 2’s, then the oriented geodesic goes to the
cusp. Thus the set of all oriented geodesics on M can be described symbolically as
the Bernoulli space XG = N Z

G.
For the A-code, the set of all oriented geodesics (which do not go to the cusp) on

M can be described symbolically as a countable one-step Markov chain XA ⊂ N Z

A

with the infinite alphabet NA = {n ∈ Z | n 	= 0} and transition matrix A,

(3.8) A(n, m) =

{
1 if nm < 0,

0 otherwise .

For the H-code, recall first that the reduction algorithm and Theorem 3.4 are
valid only for geodesics whose end points are not equivalent to r. Taking the closure
of the set of all such H-codes, we obtain a set XH containing also the bi-infinite
sequences with a tail of 3’s or −3’s. These exceptional sequences are H-codes of
some geodesics with one of the end points equivalent to r, but not of all such
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geodesics. More precisely, each exceptional geodesic with u equivalent to r has two
H-codes (see Figure 8 for the only closed such geodesic), but not all exceptional
geodesics with w equivalent to r can be H-reduced (see [H1]).

F

Figure 8. Exceptional geodesic with two H-codes, 〈3〉 and 〈−3〉

The set XH is a countable one-step Markov chain XH ⊂ N Z

H with infinite alpha-
bet NH = {n ∈ Z | |n| ≥ 2} and transition matrix H,

(3.9) H(n, m) =

{
0 if |n| = 2 and nm > 0,

1 otherwise .

Therefore, for α = G, A, H, the space Xα is a closed shift-invariant subset of N Z

α .

Coding maps for arithmetic codes. As shown above, the coding map for each
arithmetic α-code (α = G, A), Cα : Xα → Cα is a bijection between the cross-
section Cα and the symbolic space Xα ⊂ N Z

α . The map CH : XH → CH is
surjective and essentially one-to-one: the only exception is given by the H-codes
corresponding to geodesics whose repelling end points are equivalent to r; for these
exceptional H-codes the map is two-to-one.

The product topology on N Z

α is induced by the distance function

d(x, x′) =
1
m

,

where x = (ni), x′ = (n′
i) ∈ N Z

α , and m = min{|i| | ni 	= n′
i} + 1.

Proposition 3.6. The map Cα is continuous.

Proof. If d(x, x′) < 1
m , then the α-expansions of the attracting end points w(x) and

w(x′) of the corresponding geodesics given by (3.7) have the same first m digits.
Hence the first m convergents of their α-expansions are the same, and by (3.6)
and (3.5) |w(x) − w(x′)| < 1

m . Similarly, the first m digits of 1
u(x) and 1

u(x′) are

the same, and hence |u(x) − u(x′)| < u(x)u′(x)
m < 1

m . Therefore the geodesics are
uniformly 1

m -close. But the tangent vectors v(x), v(x′) ∈ Cα are determined by the
intersection of the corresponding geodesic with the unit circle. Hence, by making
m large enough we can make v(x′) as close to v(x) as we wish. �
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θ

π/2

−π/2

φ

C2

C3

C4

R(C2) R(C3) R(C4)

C1

C2

C−1

C−2

R(C1) R(C2)

R(C−1)R(C−2)

P + ∪ Q+
1 ∪ Q+

2

P − ∪ Q−
1 ∪ Q−

2

Figure 9. Infinite partition for the G-code (A-code, respectively)
and its image under the return map R

R(C2)
R(C3)

R(C−4) R(C−3)
R(C−2)

R(C4)

C−2

C−3

C−4

C4

C3

C2

...

...

Figure 10. Infinite partition for the H-code and its image under
the return map R

The partition of the cross-section Cα. We parameterize the lift of the cross-
section Cα to SH, Ca by the coordinates (φ, θ), where φ ∈ [0, π] parameterizes
the unit semicircle (counterclockwise) and θ ∈ [−π/2, (3π)/2] is the angle the unit
vector makes with the positive horizontal axis (counterclockwise). The angle θ
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depends on φ and is determined by the condition that the corresponding geodesic
is α-reduced.

The elements of the partition of Ca are labeled by the symbols of the corre-
sponding alphabet Nα, Ca =

⋃
n∈Nα

Cn and are defined by the following condition:
Cn consists of all tangent vectors v in Ca such that for the coding sequence of
the corresponding geodesic in H, n0(x) = n. The partitions of Ca (and therefore
of Cα by projection) corresponding to the α-code (“the horizontal element”) and
their iteration under the first return map R to the cross-section Ca (“the vertical
element”) were obtained in [KU2] and are shown in Figures 9 and 10.

One can also parameterize the cross-section Ca by using the coordinates u, w
and the inequalities given in Definition 3.1. In this case the pictures become even
simpler: each element of the partition is a rectangle (see also §5.4). We have chosen
the coordinates (φ, θ) to be consistent with the parametrization of the cross-section
associated to the geometric code in §2.3.

Some results of this section can be illustrated geometrically since the Markov
property of the partition is equivalent to the Markov property of the shift space: the
symbol m follows the symbol n in the coding sequence if and only if R(Cn)∩Cm 	= ∅,
and since all intersections are transversal, according to [A, Theorem 7.9], each
partition is Markov.

4. Complexity of the geometric code

Deciding which bi-infinite sequences of nonzero integers are admissible geomet-
ric codes is a nontrivial task. We present some known classes of such admissible
sequences and show that the space X of all geometric codes is not a topological
Markov chain.

4.1. Classes of admissible geometric codes. The arithmetic codes we con-
sidered in §3.2 provide partial results: by identifying certain classes of geometric
codes which coincide with arithmetic codes we obtain classes of admissible geomet-
ric codes. The first result of this kind was obtained in [GuK]:

Theorem 4.1. A bi-infinite sequence of positive integers {. . . , n−1, n0, n1, n2, . . . }
is an admissible geometric code if and only if

(4.1)
1
ni

+
1

ni+1
≤ 1

2
for all i ∈ Z .

The corresponding geodesics are exactly those for which geometric codes coincide
with G-codes.

The pairs forbidden by Theorem 4.1, {2, p}, {q, 2}, {3, 3}, {3, 4}, {4, 3}, {3, 5},
and {5, 3}—we call them Platonic restrictions—are of Markov type. More precisely,
the set of all bi-infinite sequences satisfying relation (4.1) can be described as a
one-step countable topological Markov chain XP ⊂ N Z

G, with the alphabet NG and
transition matrix P ,

(4.2) P (n, m) =

{
1 if 1/n + 1/m ≤ 1/2 ,

0 otherwise .

Clearly, XP is a shift-invariant subset of X.
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The geodesics identified in Theorem 4.1 have the property that all their segments
in F are positively (clockwise) oriented. Following [GuK] we call them positive
geodesics and the corresponding class of sequences positive coding sequences.

A wider class of admissible coding sequences, which includes the positive ones,
has been identified in [KU1]:

Theorem 4.2. Any bi-infinite sequence of integers {. . . , n−1, n0, n1, n2, . . . } such
that

(4.3)
∣∣∣∣ 1
ni

+
1

ni+1

∣∣∣∣ ≤ 1
2

for i ∈ Z

is realized as a geometric code of a geodesic on M .

Remark 4.3. In order to prove that a bi-infinite sequence of nonzero integers
{. . . , n−1, n0, n1, n2, . . . } is a valid geometric code, it is enough to show that the
geodesic from u = 1/(n−1, n−2, . . . ) to w = (n0, n1, . . . ) has the requested code.
For periodic sequences we have a stronger statement; cf. [KU1, Proposition 1.3]:
a periodic sequence of nonzero integers {n0, n1, n2, . . . , nk} satisfying (3.3) and
different from {2} and {−2} is a valid geometric code if and only if the axis of
the associated (hyperbolic) transformation Tn0STn1S . . . TnkS going from u =
1/(nk, nk−1, . . . , n0) to w = (n0, n1, . . . , nk) has [n0, n1, n2, . . . , nk] as a geometric
code (we use the formal minus continued fractions (3.4) here). These observations
were used in the proof of Theorem 4.2 above and also in the proof of Theorems 4.5
and 4.9.

The set of all bi-infinite sequences satisfying relation (4.3) can be described as a
one-step countable topological Markov chain, with the alphabet N = {n ∈ Z | n 	=
0} and transition matrix M ,

(4.4) M(n, m) =

{
1 if |1/n + 1/m| ≤ 1/2 ,

0 otherwise .

We denote the associated one-step Markov chain by XM . Clearly, XM is a closed
shift-invariant subset of X.

Following [KU1] we call the admissible geometric coding sequences identified in
Theorem 4.2 and the corresponding geodesics geometrically Markov. In [KU2] we
show that the H-code comes closest to the geometric code:

Theorem 4.4. For any geometrically Markov geodesic whose geometric code does
not contain 1’s and −1’s, the H-code coincides with the geometric code.

