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Among the very basic characteristics of mathematics (and mathematicians) we
find the ambition to seek connections between various fields and to integrate new
results into their proper place in the already established theories. This also means
that old concepts expand their radius of activity and are seen in an ever widening
perspective thus proving their value. In the book Holomorphy and Convexity in Lie
Theory by Karl-Herman Neeb we see two such old and central concepts expand their
role in modern mathematics, namely on the one hand convexity and on the other
holomorphy. Convex sets (here always in a finite-dimensional real vector space V )
are well-known, and they appear in many interesting and useful places, sometimes
in surprising ways; corresponding to this one defines convex functions

f : V 7→ R∞ = R ∪ {+∞}
to be those with non-empty domain Df = f−1(R) and convex epigraph

epi(f) = {(v, t) ∈ V × R|f(t) ≤ t}.
For such a function (with mild extra conditions) f , the differential df maps the
domain diffeomorphically onto an open convex domain in the dual space V ∗ to V -
this is the classical Fenchel Convexity Theorem, and it is used at key places in the
book by Neeb. Holomorphy is taken to be the study of holomorphic functions on
complex manifolds, and again there is a large body of mathematics to relate to; the
main focus by Neeb is the construction of canonical Hilbert spaces of holomorphic
functions - and to see how convexity and holomorphy illuminate the theory of Lie
groups, and vice versa.

Lie groups have over the years developed two particular sides of their personal-
ity, if one may use such a metaphor here: they have a classical side associated with
classical mechanics in physics, where their place is as symmetry groups of sym-
plectic manifolds, and they have a quantum side corresponding to unitary actions
on complex Hilbert spaces. The correspondence between these two sides is some-
times called quantization, and more specifically one has the program of geometric
quantization, which seeks to establish rather direct and constructive ties between
these two sides of a Lie group G. Under the rubric of “Holomorphic Represen-
tation Theory”, this is exactly what is achieved by Neeb in the monumental and
almost encyclopedic book under review, dealing with a certain class of Lie groups,
certain convex domains and functions associated with this, and a certain class of
unitary representations in Hilbert spaces of holomorphic functions. In applications
to physics, these representations are quite important, since they are associated
with the requirement of positivity of the energy in quantum systems modeled by
the representations. This theory is also intimately connected with the rich theory of
bounded symmetric domains in Cn and the geometry and function theory of these
domains.
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Consider the following example: let D be the unit disc in the complex plane and
let G = SU(1, 1) be the group of biholomorphic Möbius transformations of D, i.e.

g.z =
az + b

cz + d
, g =

(
a b
c d

)
∈ G, z ∈ D

with the condition that ad− bc = 1 and(
a c

b d

)(
1 0
0 −1

)(
a b
c d

)
=
(

1 0
0 −1

)
.

In the space of holomorphic functions f on D the following defines an action of G:

(g.f)(z) = (cz + d)−nf(g−1.z), g−1 =
(
a b
c d

)
where n = 2, 3, 4, ...., and in fact this preserves the integral

||f ||2 =
∫
D

|f(z)|2(1− |z|2)n−2dxdy, z = x+ iy.

Since the holomorphic functions f with ||f ||2 <∞ form a complete space Hn with
respect to this norm, we here have for each n a unitary representation of G in the
Hilbert space Hn; it is called the holomorphic discrete series of G. In this case the
classical side of G is seen in its action on D, this being a Kähler manifold with
respect to the usual hyperbolic metric

ds2 =
dx2 + dy2

(1 − |z|2)2
.

Let us now turn to the basic general setting which starts with a Lie group G,
for simplicity say a closed subgroup of the invertible real n × n matrices, and its
Lie algebra g, also consisting of matrices. Consider the adjoint action

Ad : G 7→ Aut(g), g 7→ (X 7→ gXg−1), g ∈ G,X ∈ g

which is a homomorphism, and the corresponding coadjoint action on g∗ denoted
Ad∗ and given by

(Ad∗(g)f,X) = (f,Ad(g−1)X), g ∈ G,X ∈ g, f ∈ g∗.

