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The study of nonpositively curved spaces goes back to the discovery of hyper-
bolic space, the work of Hadamard around 1900, and Cartan’s work in the 20’s.
These spaces play a significant role in many areas: Lie group theory, combinato-
rial and geometric group theory, dynamical systems, harmonic maps and vanishing
theorems, geometric topology, Kleinian group theory, and Teichmüller theory. In
some of these contexts – for instance in dynamics and in harmonic map theory
– nonpositive curvature turns out to be the right condition to make things work
smoothly, while in others such as Lie theory, 3-manifold topology, and Teichmüller
theory, the basic objects of study happen to be nonpositively curved spaces. With
so many closely related interdependent fields, nonpositive curvature has been a very
active topic in the last twenty years. To get an idea of the scope of the activity,
consider some of the highlights:

Harmonic maps: [Cor92], [GS92], [KS93], [MSY93]
3-manifolds and Kleinian groups: [MS84], [Gab92], [Can93], [CJ94],

[Min94], [McM96], [Ota96], [Gab97], [Ota98], [Min99], [Kap01], [GMT]
Structure theory and rigidity: [Bal85], [BBE85], [BBS85], [BS87], [EH90],

[BB95], [Lee97].
High dimensional topology: [FH81], [FJ93], [CGM90].
Hyperbolic groups, quasi-conformal geometry/analysis: [Gro87],

[Pan89], [BM91], [RS94], [Sel95], [Bow98a], [Bow98b], [BP99], [BP00],
[HK98].

Geometric/combinatorial group theory: [Gro87], [DJ91], [Sch95], [CD95],
[BM97], [KL97a], [KL97b], [Esk98].

Dynamics: [Cro90], [Ota90], [BCG95], [BFK98]
One point of view which has been quite influential in recent years is that it is

fruitful to work with “synthetic” conditions which are equivalent to nonpositive
sectional curvature in the Riemannian case, rather than sectional curvature itself.
Though this idea (and the analog for spaces with lower curvature bounds) goes
back to A. D. Alexandrov, it was Gromov [Gro87] who brought it to the attention
of a much wider audience in the 80’s. The most popular alternate condition is a
triangle comparison inequality which says that “sufficiently small geodesic triangles
are at least as thin as corresponding Euclidean triangles.” The precise version runs
as follows. We say that a metric space X is a Hadamard space or CAT (0) space1 if

2000 Mathematics Subject Classification. Primary 53Cxx, 20F65, 37F30.
1The letters C, A, and T stand for Cartan, Alexandrov, and Toponogov. The term Hadamard

space was introduced in [Bal95], since Hadamard spaces are generalizations of Hadamard
manifolds.
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1. X is complete;
2. Every two points in X are joined by a geodesic segment (a path whose length

equals the distance between its endpoints);
3. Whenever x, y, z∈X , x′, y′, z′∈R2 are isometric triples (dX(x,y)=dR2(x′, y′),
dX(y, z) = dR2(y′, z′), dX(z, x) = dR2(z′, x′)); w lies on a geodesic segment
joining y to z; and w′ is the corresponding point on the Euclidean segment
y′z′ (dR2(w′, y′) = dX(w, y)), then dX(w, x) ≤ dR2(w′, x′).

We say that a metric space Z is an Alexandrov space with nonpositive curvature, or
simply a nonpositively curved space, if for every z ∈ Z there is an r > 0 so that the
closed ball B(z, r) is a Hadamard space with respect to the induced metric. Work
of Cartan [Car46] implies that a Riemannian manifold has nonpositive sectional
curvature iff it defines an Alexandrov space with nonpositive curvature. A Rie-
mannian manifold is a Hadamard space iff it is a Hadamard manifold (a complete,
simply connected manifold with nonpositive sectional curvature).