The set XM is a σ-invariant subset strictly included in X. For example, [5, 3,−2]
is an admissible geometric code, obtained as the code of the closed geodesic corre-
sponding to the axis of T 5ST 3ST−2S (see Figure 11), but it is not geometrically
Markov. Moreover, the latter is also an example of a nongeometrically Markov
geodesic for which geometric and H-codes coincide. A natural question would be
to characterize completely the class of geodesics for which the two codes coincide.

The following theorems were proved in [KU1]:

Theorem 4.5. The set XM is a maximal, transitive one-step countable topological
Markov chain in the set of all geometric codes X.



SYMBOLIC DYNAMICS FOR THE MODULAR SURFACE AND BEYOND 109

TT −1

S S

F

Figure 11. Geometric code [5, 3,−2]

Theorem 4.6. The set XM is the maximal symmetric (i.e. given by a symmetric
transition matrix) one-step countable topological Markov chain in the set of all
geometric codes X.

The following result is an extension of a theorem proved in [KU2]:

Theorem 4.7. For any geometrically Markov geodesic whose geometric code con-
sists of symbols with alternating signs, the A-code coincides with the geometric code.

4.2. The space of geometric codes is not Markov. Unlike the spaces of ad-
missible arithmetic codes XG, XA, and XH which in §3.2 were proved to form
topological Markov chains, the space of admissible geometric codes X is very com-
plicated. In order to state the complexity result proved in [KU1], we recall the
notion of a k-step topological Markov chain defined on the alphabet N (see [KH,
§1.9] for the finite alphabet definition):

Definition 4.8. Given an integer k ≥ 1 and a map τ : N k+1 → {0, 1}, the set

Xτ = {x ∈ N Z | τ (ni, ni+1, . . . , ni+k) = 1 ∀ i ∈ Z}
with the restriction of the left-shift map σ to Xτ is called the k-step topological
Markov chain with alphabet N and transition map τ .

Without loss of generality we always assume that the map τ is essential; i.e.
τ (n1, n2, . . . , nk+1) = 1 if and only if there exists a bi-infinite sequence in Xτ

containing the (k + 1)-block {n1, n2, . . . , nk+1}.
Theorem 4.9. The space X of geometric codes is not a k-step topological Markov
chain, for any integer k ≥ 1.

We present in what follows a sketch of the proof, correcting some minor inad-
vertencies that appeared in the original proof of [KU1].

Proof. Suppose that X can be represented as a k-step topological Markov chain
with transition map τ . Since any k-step Markov chain is obviously (k + 1)-step
Markov, we may assume without loss of generality that k is an odd number.
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In order to get a contradiction we choose two periodic sequences of integers,

A = [3, (4,−8)k, 5,−2, (2,−2)lk] and B = [3, (4,−8)k, 3,−2, (2,−2)lk] ,

where l is a positive integer (to be determined later in the proof) and (4,−8)k and
(2,−2)lk denote the fact that the pairs {4,−8} and {2,−2} are repeated k times
and lk times, respectively, and show, using Remark 4.3, that A is a valid geometric
code but B is not.

The former is checked directly: it is shown that the periodic geodesic γA from
uA to wA, where

uA =
1

((−2, 2)lk,−2, 5, (−8, 4)k, 3)
and wA = (3, (4,−8)k, 5,−2, (2,−2)lk) ,

is in general position and its geometric code coincides with A (here and in the
rest of the proof the formal periodic minus continued fraction expansions (3.4) are
used).

In order to prove the latter we consider the closed geodesic γB from uB to wB,
where

uB =
1

((−2, 2)lk,−2, 3, (−8, 4)k, 3)
and wB = (3, (4,−8)k, 3,−2, (2,−2)lk) ,

and compare it with the geodesic from ū to w̄, where

ū =
1

(−2, 2)
= 1 −

√
2 , w̄ = (3, 4,−8) = 3 −

1
(4,−8)

= 3− (−4 + 3
√

2) = 7 − 3
√

2 ,

which passes through the left corner of T 3(F ). If l is large enough (depending on
k) such that uB is closer to ū than wB to w̄, a direct computation shows that the
first entry in the geometric code of γB will be 2 and not 3. Therefore B is not an
admissible geometric code.

Since we assumed that the space X of geometric codes is k-step Markov, this
implies the existence of a (k+1)-tuple in the infinite sequence given by B such that
τ (ni, ni+1, . . . , ni+k) = 0. Notice that such a (k+1)-tuple must contain the symbol
3 from the beginning of the sequence B. Otherwise, by using Theorem 4.2 presented
above, the periodic sequence [ni, ni+1, . . . , ni+k] is a valid geometric code (k + 1 is
even), so τ (ni, ni+1, . . . , ni+k) must be 1. But any (k + 1)-tuple containing the
initial “3” appears in the sequence A, contradicting the fact that A is an admissible
code. �

4.3. Complexity results of Grabiner and Lagarias. The main subject of [GL]
is the complexity of the Morse code for the modular group and the computational
complexity of conversions between different symbolic codings. They use the Morse
coding sequences (referred to as “cutting sequences”), thus working with the finite
alphabet of generators of SL(2, Z): T , T−1, and S. Correspondingly, instead of
regular continued fraction expansions which produce a symbolic system on infin-
itely many symbols, the authors consider what they call additive continued fraction
expansions by using the three symbols T , T−1 and S. The authors also consider
what they call the Farey tree expansion, which is similar to our A-expansion but
on a finite alphabet (see also §5.2 below).

Their main results are the following:
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• The cutting sequences for irrational vertical geodesics {θ + iy : y > 0}
(oriented downwards) are characterized in terms of forbidden blocks [GL,
Theorem 6.1]. A generating set of forbidden blocks is enumerated [GL,
Theorems 5.2 and 6.2]. The number of minimal forbidden blocks of length
at most k grows exponentially in k [GL, Theorem 6.3]. The set of forbidden
blocks for cutting sequences for all geodesics is the same as for vertical ones
[GL, Theorem 7.1].

• The set of all cutting sequences is not a sofic shift—i.e. it is not a fac-
tor of a finite-step topological Markov chain (on a finite alphabet) ([GL,
Theorem 7.3], related to our Theorem 4.9 on an infinite alphabet)—and it
characterizes the fundamental region F of PSL(2, Z) up to an isometry of
the hyperbolic plane [GL, Theorem 8.1].

• The additive continued fraction expansion of θ can be computed from the
cutting sequence expansion of {θ + it : t > 0} by a finite automaton [GL,
Theorem 4.3] but not vice-versa.

• For real θ > 1, the additive continued fraction expansion of θ can be con-
verted into the Farey tree expansion of θ by a finite automaton, and vice
versa ([GL, Theorem 3.2]; see also §5.2 below).

Without going into the technical details that can be found in [GL, §3.5], a finite
automaton (finite state machine) is a finite set of relabeling rules which may involve
longer and longer segments of the sequence. The key feature of a finite automaton is
that it has a fixed finite amount of memory, so in order to use this notion one needs
to work with sequences on a finite alphabet. Grabiner and Lagarias also show that
the geometric coding encodes more information about the geodesic flow than the
arithmetic codings, which retain only topological and not conformal information
about the modular surface M .

5. Other codings and interpretations

5.1. Coding geodesics and Minkowski lattice basis reduction. We present
a relationship between the coding of an oriented geodesic and the Minkowski lattice
basis reduction procedure. This section is largely inspired by [GL, §3].

The definition of a Minkowski-reduced basis is of fundamental importance in the
geometry of numbers [Mi, GrLe]. Here we follow the terminology of [GrLe, GL],
although in dimension two the reduction algorithm described below goes back to
Gauss [Ga, Article 171].

Definition 5.1. Let L = Ze1 + Ze2 be a lattice in R2. A positively oriented basis
{m1, m2} in L is called Minkowski-reduced if m1 is the shortest vector in L and m2

is the shortest vector, linearly independent with m1.

It is a standard fact that a positively oriented basis {m1, m2} in L is Minkowski-
reduced if and only if |m1| ≤ |m2| and |<m1,m2>|

|m1|2 ≤ 1
2 . We describe now the

classical algorithm of obtaining a Minkowski-reduced basis from a given basis of a
lattice L = Ze1 + Ze2 (see also Figure 12):

[1] If |e2| ≥ |e1|, go to step [2]; otherwise (if |e1| > |e2|) go to step [4].
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e2

e1

e2 − qe1

Figure 12. Minkowski lattice basis reduction

[2] Set µ ← <e1,e2>
|e1|2 and q ← 〈µ〉, where 〈x〉 is the closest integer to x. If µ is

a half-integer of the form µ = n + 1
2 , we make the following choice:

〈µ〉 =

{
n if n ≥ 0
n + 1 if n < 0

SLIDE e2 against e1: e2 ← e2 − qe1.
[3] If |e2| ≥ |e1|, stop. (By construction |µ| ≤ 1

2 , hence q = 0, and {e1, e2} is
Minkowski-reduced.) Otherwise (|e2| < |e1|) go to step [4].