With these definitions in place, we may state a little more precisely the goals and
results of holomorphic representation theory. First of all, the relevant class of Lie
groups are the admissible ones, meaning that g should contain a G-invariant convex
cone C (in the non-trivial sense, that it should have non-empty interior and contain
no affine lines). A basic result then says that there is an appropriately compact
Cartan subalgebra t (so-called compactly embedded, a notion developed by Hilgert
and Hofmann) i.e. t is maximal abelian, and there is a corresponding root decom-
position of the complexification of g. Similarly a coadjoint orbit Of = Ad∗(G)f is
said to be admissible, provided it is closed and its convex hull conv(Of ) does not
contain any affine line. Now convexity makes an appearance in the following result:
Consider the natural projection (restriction mapping)

pr : g∗ 7→ t∗;

then for an admissible orbit the image pr(Of ) = conv(W .f) + D, where D is a
polyhedral cone, and W a finite Weyl group acting on t and by duality on t∗; here
f ∈ t∗.
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This type of convexity from the classical side of Lie theory we encounter in
analogous form on the quantum side. For this, consider a unitary representation of
G in a complex Hilbert space H, i.e. a continuous homomorphism

π : G 7→ U(H)

from G into the unitary operators on H, and let H∞ denote the dense subspace
of smooth vectors (v such that g 7→ π(g)v is smooth). Now we define the moment
map Φ of this representation to be

Φ : P(H∞) 7→ g
∗, Φ([v])(X) =

1
i

(dπ(X)v, v)
(v, v)

with the differential of the representation denoted

dπ(X)v = (d/dt)|t=0π(exp(tX))v, v ∈ H∞, X ∈ g

and (v, v) the inner product in the Hilbert space. This moment map is then G-
equivariant from the projective space of H∞ to the dual of the Lie algebra. The
closed convex hull of the image Iπ = conv(ImΦ) of this moment map is an important
invariant, called the convex moment set.
Iπ allows us to characterize the admissible class of representations that are of

interest, namely the unitary highest weight representations - these are precisely
those for which Iπ contains no affine lines, and there will be associated with each
of these (in the irreducible case) an admissible coadjoint orbit Of , where f = −iλ
where this λ is the so-called highest weight. In this case we have Iπ = conv(O−iλ),
and the extreme points of this are the orbits themselves.

Finally we reach one of the major tools in holomorphic representation theory,
pioneered in [4] and [5], and to which Neeb has contributed significantly himself,
namely the complex Ol’shanskii semigroup. This is a holomorphic Lie semigroup
Γ of the same complex dimension as the real dimension of G and having G as its
natural Shilov boundary, just as the real line is the boundary of the upper half-
plane. It is the curved analog of tube-type domains V + iW where W is an open
convex cone in the real vector space V , and it is a wonderful complex manifold in
which to do analysis of holomorphic functions, sometimes referred to in connection
with the celebrated Gel’fand-Gindikin program. It has the form

Γ = G exp(iW )

with W the G-invariant cone in g associated the unitary highest weight represen-
tation π via the condition

−∞ < inf(Iπ , X) (∀X ∈W ).

Since W is G-invariant we have a natural action of G ×G on Γ by (g1, g2).γ =
g1γg

−1
2 . Note how the cone W is playing the role of the cone C earlier considered

when we defined admissible Lie algebras. Hence we have explained the three types
of admissibility, namely for the Lie algebra, for the orbit, and for the representation.
To a unitary highest weight representation we associate on the one hand a cone in
the Lie algebra, which therefore is admissible, and on the other hand an admissible
orbit in the dual of the Lie algebra; and these correspondences go in the other
directions as well.