Working with Alexandrov spaces rather than nonpositively curved manifolds
has several advantages. Most of the foundational material carries over to the more
general setting with only minor modifications, and the proofs, which are no longer
allowed to use objects that depend on smooth structure (the Levi-Civita connection,
Jacobi fields), sometimes become simpler. In this more general context one still has
a tangent cone associated with each point of a Hadamard space X , and a “tangent
cone at infinity” – the Tits cone CTX (named after Jacques Tits); these tangent
cones are Hadamard spaces, and they play a leading role in the theory. The Tits
cone is almost never (isometric to) a Riemannian manifold, even when X itself is a
Riemannian manifold. Many important examples of Hadamard spaces, especially
examples from geometric group theory, are non-Riemannian. For instance simplicial
trees (and more generally R-trees), and Euclidean and hyperbolic Tits buildings. A
connected finite 2-complex built by gluing together Euclidean triangles along their
edges defines a space with nonpositive curvature iff each vertex link, when endowed
with the angle metric, is a graph with no cycles of length < 2π; this construction
already gives an abundance of interesting examples and is important in the theory
of small cancellation groups.

The books under review have several common themes. All three base their de-
velopment on the geometry of geodesics and distance functions, and, for the most
part, they work toward results which apply to a broad class of nonpositively curved
spaces rather than focussing on special classes of spaces. The basic object of study
is a Hadamard space X with an isometric group action Γ×X → X ; one typically
gets such an action by taking the deck group action for the universal covering of
a nonpositively curved space. Under appropriate conditions one gets a strong re-
lationship between algebraic structure in Γ (abelian subgroups, product structure,
centralizers) and geometric structure in X (flat convex subspaces, product struc-
ture, convex subspaces with Euclidean factors). Results of this type go back to
[GW71], [LY72], [Ebe82]. The proofs depend crucially on the fact that the curva-
ture is allowed to be zero; i.e. flat subspaces are allowed. In fact many of the most
striking results in the subject rely on rigid behavior associated with flat subspaces.
Another key issue in the books is the global behavior of geodesics; this comes into
play in three closely related guises – the geodesic flow GX , the boundary at infin-
ity and the Tits boundary. The geodesic flow GZ of a metric space Z is the set
of unit speed locally geodesic paths in Z, topologized by uniform convergence on
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compact subsets, and equipped with the R-action R × GZ → GZ defined by pre-
composition with translation in R. (When Z is a complete Riemannian manifold,
the R-action R×GZ → GZ is equivalent to the usual geodesic flow R× SZ → SZ
on the unit tangent bundle SZ.) The geodesic flow of a complete nonpositively
curved space Z relates directly to the fundamental group: each periodic orbit of
the flow determines a nontrivial conjugacy class in the fundamental group, and
two periodic orbits determine distinct conjugacy classes unless the corresponding
maps S1 → M bound a locally isometric map S1 × [0, L] → M of a flat cylinder
into M . If X is a Hadamard space, then one can use the asymptotic behavior
of geodesics to define a boundary at infinity ∂∞X as follows. One says that two
unit speed geodesic rays α1 : [0,∞) → X and α2 : [0,∞) → X are asymptotic
if the distance dX(α1(t), α2(t)) is bounded independent of t. The relation of be-
ing asymptotic is an equivalence relation on the set of unit speed rays. As a set,
the boundary at infinity ∂∞X is the collection of asymptote classes of unit speed
geodesic rays. To define a topology on this set, one observes that ∂∞X can be
identified with the set of unit speed rays leaving any given basepoint p ∈ X , and
the latter has a natural topology – the topology of uniform convergence on compact
sets. Finally one verifies that the topology this induces on ∂∞X is independent of
the choice of basepoint p. When X is an n-dimensional Hadamard manifold, ∂∞X
is homeomorphic to Sn−1. The isometry group of X has an induced action on
∂∞X by homeomorphisms. When Γ × X → X is the deck group action for the
universal covering of a compact nonpositively curved space Z, the induced action
Γ× ∂∞X → ∂∞X is one of the key tools for analyzing the geodesic flow of Z and
the structure of Γ. It is also used in the proof of rigidity theorems like [Mos73],
[BCG95], [Pan89], [BP00]. To define the Tits boundary of a Hadamard space, one
starts with the set ∂∞X and defines the distance between the asymptote classes
of two unit speed rays α1 and α2 to be the “asymptotic angle of divergence”, i.e.
2 arcsin(ρ2 ) where ρ := limt→∞