[4] SWAP e1 and e2: e1 ← −e2 and e2 ← e1, and go to step [2].
Since at step [4] the length of e1 decreases and there are only finitely many lattice
points closer to the origin than the length of the initial vector e1, this process
terminates after finitely many steps.

To any oriented geodesic on the upper half-plane H and a point z on it, we

associate a matrix g =
(

a b
c d

)
∈ SL(2, R) which maps the positively (upwards)

oriented vertical geodesic γ0 = {iy, y > 0} to this geodesic so that g(i) = ai+b
ci+d = z.

We associate to v = (z, ζ) ∈ SH (ζ is the unit vector tangent to the geodesic at z) a
lattice L = Ze1 +Ze2 in R2 with the basis Bv = {e1 = (−c,−d), e2 = (a, b)}. Since
det g = 1, the lattice is unimodular (i.e. the area of the fundamental parallelogram
in R2 is equal to 1), and the basis is positively oriented. Conversely, any positively
oriented unimodular basis B = {e1 = (−c,−d), e2 = (a, b)} in R2 yields an oriented

geodesic in H: the matrix corresponding to this basis is g =
(

a b
c d

)
∈ SL(2, R),

and the geodesic is g(γ0).

Remark 5.2. Any positively oriented unimodular basis in L can be obtained from
{e1, e2} by using a matrix σ ∈ SL(2, Z). This corresponds to a left multiplication
of the matrix g associated to {e1, e2} by SσS. In particular, a slide of the basis

corresponds to a left multiplication of g by
(

1 q
0 1

)
= T q, a swap of the basis

corresponds to a left multiplication by S, and a slide followed by a swap is given
by left multiplication by ST q. Since there are nontrivial relations between the
generators T and S, one can find the Minkowski-reduced basis of a lattice in many
ways, not necessarily using the algorithm described above.

Lemma 5.3. Let v = (z, ζ) ∈ SH and Bv = {e1, e2} the associated basis. Then
z ∈ F if and only if Bv is a Minkowski-reduced basis.
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Proof. We have

(5.1) z =
ai + b

ci + d
=

bd + ac

c2 + d2
+

i

c2 + d2
,

and

(5.2) |z|2 =
a2 + b2

c2 + d2
.

If z ∈ F , then |z| ≥ 1 and |Re z| ≤ 1
2 . By (5.2) |e1| ≤ |e2|. Also

µ =
〈e1, e2〉
|e1|2

= −ac + bd

a2 + b2
;

hence

|µ| =
|ac + bd|
a2 + b2

≤ |ac + bd|
c2 + d2

= |Rez| ≤ 1
2
.

Therefore the basis Bv is Minkowski-reduced. �

One can also notice that to a point z on the circular boundary of F corresponds
a Minkowski-reduced basis with vectors of equal length. Based on this observation
and Lemma 5.3, we explain how the geometric code is related to the Minkowski
reduction procedure. The difference between the theorem presented below and the
results described in [GL, §3.3] is that the authors use a finite alphabet and consider
only vertical geodesics (see also §4.3 for more details of their work). Our proof is
self-contained.

Let B ⊂ SM be the cross-section for the geometric code as in §2.3, (z, ζ) ∈ B,
and γ the oriented geodesic through (z, ζ). As explained in the Introduction, this
geodesic is a projection of the orbit of the geodesic flow ϕ̃t on H, and for t > 0 the
matrix corresponding to vt = (zt, ζt) such that ρ(z, zt) = t is

gat =
(

a b
c d

) (
et/2 0
0 e−t/2

)
=

(
aet/2 be−t/2

cet/2 de−t/2

)
.

We denote the basis corresponding to vt by Bvt
= {e(t)

1 , e
(t)
2 }.

Theorem 5.4. Let (z, ζ) ∈ B and γ be the oriented geodesic through (z, ζ). There
is an increasing sequence 0 = t0 < t1 < t2 < · · · < tk < · · · such that for any integer
k ≥ 0, π(ztk

, ζtk
) ∈ B, and the Minkowski-reduced basis of the lattice corresponding

to (ztk
, ζtk

) consists of two vectors of equal length. For t = tk the Minkowski-
reduced basis can be obtained from {e(t)

1 , e
(t)
2 } by performing k slide/swap steps

with qi = −ni for 0 ≤ i ≤ k − 1, where [n0, n1, . . . ] is the forward part of the
geometric code of γ. For tk < t < tk+1 the Minkowski-reduced basis can be obtained
from {e(t)

1 , e
(t)
2 } by performing k slide/swap steps with qi = −ni for 0 ≤ i ≤ k − 1

and an additional slide step (with appropriate sliding factor q between 0 and −nk).

Proof. By Lemma 5.3 the basis corresponding to t0 = 0 is Minkowski-reduced.
Suppose that the first symbol in the geometric code of γ is n0. This means that γ
intersects the vertical line x = 1

2 and its n0 − 1 shifts by T (z) = z + 1 if n0 > 0,
and the vertical line x = −1

2 and its n0 − 1 shifts by T−1(z) = z − 1 if n0 < 0. Let
t increase from t0 = 0. For small t, zt ∈ F , and by Lemma 5.3, the basis {e(t)

1 , e
(t)
2 }

is already reduced. Assume that n0 > 0 (the case n0 < 0 is handled similarly).
Then the next segment of γ corresponds to zt ∈ T (F ). In this case T−1 brings zt
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to F so that the corresponding basis is Minkowski-reduced by Lemma 5.3, and it
is obtained from {e(t)

1 , e
(t)
2 } by one slide step with q0 = −1.

As t further increases, a similar argument shows that the Minkowski-reduced
basis is obtained from {e(t)

1 , e
(t)
2 } by one slide step, where q takes consecutive values

−2,−3, . . . ,−n0 on the consecutive segments of γ. The first critical value t = t1
yields the Minkowski basis of two vectors of equal length, and a swap step assures
us that π(zt1 , ζt1) ∈ B. Thus, after one slide/swap step (with sliding factor −n0),
basically we performed a left shift in the geometric code.

If the next symbol in the geometric code is n1, for t1 < t ≤ t2 the basis can be
reduced by an additional slide step with an appropriate sliding factor q between 0
and −n1. The general statement is proved by induction using the description of
the images of F crossed by the geodesic given in §2.2. �
Remark 5.5. Let us point out that there is a natural relation between the Minkowski
reduction algorithm and the Hurwitz continued fraction expansion: consider zt ∈
γ for large t, find the corresponding basis {e(t)

1 , e
(t)
2 }, and reduce it using the

Minkowski reduction algorithm, recording q0, q1, . . . , qk of the respective slides. Let-
ting t → ∞ the sequence {−qi} coincides with the H-code of the attracting end
point of γ.

5.2. Farey tiling interpretation of the A-code. The Farey sequence of order n
Fn is the set of rational numbers p/q with (p, q) = 1 and |p| ≤ n, |q| ≤ n arranged
in increasing order. It is convenient to include ∞ in each Farey sequence Fn. For
example, the nonnegative entries of the first three sequences are

F1 : 0, 1,∞

F2 : 0,
1
2
, 1, 2,∞

F3 : 0,
1
3
,
1
2
,
2
3
, 1,

3
2
, 2, 3,∞.

A basic property of the Farey sequences is the following: two rational numbers
p/q < p′/q′ are adjacent in the Farey sequence of order max(|p|, |q|, |p′|, |q′|) if and
only if pq′ − p′q = −1.

Let γ0 = {iy, y > 0} be the standard vertical upwards oriented geodesic in H.

Its images under g =
(

a b
c d

)
∈ SL(2, Z) are geodesics in H with rational end

points g(0) = b/d and g(∞) = a/c (with the convention that 1/0 = ∞). Since
g(0)/g(∞) = 1 − 1

ad ≥ 0, g(γ0) does not cross γ0, and therefore the images of
γ0 under SL(2, Z) do not cross one another. Moreover, since ad − bc = 1, g(0)
and g(∞) are adjacent in the Farey sequence of order max(|a|, |b|, |c|, |d|). They
are known as Farey edges. The end points of Farey edges are extended rational
numbers which are the images of the cusp at ∞ under SL(2, Z); we call them cusp
points.

Let ∆0 denote the ideal triangle in H with vertices 0, 1, and ∞. The images of ∆0

under SL(2, Z) are known as Farey triangles. If we apply to ∆0 the transformations

g =
(

a b
c d

)
∈ SL(2, Z) with max(|a|, |b|, |c|, |d|) ≤ n, we will cover a convex subset

of H, and the images of ∞ will be exactly the Farey sequence Fn. Notice that ∆0

is mapped onto itself by a cyclic subgroup of SL(2, Z) of order 3; therefore each of
its images will be covered three times as well. As n → ∞, the images of ∆0 will
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Figure 13. Farey tiling

cover a larger and larger part of H, and since the rational points are dense in R,
the images of ∆0 under SL(2, Z) will cover H without overlap, forming the Farey
tiling (see Figure 13).