Now unitary highest weight representations are further characterized by the
property that they extend from G to holomorphic representations of the semigroup
Γ. In this way one is brought to yet another of the great classics in mathematics,
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namely C∗-algebras, now appearing as certain quotients of the group C∗-algebra
C∗(G), modeling the holomorphic representations of Γ. Again there is a story of
classical versus quantum at this point or at least between operators and geometric
objects; any C∗-algebraA has associated with it the compact convex set of its states
S(A); and the extreme points of S(A) correspond to irreducible representations of
A, as was shown by Gel’fand, Naimark, and Segal.

The above are the main themes of the book by Neeb, only sketched here to
give an impression of the ever-present interplay between on the one hand geometry
of orbits, cones, and states, and on the other hand representation theory of both
groups and semigroups. Some of the more advanced results are reached in the final
chapters on complex geometry and representation theory. Let me just mention a
few: Suppose we want to find a G × G - invariant subdomain of the holomorphic
semigroup Γ of the form Ω = Gexp(iB) with B an invariant open subset of W , such
that Ω is a Stein manifold (i.e. it has sufficiently many holomorphic functions to
separate points, roughly speaking). Then the nice answer (proved by Neeb) is that
this happens if and only if B is convex. Similarly, suppose φ is a G×G - invariant
function on Ω; then φ is a plurisubharmonic function if and only if X 7→ φ(exp(iX))
is a locally convex function on B. Thus very natural conditions for the complex
geometry on Γ are reflected in convexity on W . More complex geometry shows up
in the concept of coherent state representations, a notion also of interest in physics;
these are unitary representations where the projective space of smooth vectors has
an orbit which is a complex submanifold, and they in turn correspond to unitary
highest weight representations. Finally on Γ one may define a Hardy space H2(Γ),
generalizing the classical Hardy space for the upper half-plane or the unit disc;
it is a Hilbert space of holomorphic functions on Γ, invariant under G × G, and
the irreducible constituents in its decomposition will all be unitary highest weight
modules.

The book requires a solid background as far as the Lie-theoretic part is con-
cerned; however, the beginning and in particular the part about convex sets and
functions is self-contained and can serve as a nice introduction to these theories,
reaching a rather high level. The overlap with [2] is small; indeed, the book by Neeb
is a logical continuation of the initial and groundbreaking work by Hilgert, Hofmann
and Lawson, and it is nice to see how functional analysis, complex analysis, and
representation theory have developed within the framework of Lie semigroups. One
might also want to keep in mind [1], where different aspects of the theory of cones
and representation theory are explained. The main parts of the book are labeled:
A. Abstract Representation Theory, B. Convex Geometry and Representations of
Vector Spaces, C. Convex Geometry of Lie Algebras, D. Highest Weight Represen-
tations of Lie Algebras, Lie Groups, and Semigroups, E. Complex Geometry and
Representation Theory. In addition there is an appendix with useful surveys and
even some new proofs; this is the case for example in the nice discussion of the Stone
- von Neumann Theorem about the uniqueness of the Schrödinger representation
in Appendix VIII.

Neeb’s book does not contain any exercises, but on the other hand there are many
carefully worked out examples and meticulous notes about the history and literature
in the field. Which brings me to the main impression about this book: It guides
the reader to the absolutely most general statements (at present), and does so very
patiently with great care taken to provide clarity of both notation and explanation
of ideas. For this mixture of almost Bourbaki style and more informal insights to



BOOK REVIEWS 291

the reader, I think the book has its greatest strength. It is an important book
taking its well-prepared (and energetic!) reader on a grand tour of the geometry of
unitary highest weight representation. Furthermore, it contains several new proofs
and improvements on earlier work; for example it gives a new proof of Lawson’s
general theorem on the existence of Ol’shanskii semigroups. On the negative side
one can hardly count the omission of topics (because otherwise the book would have
been just too long) such as those mentioned by Neeb himself: ordered symmetric
spaces, automorphic forms, wavelets, infinite-dimensional domains for example. In
summary then, the book by Neeb has given the subject a solid platform from which
to build many more advances in the mathematics of convexity and holomorphy as
it applies to representation theory of Lie groups.
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