1
t d(α1(t), α2(t)) (this limit always exists for unit

speed rays in Hadamard spaces and depends only on the asymptote classes of the
rays). This distance function, which is called the Tits angle metric, usually defines
a different topology on the set ∂∞X from the one mentioned above – the topol-
ogy usually does not have a countable basis; the metric space it defines is denoted
∂TX . The Tits boundary ∂TX registers asymptotically Euclidean structure in X :
Euclidean subspaces F k ⊂ X produce round spheres Sk−1 ⊂ ∂TX , and under mild
assumptions a partial converse holds.

A common objective of the books by Ballmann and Eberlein is the rank rigidity
theorem. This is a structure theorem for complete, finite volume, nonpositively
curved Riemannian manifolds M and is the centerpiece of the theory.2 It says that
if M̃ = X0 ×X1 × . . . Xk is the de Rham decomposition of the universal cover of
M (X0 is the Euclidean factor), then each Xi is either an irreducible symmetric
space of noncompact type of rank at least two, or else it contains a geodesic which
does not bound a flat half plane (a subset isometric to {(x, y) ∈ R2 | y ≥ 0}) in Xi.
The theorem was first proved in this precise form in [EH90], slightly extending the
results in the earlier papers [Bal85], [BBE85], [BBS85], [BS87]. The theorem, when
combined with earlier work [Bal82], has many implications (for manifolds M as
above) with no other known proofs: periodic orbits of the geodesic flow are dense

2The actual statement is somewhat more general than this; I have only stated the finite volume
case for simplicity.
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(when the fundamental group is finitely generated); π1(M) contains nonabelian
free groups unless M is a compact flat manifold; the number of distinct primitive
free homotopy classes of maps S1 →M having representatives with length at most
L grows exponentially with L, unless M is flat; the geodesic flow of M has a
dense orbit unless the universal cover M̃ splits as a Riemannian product or is an
irreducible symmetric space of rank at least two. Preparations for the proof of the
rank rigidity theorem occupy a good fraction of both volumes.

Ballmann’s book is by far the shortest of the three and runs under 100 pages
(even including the 15-page appendix by Misha Brin). The reader is assumed to
have some familiarity with basic concepts of Riemannian geometry – geodesics,
Jacobi fields, sectional curvature, and comparison theorems. The first two chapters
cover the basic facts about nonpositively curved spaces, like the Cartan-Hadamard
theorem, Busemann functions, the boundary at infinity, the Tits boundary, and
the classification of isometries. Chapter III (“Weak hyperbolicity”) is based on
the author’s paper [Bal82]; it shows that if Γ × X → X is an isometric action
on a locally compact Hadamard space and there is a geodesic γ ⊂ X which does
not bound a flat half plane, then, provided Γ × X → X satisfies the “duality
condition” (this will hold if Γ×X → X is the deck group action for the universal
covering of a compact Riemannian manifold), then X behaves in many respects
like a space with negative curvature. Chapter III also shows that the Dirichlet
problem at infinity is solvable for actions Γ×X → X as above. Chapter IV proves
the rank rigidity theorem. There is an appendix by Misha Brin which proves the
ergodicity of geodesic flows of compact Riemannian manifolds with strictly negative
curvature. This book packs an amazing amount of material into 100 pages without
compromising readability. Anyone who wants to learn a proof of rank rigidity with a
minimal time commitment, or anyone looking for a concise discussion of Hadamard
space geometry should find this book rewarding.