Hurwitz [H3] used the Farey tiling to describe geometrically the Gauss reduction
theory for GL(2, Z). Hurwitz’s elegant approach is described in [Fr2]. Series [S3]
gave a similar description following an earlier work of Moeckel [Mo], where the
author used the Farey tiling and its relation to continued fractions to study the
asymptotic frequencies with which geodesics go into different cusps for a certain
class of Fuchsian groups whose fundamental regions are made up of Farey triangles.
Moeckel and Series referred to a 1916 work of Humbert [Hum], but apparently were
unaware of Hurwitz’s work, published in 1894.

We now use the Farey tiling to describe the A-code. Let γ be a geodesic in H
with irrational end points u and w. Any Farey triangle ∆ which meets γ must
intersect it in a compact interval, and the vertices of ∆ are separated by γ into a
pair and a singleton. We label this interval by the singleton vertex and assign to it
a “+” sign if the singleton vertex lies to the left of γ as we move in the direction
from u to w, and a “−” sign if the singleton vertex lies to the right of γ. A given
cusp point can label only finitely many consecutive intervals in γ, all of which have
the same signs. We call a Farey edge principal for γ if it crosses γ and the intervals
of γ on either side of it are labeled by different vertices. Notice that the signs of
the intervals between principal edges for a given geodesic γ will alternate.

Suppose a geodesic γ is A-reduced, with w = �n0, n1, n2, . . . � > 1, so n0 ≥ 1.
If we trace γ and count the number of intervals between crossings of the principal
edges with the associated signs, we obtain a sequence of nonzero integers. It is easy
to see that if we start tracing γ at its intersection with the vertical edge γ0, the
number of crossings between γ0 and the second principal edge Tn0γ0 is n0. Since
the cusp at ∞ is on the left of γ, this interval is assigned a “+” sign; hence the
first number in the sequence is n0. The third principal edge is a geodesic from n0

to n0− 1
n1

, and the number of crossings between the second and the third principal
edge is |n1|. Since the cusp at n0 is on the right of γ, this interval has a “−” sign
assigned to it. Thus the second number in the sequence is −|n1| = n1, and so on.
The cusp points corresponding to the singleton vertices labeling principal edges are
the convergents of the A-expansion of w, �n0, n1, n2, . . . , nk�. Thus the sequence
obtained is exactly the A-expansion of w.
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Since the repelling end point u of γ satisfies −1 < u < 0, we have 1/u =
�n−1, n−2, n−3, . . . � < −1. Therefore

1
n−1

< u <
1

n−1 − 1
.

Moving along γ from its intersection with γ0 towards u, one observes that the prin-
cipal edge preceding γ0 is a geodesic from 1/n−1 to 0 and the number of crossings
between this edge and γ0 is exactly |n−1|. Now, if we move from the principal edge
preceding γ0 towards γ0, we see that the cusp at 0 is on the right of γ, so it has a
“−” sign, and the number preceding n0 in the sequence is n−1. Thus the sequence
of nonzero integers obtained by counting the number of intervals between crossings
of γ with the principal edges is exactly the A-code of γ, and the changing of the
original principal edge changes the sequence by a shift.

5.3. Interpretation of the H-expansion via Ford discs. Fried [Fr2] gives a
geometric interpretation of the Hurwitz continued fraction expansion (H-expansion)
in terms of Ford discs. Recall that a horodisc (i.e. a closed region bounded by a
horocycle) in the hyperbolic plane H is either a disc tangent to the real axis or a
half-plane defined by Im (z) ≥ c, for some c > 0. A Ford disc is a particular horodisc
obtained as an image under an element of SL(2, Z) of the standard horodisc B(∞)
defined by Im (z) ≥ 1. Such a disc is labeled B(r) if r ∈ Q is the point where it
touches the real axis.

In 1917 Ford [Fo1] used horodiscs to give a geometric proof of Hurwitz’s result
[H2] on Diophantine approximations: if α is an arbitrary irrational number, then
there are infinitely many irreducible fractions p/q (with (p, q) = 1) satisfying∣∣∣∣pq − α

∣∣∣∣ <
1√
5 q2

,

and
√

5 is the best constant possible. (See also Ford [Fo3] for an elementary proof
of this result.) Let us mention that Ford [Fo2] used horospheres in the hyperbolic
3-space to describe geometrically the properties of a sequence of complex rational
fractions introduced by Hermite in order to approximate a given complex irrational.

Here are some of the basic properties of Ford discs (see [Fo3]): Ford discs do not
overlap; the only Ford discs that meet B(∞) are B(r) with integer r; if B(r1) and
B(r2) touch, then r1 and r2 are consecutive Farey numbers. The H-expansion of
an irrational number x can be interpreted as follows: 〈x〉 = 〈n0, n1, . . .〉 if and only
if the vertical oriented geodesic from ∞ to x traverses successively the Ford discs
B(pk/qk), where pk/qk = 〈n0, n1, . . . , nk〉 are the corresponding convergents of the
H-expansion.

The H-dual expansion can be given a geometric interpretation in the following
way: Assign to each Ford disc B(r) a level so that B(∞) is of level 0, B(r) is of
level 1 if r is an integer, B(r′) is of level 2 if B(r′) meets some Ford disc of level 1
and B(r′) is not of level 0 or 1, etc. In Figure 14 the large white discs are of level 1,
the grey-colored discs are of level 2, and the black discs are of level 3. If the H-dual
expansion of a real number x is 〈〈x〉〉 = 〈〈n1, n2, . . .〉〉 and if pk/qk = 〈〈n1, n2, . . . , nk〉〉
are the H-dual convergents of x, then B(pk/qk) is of level k. In other words, 〈〈 · 〉〉
is the continued fraction expansion that makes each horodisc B(pk/qk) associated
to the convergent pk/qk be of level k.
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Figure 14. Ford discs

5.4. Adler-Flatto’s approach. In [AF1, AF2], the following parametrization of
SH is considered. Any v = (z, ζ) ∈ SH defines a unique oriented geodesic in H with
end points u and w. If s is the hyperbolic distance along this geodesic from some
conveniently chosen initial point, then (u, w, s) gives another system of coordinates
on SH, in which the geodesic flow has a particularly simple form:

(5.3) ϕt : (u, w, s) �→ (u, w, s + t).

The authors consider the cross-section of the geodesic flow on the modular surface
given by the points on the boundary of the fundamental region F together will all
unit vectors pointing to the exterior of F . This cross-section given in coordinates
u, w corresponds exactly to the Morse code. However, it is not as easily expressed
as the arithmetic cross-sections described in §3.2; the authors call it curvilinear.
The first return map is given by fractional linear transformations. A change of
coordinates is performed such that the domain becomes rectilinear. The new return
map is conjugate to the original one by a one-to-one map which coincides with the
identity map on much of its domain and has a simple geometric interpretation on
regions where it is not the identity.

The authors use the new first return map to retrieve a version of Artin’s coding
which possesses a simple Markov partition. The Gauss map appears as a factor map
of the new return map, from which the formula for the Gauss measure (invariant
under the Gauss map) is easily obtained. Also, ergodic properties of the cross-
section map and, therefore, of the geodesic flow can be derived from the ergodic
properties of the Gauss map (see also 6.3).

A similar approach has been developed by the same authors in [AF4] for coding
the geodesic flow on compact surfaces of constant negative curvature and genus
g ≥ 2 using a particular 8g − 4-sided fundamental polygon.

5.5. Arnoux’s coding. Using the algebraic definition of the geodesic flow (1.1)
on the modular surface M and an explicit fundamental region, Arnoux ([Arn])
describes a coding method by regular continued fractions. The Gauss map appears
as a factor map of the return map to the cross-section. More precisely, let {x} =
x − �x� be the fractional part of x, and

T : (0, 1) → (0, 1), T (x) = {1/x}
be the continued fraction transformation (Gauss map). Let

T̄ : (0, 1)2 → (0, 1)2 , T̄ (x, y) = ({1/x}, 1/(y + �1/x�)).
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The map T̄ is an almost everywhere bijective extension of T ; it is continuous on
the rectangles 1/(n + 1) < x < 1/n, which are sent to 1/(n + 1) < y < 1/n. This
gives a natural Markov partition and a symbolic Markov coding: to any pair (x, y)
of irrational numbers in (0, 1), one can associate a bi-infinite sequence of positive
integers (an), where x = �0, a1, a2, . . . � and y = �0, a0, a−1, . . . � (here � · � denotes
the regular continued fraction expansion).

Viewing the geodesic flow on the modular surface algebraically as the right action
on PSL(2, Z)\PSL(2, R) of the group of diagonal matrices

at =
(

et/2 0
0 e−t/2

)
,

Arnoux constructs a particular fundamental region Ω for this action and a cross-
section Σ ⊂ ∂Ω (which can be identified under appropriate coordinates with (0, 1)2×
{0, 1}). He obtains an explicit formula for the first return map of the geodesic flow
associated to this cross-section:

R : Σ → Σ , R(x, y, ε) = (T̄ (x, y), 1 − ε) = ({1/x}, 1/(y + �1/x�), 1 − ε) .

Any point in the fundamental region Ω can be written as ϕt(x, y, ε), with (x, y, ε) ∈
Σ and 0 ≤ t ≤ −2 log x. Thus, the transformation that associates to a point
ϕt(x, y, ε) the point ((an), ε, t) where (an) is the symbolic coding of the pair (x, y)
conjugates the geodesic flow to a special flow {ψt} defined over N Z × {0, 1} with
the return time −2 log�0, a1, a2, . . . �.

Using these computations, the author gives a short proof of Lévy’s formula [Le]:
for almost every real number x

lim
n→∞

log qn

n
=

π2

12 log 2

where pn/qn = �0, a1, . . . , an� are the convergents of order n of the continued frac-
tion expansion of x.

Arnoux’s work is directly related to the modular surface being the Riemann
moduli space of genus one curves. His approach is inspired by Veech’s “zippered
rectangles” [V] for visualizing the Teichmüller geodesic flow. This led Arnoux to
the explicit fundamental region described above and the calculations presented.

6. Applications of arithmetic codes

6.1. Geodesic flow as a special flow. In §2.3 and §3.4 we have constructed
four continuous surjective coding maps. The map C : X → B for the geometric
code and the map CH : XH → CH (for the H-code) are essentially one-to-one
(and finite-to-one everywhere), while the maps for the other two arithmetic codes,
Cα : Xα → Cα (α = G, A), are bijections. In all cases the first return to the
cross-section corresponds to the left-shift of the coding sequence. This provides
four symbolic representations of the geodesic flow {ϕt} on SM as a special flow
over (Λ, σ), where Λ = XG, XA, XH , X, with the ceiling function f being the time
of the first return to the cross-section C = CG, CA, CH , B, i.e. four symbolic
representations of the geodesic flow on the space

(6.1) Λf = {(x, y) : x ∈ Λ, 0 ≤ y ≤ f(x)}

as explained in the Introduction.
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Calculation of the return time. For Λ = XG, XA, XH , X and C = CG, CA,
CH , B, respectively, the ceiling function f(x) on Λ is the time of the first return
of the geodesic γ(x) to the cross-section C. The following theorem was proved in
[GuK] for the G-code, and appeared for other arithmetic codes in [KU2], and for
the geometric code in [KU1]. The proof for all codes is the same. A similar formula
for Artin’s original code appeared earlier in [S3].

Theorem 6.1. Let x ∈ Λ and w(x), u(x) be the end points of the corresponding
geodesic γ(x). Then

f(x) = 2 log |w(x)| + log g(x) − log g(σx)

where

g(x) =
|w(x) − u(x)|

√
w(x)2 − 1

w(x)2
√

1 − u(x)2
.

6.2. Factor-maps associated with arithmetic codes and invariant measure
on cross-sections. Let α = G, A, H and R : Cα → Cα be the first return map.
Let pα : Cα → Iα be a map from the cross-section to the interval Iα defined as
follows: for v ∈ Cα, pα(v) = 1

w , where w = (n0, n1, n2, . . . ) is the attracting end
point of the α-reduced geodesic defined by v. The factor-map fα : Iα → Iα is such
that the diagram

Cα
R−−−−→ Cα

pα

⏐⏐� ⏐⏐�pα

Iα
fα−−−−→ Iα

is commutative. We derive the formulas for the factor-map for all three codes. If
x = 1

w , then fα(x) = 1
w′ , where w′ is the attracting point corresponding to the

geodesic defined by R(v). Since the first return to the cross-section corresponds to
the left shift of the coding sequence, we have w′ = ST−n0w. Hence

1
w′ = n0 − w =

(
1
x

)
− 1

x
.

In order to calculate the invariant measure for the map fα we use the parametriza-
tion of SH by (u, w, t) considered in [AF1] and described in §5.4. The measure dm
in these coordinates is given by the formula

(6.2) dm =
du dw dt

(w − u)2
,

and its invariance under {ϕt} follows immediately from (5.3) and (6.2). The mea-
sure on the cross-section Cα invariant for the first return map is obtained by drop-
ping dt: dmCα

= du dw
(w−u)2 , and the invariant measure on Iα is obtained by integrating

dmCα
with respect to du as explained in [AF1].

G-code. In this case IG = (0, 1), and

fG(x) =
⌈

1
x

⌉
− 1

x
=

⌊
1
x

⌋
+ 1 − 1

x
= 1 −

{
1
x

}
.
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In order to compute the invariant measure on IG we first integrate dmCG
over

IG = (0, 1):∫ 1

0

du dw

(w − u)2
= dw

1
w − u

∣∣∣∣
1

0

= dw

(
1

w − 1
− 1

w

)
=

dw

w(w − 1)
.

Going back to the variable x = 1
w , we obtain the invariant measure on IG = (0, 1)

µG =
dx

1 − x
.

(See also [AF3] for a similar computation.)

A-code. In this case IA = (−1, 1),

fA =
⌈

1
x

⌋
− 1

x
=

{
−{ 1

x} if x > 0
{− 1

x} if x < 0

and the invariant measure is µA =
2dx

(1 + x)(1 − x)
.

H-code. In this case IH = (−1
2 , 1

2 ), and fH =
〈

1
x

〉
− 1

x = 1
2 −

{
1
x + 1

2

}
. The

invariant measure is

µH =
4dx

(2 + x)(2 − x)
.

6.3. Classical results proved using arithmetic codes. Artin [Ar] used regular
continued fractions to prove the topological transitivity of the geodesic flow on the
modular surface (i.e. the existence of a closed geodesic) and the density of closed
geodesics. In fact, any arithmetic α-code (α = G, A, H) can be used for this purpose
since the Markov property allows us to list all admissible periodic coding sequences.

Proposition 6.2. The set of closed geodesics is dense in SM , and the geodesic
flow is topologically transitive.

Proof. Recall that closed geodesics correspond to periodic α-codes. Then by Propo-
sition 3.6 it is sufficient to find a periodic coding sequence arbitrarily close to a given
coding sequence x = (ni)i∈Z ∈ Xα. Clearly, for any positive integer m, a periodic
sequence xm = (n−m, . . . , n0, . . . , nm) satisfies d(x, xm) < 1

m , so xm will be arbi-
trarily close to x for large enough m. In order to prove topological transitivity we
construct a coding sequence x̄ which incorporates all finite codes in Xα (we can
order them and write one after the other in a sequence). Then for any ε > 0 there
is N ∈ Z such that

d(σN x̄, x) < ε.

But this means that there is t∗ ∈ R such that ϕt∗(v(x̄)) is ε-close to v(x), which
completes the proof. �

As mentioned in the introduction, Hedlund [He2] gives a proof of the ergodicity of
the geodesic flow on the modular surface by coding geodesics using regular continued
fractions. Adler and Flato [AF1] prove the ergodicity of the geodesic flow using the
arithmetic code described in §5.4 and reducing the problem to ergodic properties
of the Gauss map, which appears as a natural one-dimensional factor map of the
corresponding return map.
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6.4. Asymptotics and limit distribution of closed geodesics. The study of
the asymptotic growth of periodic orbits and their limit distribution plays an im-
portant role in the theory of dynamical systems. We restrict our discussion to the
geodesic flow on surfaces of constant negative curvature, although many of the re-
sults we mention have been extended to the variable curvature case (at least for
compact manifolds). Traditionally, the analysis of closed geodesics on manifolds of
constant negative curvature is based on the study of the Selberg trace formula. If
one denotes by P (t) the number of periodic geodesics of period ≤ t on a surface of
constant negative curvature, Huber [Hub] (for the compact case) and Sarnak [Sa]
(for the general situation) proved that P (t) ∼ et/t.

Concerning the limit distribution of the closed geodesics, Bowen [Bo] proved
that the closed geodesics on compact manifolds of constant negative curvature are
uniformly distributed with respect to the Liouville measure. To be more precise,
if mt is the probability measure formed by equidistributing Liouville measure on
closed geodesics of length ≤ t, then mt converges to the Liouville measure (in the
weak topology) as t goes to infinity. Pollicott [P] proved such a limit distribution
result for the modular surface. The proof uses the arithmetic coding via regular
continued fractions described by Series in [S3], an extension of the thermodynamic
formalism for the continued fraction transformation obtained by Mayer [May1], and
Tauberian theorems. The author also uses this result to study the distribution of
quadratic irrationals.

6.5. Estimates of the topological entropy. Now we explain how to obtain
estimates of the topological entropy of the geodesic flow restricted to certain flow-
invariant subsets of SM .