Eberlein covers much of the same ground as Ballmann (though he works with
Riemannian manifolds rather than Alexandrov spaces), as well as several other top-
ics. Overall his treatment is much more detailed, and his style is more expansive.
The prerequisites are the same Riemannian geometry that Ballmann requires plus
some Lie group theory; everything is reviewed in the first chapter. He has an exten-
sive discussion of symmetric spaces of noncompact type which ties together notions
from Lie theory and geometry. Aside from their importance in the rank rigidity
theorem (not to mention their importance in Lie group theory), symmetric spaces
offer intricate examples illustrating all the general theory of Hadamard spaces. To
my knowledge there is no comparable treatment available in the literature – this
will be very valuable to anyone working in the field. Eberlein also proves part of
the Mostow rigidity theorem – the cases where one can avoid the quasi-conformal
geometry in rank 1 – following Mostow’s original proof; this was part of his moti-
vation for the detailed discussion of symmetric space geometry. In the penultimate
chapter he collects consequences of rank rigidity and Mostow rigidity. This book
has already become a standard reference for nonpositively curved manifolds. It
would be a good source for a second or third year graduate course on nonpositive
curvature.

Compared to the other two authors, Bridson and Haefliger cover a broad swath
of terrain, treating the foundations for many different topics instead of working
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toward a small number of difficult theorems. The book is written so as to be acces-
sible to first year graduate students – no Riemannian geometry or Lie group theory
is required. The treatment of Alexandrov spaces is much more extensive than Ball-
mann’s and runs over 300 pages. Here they have interspersed material on Gromov-
Hausdorff convergence, ultralimits, quasi-isometries and quasi-isometry invariants.
There is a section on the geometry of the symmetric space for GL(n,R); this serves
to introduce the reader to the ideas by way of examples and does not attempt a
systematic treatment. The third part of the book has chapters on Gromov hyperbol-
icity, nonpositive curvature and group theory, and complexes of groups/orbifolds.
The main objective of the last two chapters is the theorem (due to Haefliger) that,
roughly speaking, an orbifold is developable (i.e. can be obtained as the quotient
orbifold for a group action) provided it admits a nonpositively curved structure.
The proof is similar to the proof of the Cartan-Hadamard theorem. This book will
be a useful reference for Alexandrov space geometry. The exposition has a gentle
pace, making it very suitable for a reading course in geometric group theory.

The subject has advanced tremendously in recent years, yet many fundamental
questions remain. I would like to close with three well-known open problems:

• The flat closing problem. If Z is a compact nonpositively curved space, and
the universal cover Z̃ contains a subset isometric to R2, does the fundamen-
tal group π1(Z) contain a copy of Z2? This is known only when Z is a
3-dimensional Riemannian manifold, or a Riemannian manifold with a real
analytic metric. It is open for finite 2-complexes built from Euclidean squares.
• Rank rigidity for singular spaces. Is there a version of rank rigidity for com-

pact nonpositively curved spaces? For example, if Z is compact, nonpositively
curved, and has extendible geodesics (every locally geodesic segment can be
extended to a locally geodesic path R→ Z), is it true that one of the follow-
ing holds: (1) ∂T Z̃ is disconnected; (2) Z̃ is a product; (3) Z̃ is a symmetric
space; (4) Z̃ is a Euclidean building? This is known for piecewise Riemannian
2-complexes [BB95].
• Tits alternative. If Z is compact and nonpositively curved, is it true that

every subgroup of π1(Z) either contains a free nonabelian subgroup or finite
index abelian subgroup?
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[CGM90] Alain Connes, Mikhäıl Gromov, and Henri Moscovici, Conjecture de Novikov et fibrés
presque plats, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 5, 273–277. MR
91e:57041

[CJ94] Andrew Casson and Douglas Jungreis, Convergence groups and Seifert fibered 3-
manifolds, Invent. Math. 118 (1994), no. 3, 441–456. MR 96f:57011

[Cor92] Kevin Corlette, Archimedean superrigidity and hyperbolic geometry, Ann. of Math. (2)
135 (1992), no. 1, 165–182. MR 92m:57048

[Cro90] Christopher B. Croke, Rigidity for surfaces of nonpositive curvature, Comment. Math.
Helv. 65 (1990), no. 1, 150–169. MR 91d:53056

[DJ91] Michael W. Davis and Tadeusz Januszkiewicz, Hyperbolization of polyhedra, J. Differ-
ential Geom. 34 (1991), no. 2, 347–388. MR 92h:57036

[Ebe82] Patrick Eberlein, A canonical form for compact nonpositively curved manifolds whose
fundamental groups have nontrivial center, Math. Ann. 260 (1982), no. 1, 23–29. MR
84h:53049