We consider the following general situation presented in [GuK]. Let (Λ, σ) be a
symbolic dynamical system and L ⊂ Λ be a σ-invariant Borel subset of Λ. Given
a Borel measurable function g : L → R such that infx∈L g(x) > 0, one can define a
special flow {ψt} = (L, g) on the space

Lg = {(x, y) : x ∈ L, 0 ≤ y ≤ g(x)}
much as the special flow defined in §6.1.

Let µ̃ be an arbitrary {ψt}-invariant Borel probability measure on Lg and µ′ its
projection onto L. The sets Cx = {x}×∆x, x ∈ L, where ∆x = {y : 0 ≤ y ≤ g(x)},
constitute a measurable partition of Lg. The {ψt}-invariance of µ̃ implies that the
conditional measure on Cx induced by µ̃ is the normalized Lebesgue measure on
∆x for µ′-almost all x (here we identify Cx and ∆x). By definition the function
x �→ 1/g(x) is bounded and hence µ′-integrable. So we can introduce a measure µ
on L by

µ(dx) = K
µ′(dx)
g(x)

, where K =
[∫

L

(1/g(x))µ′(dx)
]−1

.

It is easy to check that K =
∫

L
gdµ, µ is a probability measure, and µ̃ is the

restriction to Lg of the direct product µ× �, divided by K, where � is the Lebesgue
measure on R. Moreover, µ is σ-invariant.

Conversely, given a σ-invariant probability measure µ on L such that
∫

L
gdµ <

∞, one can define µ̃ as above and make sure that µ̃ is a {ψt}-invariant Borel
probability measure on Lg. Thus we have a one-to-one correspondence between the
set Ig(L) of σ-invariant probability measures on L under which g is integrable and
the set I(Lg) of all {ψt}-invariant probability measures on Lg.
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For each measure µ ∈ Ig(L) we denote by hµ the measure-theoretic entropy of σ
with respect to µ. The entropy of the flow {ψt} with respect to the measure µ̃ will
be denoted by hµ̃({ψt}). Recall that by definition hµ̃({ψt}) = hµ̃(ψ1) and that by
Abramov’s formula [Ab] hµ̃({ψt}) = hµ/

∫
L

gdµ.
Under the definition adopted in [GuK], the topological entropy h(·) is the supre-

mum of measure-theoretical entropies over the set of all flow-invariant Borel proba-
bility measures and hence is invariant with respect to a continuous conjugacy (and
even a Borel measurable conjugacy) of dynamical systems.

Hence the topological entropy is defined by the formula

(6.3) h({ψt}) = sup
µ∈Ig(L)

hµ

(∫
L

gdµ

)−1

and has the following properties: Let g1 ≥ g2 on L, and let {ψt
i} = (L, gi), i = 1, 2.

Then by (6.3), h({ψt
1}) ≤ h({ψt

2}). If two ceiling functions g1 and g2 are co-
homologous, i.e. there exists a Borel measurable function h : L → R such that
g1(x) = g2(x) + h(x) − h(σ(x)), then the special flows (L, g1) and (L, g2) are con-
jugate [PaP] and, therefore, have the same topological entropy.

The first example of the special flow of the type described above was studied in
[GuK]: the special flow over L = XP ⊂ XG, the space of positive coding sequences,
with the ceiling function f(x) = 2 log w(x). Let Σ+ be the subset of the unit
tangent bundle SM consisting of vectors tangent to positive geodesics. Since the
function f is cohomologous to the time of the first return to the cross-section CG

(Theorem 6.1), h({ϕt
|Σ+}) = h({φt}), where {φt} is the special flow over XP with

the ceiling function f(x) = 2 log w(x). The following two-sided estimates were
obtained in [GuK]:

Theorem 6.3. 0.7771 < h({ϕt
|Σ+}) < 0.8161.

Sketch of proof. The function f(x) = 2 log w(x) is well-defined on the whole space
XG, since w(x) ≥ 1 for all x ∈ XG. Thus, {φt} is a subflow of the special flow
(XG, f). For every x = (ni)i∈Z ∈ XG let ni(x) denote ni. If x ∈ XP , then ni(x) ≥ 3
and it is easy to show that

(6.4) 2 log cn0(x) ≤ f(x) ≤ 2 log n0(x), where c = (3 +
√

5)/6 ≈ 0.8726.

Thus the ceiling function is estimated by two functions which depend only on the
first coordinate n0(x) of w(x). We can now use a formula for the topological
entropy developed by Polyakov [Po] based on a result of Savchenko [Sav]. The
method requires the countable Markov chain to be a local perturbation of the full
Bernoulli shift (i.e. the number of forbidden transitions must be finite) and the
first return time function f(x) to depend only on the first coordinate n0(x). For
(XP , gδ), with gδ(x) = 2 log δn0(x) (δ = 1 and δ = c), we obtain the estimates

h1 = 0.7771 < h({ϕt
|Σ+}) < 0.8161 = hc.

The estimated values hδ are solutions of the equation Ψδ(s) = 1, where

Ψδ(s) =
G(s)(1 + (3δ)−2s − (12δ)−2s − (15δ)−2s)

1 − (4δ)−2s − (5δ)−2s
,
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and G(s) is related to the Riemann ζ-function by the formula

G(s) = δ−2s

(
ζ(−2s) −

5∑
n=1

n−2s

)
.

These values were obtained with the help of the computer package Pari-GP. �

The second example was studied in [KU1]. Let Σ be the subset of the unit tan-
gent bundle SM , consisting of vectors tangent to geometrically Markov geodesics,
i.e. geodesics whose codes are in XM (see §4.1). The set Σ is flow invariant and
noncompact. Let {ϕt

|Σ} be the restriction of the geodesic flow to Σ. The following
theorem [KU1] gives a lower bound estimate for h({ϕt

|Σ}), the topological entropy
of the flow {ϕt

|Σ}.

Theorem 6.4. 0.8417 < h({ϕt
|Σ}).

The proof of this estimate follows the same scheme as in the previous theorem,
but the extent of that method allows us to obtain an estimate only from below. Of
course, since h({ϕt}) = 1 (see [GuK]), we have a trivial estimate from above.

7. Arithmetic coding beyond the modular surface

7.1. Boundary expansions. In [S2, S4] Series made an explicit geometric con-
struction of symbolic dynamics for the geodesic flow on surfaces of constant negative
curvature and finite hyperbolic area. One of the main results is that the geodesic
flow on a compact surface can be represented as a factor of a special flow over a
topological Markov chain (with finite alphabet given by the generators of the fun-
damental group Γ of the surface) by a continuous map which is one-to-one except
on a set of the first Baire category. The symbolic dynamics is derived from the
author’s earlier work with Bowen [BoS] in which the action of Γ on the boundary of
the unit disc ∂U was shown to be orbit equivalent to a certain Markov map fΓ used
to develop the boundary expansion code geometrically. The map fΓ is piecewise
equal to the generating transformations of Γ that identify the sides of the funda-
mental region D and produces a bi-infinite sequence of generators of Γ now called
the Bowen-Series boundary expansion code. This construction is a generalization
of Nielsen’s boundary expansion [N] for a surface whose fundamental region is a
symmetric 4g-sided polygon in the unit disc U . In the presence of cusps one still
obtains a Markov map, but with a countable alphabet.

Series’ results apply to a general class of surfaces (which, however, does not
include the modular surface with the standard fundamental domain F ) and are
obtained by considering specially chosen fundamental regions with even corners
(this means that Γ(∂D) consists of complete geodesics in U). A precise relation can
be established in this case between the Morse code and the boundary expansion
code. Series shows that cutting sequences corresponding to geodesics on a closed
surface could be modified systematically to sequences which form a sofic shift (i.e.
a factor of a finite-step topological Markov chain) [S4, Lemma 4.1], so that every
admissible sequence corresponds to a geodesic. Thus the existence of geodesics with
certain dynamical properties could be established as in earlier work of Artin and
Nielsen simply by producing admissible sequences of the required kind (see also
§6.3).
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The arithmetic codings for the modular surface considered in Section 3 still can
be viewed as boundary expansions by properly partitioning the real axis into three
intervals labeled by T , T−1, and S. Taking a similar approach, one can develop a
reduction theory and construct arithmetic codings via continued fraction expansions
for other Fuchsian groups, in particular for Hecke triangle groups, Γq generated by
Tq(z) = z + λq (where λq = 2 cos(π/q)) and S(z) = −1/z for q = 3, 4, . . . (work in
progress). Various forms of continued fractions have been developed for such groups.
To mention a few: Rosen [Ro] introduced the so-called λq-continued fractions to
study the elements of such groups, Rosen-Schmidt [RoSc] described closed geodesics
on Γq\H and Schmidt-Sheingorn [ScSh] studied the length spectra. We refer the
reader to the latter paper, which contains extensive references on the subject of
Hecke groups. Let us also mention Fried’s important work [Fr1], where the author
develops an arithmetic coding for a larger class of nonuniform hyperbolic triangle
groups. The geodesic flow on the quotients of the hyperbolic plane by such groups
is symbolically coded using a generalization of Artin’s continued fractions method.
This allows the author to define transfer operators and to study dynamical zeta
functions for such groups as done by Mayer [May2] for the modular group. Fried
calculates the invariant measures for the corresponding factor-maps that generalize
the Gauss measure for the continued fraction map.

In the simplest case, where the fundamental region for Γ\U has no vertices in
U , the Bowen-Series and the Morse codes coincide. One such example, a three-
holed sphere (the compact part of a hyperbolic surface with three infinite funnels)
was studied in [S4]. In general, the codes differ if the group Γ is not free. The
discrepancy is closely related to the possible different ways of representing elements
of Γ as shortest words in a given set of generators.

In what follows, as an example, we describe the Bowen-Series boundary expan-
sion code for the free group Γ(2) with a specially chosen fundamental region.

7.2. The congruence subgroup Γ(2). Consider the surface M2 = Γ(2)\H where
Γ(2) is the principal congruence subgroup of level 2,

Γ(2) =
{
g ∈ PSL(2, Z) | g ≡

(
1 0
0 1

)
(mod 2)

}
.

Notice that Γ is a subgroup of PSL(2, Z) of index 6. Moreover it is a free group
on two generators given by

A =
(

1 2
0 1

)
(A(z) = z + 2) and B =

(
1 0

−2 1

)
(B(z) = z/(−2z + 1)).

A fundamental region F2 for M2 is bounded by the vertical lines x = ±1 and
two semi-circles (x ± 1/2)2 + y2 = 1/4. The identification of sides is given by the
parabolic transformations A and B fixing the cusps at ∞ and 0, respectively. The
Γ(2)-equivalent points −1 and 1 represent the third cusp of M2.

7.3. Morse coding for Γ(2). The Morse code with respect to the fundamental
region F2 (Figure 15) can be assigned to any geodesic γ on F2 which does not go
to any of the three cusps of F2 in either direction. It is easy to see that the images
of the cusp at ∞ under Γ(2) are rational numbers p

q with p odd and q even, the
images of the cusp at 0 are rational numbers p

q with p even and q odd, and the
images of the cusp at 1 are rational numbers p

q with both p and q odd. Thus we
consider only geodesics whose lifts to H have irrational end points.



SYMBOLIC DYNAMICS FOR THE MODULAR SURFACE AND BEYOND 125

AA−1

∞

F2

B B−1

−1 0 1 AB−1BA−1

Figure 15. The fundamental region for M2

We label the sides of F2 (on the outside) as shown on Figure 15: the left vertical
by A−1, the right vertical by A, the left circular by B, and the right circular by
B−1. We consider as a starting segment of an oriented geodesic γ on M2 a segment
whose initial end point is on one of the semi-circles and whose final end point is on
one of the vertical sides.

If we start coding an oriented geodesic from a segment whose initial point is on
one of the semi-circles and whose final point is on one of the vertical sides, then the
Morse code can be written as

[γ] = . . . An−2Bn−1An0Bn1An2 . . .

or equivalently, in numerical notation, as a bi-infinite sequence of nonzero integers
([. . . , n−2, n−1, n0, n1, n2, . . . ], 0) where the additional marker symbol 0 denotes the
fact that the coding sequence starts with An0 . Similarly, if we start coding a
geodesic from a segment with initial point on one of the vertical sides and final
point on one of the semi-circles, then the Morse code can be written as

[γ] = . . . Bn−2An−1Bn0An1Bn2 . . .

or, equivalently, as ([. . . , n−2, n−1, n0, n1, n2, . . . ], 1) (the additional marker symbol
1 is being used to denote the fact that the coding sequence starts now with Bn0).

Thus, the set of all numerical coding sequences is a subspace of the symbolic
space N Z × {0, 1}, where N = {n ∈ Z, n 	= 0}, and the shift map σ is defined as

σ([ni], ε) = ([ni+1], 1 − ε).

We will show (Corollary 7.5) that this set is the entire symbolic space N Z ×{0, 1},
except for the countable set of sequences having a tail of 1’s or −1’s. (For a
geometric proof see [St].)

7.4. Boundary expansions for Γ(2). The Bowen-Series boundary expansion can
be easily translated to the upper half-plane model H. We define a map
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fΓ(2) : R ∪ {∞} → R ∪ {∞} by

fΓ(2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A(x) if x ∈ [−∞,−1]
B−1(x) if x ∈ [−1, 0]
B(x) if x ∈ [0, 1]
A−1(x) if x ∈ [1,∞]

and label the elements of the partition of R∪{∞} as shown on Figure 15: [−∞,−1]
is labeled by A−1, [−1, 0] is labeled by B, [0, 1] is labeled by B−1, and [1,∞] is
labeled by A. Let γ(u, w) be a geodesic in H with repelling end point u and
attracting end point w, intersecting F2. The boundary expansion of w is the se-
quence (w0, w1, w2, . . . ), where wn is the label of the segment to which fn

Γ(2)(w)
belongs (wn ∈ {A, A−1, B, B−1}). The boundary expansion of u is the sequence
(u0, u1, u2, . . . ), where un is the label of the segment to which fn

Γ(2)(u) belongs
(un ∈ {A, A−1, B, B−1}). Let ūn denote the inverse of un. Following [S4] we
represent the geodesic from γ(u, w) by a bi-infinite sequence

u ∗ w = (. . . , ū3, ū2, ū1, ū0, w0, w1, w3, . . . )

called the Bowen-Series boundary expansion code.
Notice that because of the particular type of the chosen fundamental region

(without vertices in H), the boundary expansion code coincides with the Morse
code for any geodesic in M2.

7.5. Arithmetic coding for Γ(2) via even continued fractions. In his 1877
work, H. J. S. Smith [Sm] used the nearest even integer continued fractions to de-
velop a reduction theory for integral indefinite binary quadratic forms with respect
to the congruence subgroup Γ(2) much as Dirichlet used regular continued frac-
tions for GL(2, Z)- and SL(2, Z)-reduction theory 23 years earlier (see §3.1). It
is interesting to remark that Smith’s work came 12 years prior to Hurwitz’s work
[H1] on the SL(2, Z)-reduction theory using the nearest integer continued fractions.
Apparently, Hurwitz was not acquainted with Smith’s work.

We describe a method of constructing an arithmetic code for geodesics on M2 =
Γ(2)\H based on Smith’s reduction theory in a way similar to that described for
SL(2, Z)-reduction in §3.2. Let us mention that a similar method was used by
Kraikaamp and Lopes [KrLo] for studying the theta group (i.e. the discrete sub-
group of PSL(2, Z) generated by z �→ z + 2 and z �→ −1/z) and the geodesics on
the corresponding surface.

Every irrational number x has a unique representation in the form

x = 2n0 −
1

2n1 −
1

2n2 −
1
. . .

which we call the even continued fraction expansion (or E-expansion) and denote by
((2n0, 2n1, . . .)) for short; 2n0 is the integer equal to ((x)), where ((x)) is the nearest
even integer to x, and the nonzero integers ni (i ≥ 1) are determined recursively by
2ni = ((xi)), xi+1 = − 1

xi−2ni
, starting with x1 = − 1

x−2n0
. Conversely, any infinite

sequence of integers n0, n1, n2, . . . with ni 	= 0 if i ≥ 1, and not having a tail of 1’s
or −1’s, defines an irrational number whose E-expansion is ((2n0, 2n1, . . .)).
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The following properties are satisfied:

(1) Two irrational numbers x and y are Γ(2)-equivalent ⇐⇒ their E-expansions
have the same tail.

(2) x is a quadratic irrationality ⇐⇒ ((2n0, 2n1, . . .)) is eventually periodic.
(3) Let x and x′ be conjugate quadratic irrationalities, i.e. the roots of the

same quadratic polynomial with integer coefficients. For any quadratic
irrationality x with purely periodic expansion x = ((2n0, 2n1, . . . , 2nk)), the
expansion of 1

x′ is also purely periodic and 1
x′ = ((2nk, . . . , 2n1, 2n0)).

(4) A quadratic irrationality x has a purely periodic E-expansion if and only
if |x| > 1 and |x′| < 1, where x′ is conjugate to x.

Definition 7.1. An oriented geodesic on H is called E-reduced if its repelling and
attracting end points, denoted by u and w, respectively, satisfy |w| > 1 and |u| < 1
or |w| < 1 and |u| > 1.

Reduction algorithm. Let γ be an arbitrary geodesic on H, with end points u
and w, and w = ((2n0, 2n1, 2n2, . . .)). We construct the following sequence of real
pairs {(uk, wk)} (k ≥ 0) defined by u0 = u, w0 = w and:

w2k = B−n2k−1A−n2k−2 . . . B−n1A−n0w , u2k = B−n2k−1T−n2k−2 . . . B−n1A−n0u ;

w2k+1 = A−n2kw2k , u2k+1 = A−n2ku2k .

Each geodesic with end points uk and wk is Γ(2)-equivalent to γ by construction.