[EH90] Patrick Eberlein and Jens Heber, A differential geometric characterization of symmetric

spaces of higher rank, Inst. Hautes Études Sci. Publ. Math. (1990), no. 71, 33–44. MR
91j:53022

[Esk98] Alex Eskin, Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric
spaces, Journal of the American Mathematical Society 11 (1998), no. 2, 321–361. MR
98g:22005

[FH81] F. T. Farrell and W. C. Hsiang, On Novikov’s conjecture for nonpositively curved man-
ifolds. I, Ann. of Math. (2) 113 (1981), no. 1, 199–209. MR 83j:57018

[FJ93] F. T. Farrell and L. E. Jones, Topological rigidity for compact non-positively curved
manifolds, Differential geometry: Riemannian geometry (Los Angeles, CA, 1990),
Amer. Math. Soc., Providence, RI, 1993, pp. 229–274. MR 94m:57067

[Gab92] David Gabai, Convergence groups are Fuchsian groups, Ann. of Math. (2) 136 (1992),
no. 3, 447–510. MR 93m:20065

[Gab97] David Gabai, On the geometric and topological rigidity of hyperbolic 3-manifolds, J.
Amer. Math. Soc. 10 (1997), no. 1, 37–74. MR 97h:57028

[GMT] D. Gabai, R. Meyerhoff, and N. Thurston, Homotopy hyperbolic 3-manifolds are hyper-
bolic, Annals of Math, to appear.

[Gro87] M. Gromov, Hyperbolic groups, Essays in group theory, Springer, New York, 1987,
pp. 75–263. MR 89e:20070

http://www.ams.org/mathscinet-getitem?mr=99f:58120
http://www.ams.org/mathscinet-getitem?mr=93j:20076
http://www.ams.org/mathscinet-getitem?mr=98g:20041
http://www.ams.org/mathscinet-getitem?mr=99g:20069
http://www.ams.org/mathscinet-getitem?mr=99c:20048
http://www.ams.org/mathscinet-getitem?mr=99j:30024
http://www.ams.org/mathscinet-getitem?mr=88g:53050
http://www.ams.org/mathscinet-getitem?mr=93e:57019
http://www.ams.org/mathscinet-getitem?mr=95m:57034
http://www.ams.org/mathscinet-getitem?mr=91e:57041
http://www.ams.org/mathscinet-getitem?mr=96f:57011
http://www.ams.org/mathscinet-getitem?mr=92m:57048
http://www.ams.org/mathscinet-getitem?mr=91d:53056
http://www.ams.org/mathscinet-getitem?mr=92h:57036
http://www.ams.org/mathscinet-getitem?mr=84h:53049
http://www.ams.org/mathscinet-getitem?mr=91j:53022
http://www.ams.org/mathscinet-getitem?mr=98g:22005
http://www.ams.org/mathscinet-getitem?mr=83j:57018
http://www.ams.org/mathscinet-getitem?mr=94m:57067
http://www.ams.org/mathscinet-getitem?mr=93m:20065
http://www.ams.org/mathscinet-getitem?mr=97h:57028
http://www.ams.org/mathscinet-getitem?mr=89e:20070


BOOK REVIEWS 279

[GS92] Mikhail Gromov and Richard Schoen, Harmonic maps into singular spaces and p-adic

superrigidity for lattices in groups of rank one, Inst. Hautes Études Sci. Publ. Math.
(1992), no. 76, 165–246. MR 94e:58032

[GW71] Detlef Gromoll and Joseph A. Wolf, Some relations between the metric structure and
the algebraic structure of the fundamental group in manifolds of nonpositive curvature,
Bull. Amer. Math. Soc. 77 (1971), 545–552. MR 43:6841

[HK98] Juha Heinonen and Pekka Koskela, Quasiconformal maps in metric spaces with con-
trolled geometry, Acta Math. 181 (1998), no. 1, 1–61. MR 99j:30025

[Kap01] Michael Kapovich, Hyperbolic manifolds and discrete groups, Birkhäuser Boston Inc.,
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