Theorem 7.2. The above algorithm produces in finitely many steps an E-reduced
geodesic Γ(2)-equivalent to γ; i.e. there exists a positive integer � such that the
geodesic with end points u� and w� is reduced.

To such a reduced geodesic γ we can associate the following code:

• if |u| < 1 and |w| > 1, then

((γ)) := ((. . . , n−2, n−1, n0, n1, n2, . . . ), 0) ,

where 1/u = ((2n−1, 2n−2, . . .)) and w = ((2n0, 2n1, 2n2, . . .));
• if |u| > 1 and |w| < 1, then

((γ)) := ((. . . , n−2, n−1, n0, n1, n2, . . . ), 1) ,

where −1/w = ((2n0, 2n1, . . .)) and −u = ((2n−1, 2n−2, . . .)).

Remark 7.3. Any further application of the reduction algorithm to an E-reduced
geodesic yields E-reduced geodesics whose codes are left shifts of the code of the ini-
tial E-reduced geodesic (together with an appropriate change of the marker symbol
ε ∈ {0, 1}).

The proof of Theorem 7.2 goes along the lines presented in the proof of [KU2,
Theorem 1.3] for the PSL(2, Z)-reduction procedure using the G-code. In a situa-
tion similar to that described also in Section 3, we define the E-code of an oriented
geodesic γ on H to be the E-code of a reduced geodesic Γ(2)-equivalent to γ and
prove its Γ(2)-invariance by constructing a cross-section of the geodesic flow on M2,
directly related to the notion of E-reduced geodesics.
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Construction of the cross-section. We describe the cross-section CE for the
geodesic flow on M2 such that successive returns to the cross-section correspond
to left-shifts in the arithmetic E-code. Let CE = P ∪ Q be a subset of the unit
tangent bundle SM2, where P consists of all tangent vectors with base points in
the circular sides of F2 and pointing inward such that the corresponding geodesic
is E-reduced (with |u| < 1 and |w| > 1); Q consists of all tangent vectors with
base points on the vertical sides of F2 pointing inward such that the corresponding
geodesic is E-reduced (with |u| > 1 and |w| < 1).

One can show that CE is indeed a cross-section for the geodesic flow on M2; hence
every geodesic γ can be represented as a bi-infinite sequence of segments σi between
successive returns to CE. To each segment σi is associated the corresponding E-
reduced geodesic γi, so that ((γi+1)) differs from ((γi)) by a left shift of the bi-infinite
sequence and a switch between 0 and 1 symbols. Thus we associate to γ a bi-infinite
coding sequence, defined up to a shift, which we call the E-code of γ and denote by
((γ)). A similar argument as for the G-code shows that the E-code is Γ(2)-invariant.

Figure 16 shows the infinite partition of CE (parameterized by (u, 1/w)) and its
image under the first return map.

Cross-section |u| < 1, |w| > 1
parameterized by (u, 1/w)

Cross-section |u| > 1, |w| < 1
parameterized by (1/u, w)

A−1

A−2

A−3

A1

A2
A3

B−1

B−2

B−3

B1

B2
B3

R(B−1)R(B−2) R(B2) R(B1) R(A−1)R(A−2) R(A2) R(A1)

R

Figure 16. Infinite partition for the E-code and its image under
the return map R

Symbolic representation of geodesics via E-code. Let N Z be the Bernoulli
space on the infinite alphabet N = {n ∈ Z, n 	= 0}. We proved that each oriented
geodesic which does not go to a cusp of M2 in either direction admits a unique
E-code, ((γ)) ∈ N Z × {0, 1}, which does not contain a tail of 1’s or −1’s. Taking
the closure of the set of all such E-codes, we obtain the space N Z × {0, 1}. Each
element x = ((ni), ε) ∈ N Z × {0, 1} produces a geodesic on H from u(x) to w(x)
where w(x) = ((2n0, 2n1, . . .)) , 1

u(x) = ((2n−1, 2n−2, . . .)) if ε = 0, and − 1
w(x) =

((2n0, 2n1, . . .)) , −u(x) = ((2n−1, 2n−2, . . .)) if ε = 1. Notice that if a sequence (ni)
has a tail of 1’s or −1’s, then the associated geodesic goes to the cusp at 1 in the
corresponding direction. Thus, the set of oriented geodesics on M2 which do not go
to the cusps 0 and ∞ can be described by the symbolic space XE = N Z × {0, 1}.
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7.6. Relation between the E-code and the geometric code. We have already
noticed that the Morse code and the boundary expansion code coincide for any
geodesic γ in M2. The following theorem establishes a similar property for the
E-code and the geometric code.

Theorem 7.4. For any geodesic in M2 the E-code coincides with the geometric
code.

Proof. Take a geodesic γ on M2 and suppose its E-code is ((γ)) = ((ni), 0); a similar
argument works for ((γ)) = ((ni), 1). Its natural lift γ̃ to H has end points given by

w = ((2n0, 2n1, . . .)) ,
1
u

= ((2n−1, 2n−2, . . .)) .

One needs to show that the geometric code of γ̃ (and therefore of γ) is given by
([ni], 0). For that reason it is enough to see that, since the nearest even integer to
w is 2n0, the geodesic γ̃ intersects the vertical side labeled by A and precisely the
next n0−1 consecutive images of it (in the case n0 > 0), or γ̃ intersects the vertical
side labeled by A−1 and precisely the next |n0| − 1 consecutive images of it (in the
case n0 < 0). Therefore the first entry in the geometric code of γ is An0 .

Now we conjugate γ̃ by A−n0 and look at the next coding sequence. The new
geodesic γ̃1 has end points given by w1 = w − 2n0, and u1 = u − 2n0. Notice
that the mapping S(z) = −1/z transfers the cusp at 0 into the cusp at ∞ and
the boundary components labeled B±1 to the boundary components labeled A±1.
For that reason, instead of tracing the behavior of the geodesic from u1 to w1, we
can as well study the geodesic from S(u1) = −1/u1 to S(w1) = −1/w1. We have
−1/u1 = 1/((2n0, 2n−1, . . . )) and −1/w1 = ((2n1, 2n2, . . . )). This brings us to
the previously studied situation; hence the geodesic from −1/u1 to −1/w1 has its
first coding sequence given by An1 . This implies that the first entry in the coding
sequence of γ1 is Bn1 . Continuing by induction we obtain that the geometric code
of γ coincides with its E-code. �

Corollary 7.5. The space of all geometric codes of geodesics on M2 (not ending
at a cusp) is the entire symbolic space N Z × {0, 1}, except for the countable set of
sequences having a tail of 1’s or −1’s.
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theorie, Springer-Verlag, 1982. MR0631688 (82m:10002)

Department of Mathematics, The Pennsylvania State University, University Park,

Pennsylvania 16802

E-mail address: katok s@math.psu.edu

Department of Mathematics, Rice University, Houston, Texas 77005

E-mail address: idu@rice.edu

Current address: Department of Mathematical Sciences, DePaul University, Chicago, Illi-
nois 60614

E-mail address: iugarcov@depaul.edu

http://www.ams.org/mathscinet-getitem?mr=1861374
http://www.ams.org/mathscinet-getitem?mr=1861374
http://www.ams.org/mathscinet-getitem?mr=0260977
http://www.ams.org/mathscinet-getitem?mr=0260977
http://www.ams.org/mathscinet-getitem?mr=0065632
http://www.ams.org/mathscinet-getitem?mr=0065632
http://www.ams.org/mathscinet-getitem?mr=1190349
http://www.ams.org/mathscinet-getitem?mr=1190349
http://www.ams.org/mathscinet-getitem?mr=1627271
http://www.ams.org/mathscinet-getitem?mr=1627271
http://www.ams.org/mathscinet-getitem?mr=1362251
http://www.ams.org/mathscinet-getitem?mr=1362251
http://www.ams.org/mathscinet-getitem?mr=0609896
http://www.ams.org/mathscinet-getitem?mr=0609896
http://www.ams.org/mathscinet-getitem?mr=0594628
http://www.ams.org/mathscinet-getitem?mr=0594628
http://www.ams.org/mathscinet-getitem?mr=0810563
http://www.ams.org/mathscinet-getitem?mr=0810563
http://www.ams.org/mathscinet-getitem?mr=0873435
http://www.ams.org/mathscinet-getitem?mr=0873435
http://www.ams.org/mathscinet-getitem?mr=1171453
http://www.ams.org/mathscinet-getitem?mr=1171453
http://www.ams.org/mathscinet-getitem?mr=0866707
http://www.ams.org/mathscinet-getitem?mr=0866707
http://www.ams.org/mathscinet-getitem?mr=0631688
http://www.ams.org/mathscinet-getitem?mr=0631688

	1. Introduction
	2. Geometric coding
	3. Arithmetic coding
	4. Complexity of the geometric code
	5. Other codings and interpretations
	6. Applications of arithmetic codes
	7. Arithmetic coding beyond the modular surface
	Acknowledgments
	About the authors
	References

