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A random walk, a synonym in a loose sense for a time homogeneous Markov chain
on a countable state space, used to be an object that probabilists were handling as
a typical stochastic process. To be more precise, given a countable set V on which a
walker moves around, we consider a probability law under which the walker transfers
from one site to another. This law is described by a non-negative valued function p
on V × V such that

∑
y∈V p(x, y) = 1. We consider p(x, y) as the probability that

a walker at the site x moves to y in one step. The n-step transition probability
pn(x, y) is then defined by∑

x1,... ,xn−1∈V
p(x, x1)p(x1, x2) · · · p(xn−1, y)

which is thought of as the probability that a walker starting from the site x is found
at y after n-step random movements. As a stochastic process, a random walk is a
Markov process in the sense that the future of a random walker depends only on
the present site and not on the past record.

What probabilists, including the author of this book, are interested in is the
behavior of pn(x, y) as n goes to infinity. For instance, one queston is to determine
whether the series

g(x, y) =
∞∑
n=0

pn(x, y)(1)

converges or not. Another is to find out what the asymptotic of pn(x, y) itself is.
The first question is the so-called “recurrence-transience” problem. Recall that,

if (1) diverges, then a walker tends to come back again and again in finite regions
in probability one. Whereas, if (1) converges, then the walker goes to “infinity” in
probability one. Historically this question originates in Polya’s observation in 1921
on the simple random walk on the hyper-cubic lattice Zk. What Polya showed is
that the simple random walk on Z2 is recurrent, while it is transient on Zk with
k ≥ 3.

The second question is the “(local) limit” problems which include, among others,
the question whether the central limit theorem and/or a large deviation property
holds. Needless to say, the prototype of these limit problems is the Gauss-Laplace
theorem on the convergence of the Bernoulli sequence to the normal distribution.

A more sophisticated problem is to describe, in the transient case, the “ideal
boundaries” (e.g., the Martin boundary or the Poisson boundary) which consist of
“points” at infinity reached by the random walker when n goes to infinity. The
ideal boundaries are related to the problem on the existence of positive or bounded
harmonic functions.

In short, the object is simple to deal with, and the questions are easy to under-
stand. Traditionally, potential theory (together with Fourier analysis in a special
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case) provides us sufficient terminologies and methods to develop the “general”
theory of random walks (see J. L. Doob [3] and F. Spitzer [7] for these classical
methods). If we wish to go further, however, the matter is not so hands-down. It
turns out that geometric considerations are required to establish many fruitful re-
sults on random walks. What is then the geometry in this case ? It is the geometry
of graphs. Here a graph structure on V is introduced in such a way that two sites
x, y are adjacent if and only if p(x, y) > 0.

We can start the theory of random walk the other way around, which is actually
the standpoint of this book as the author states in the preface that “what we have
in mind is to start with a graph, groups, etc. and investigate the interplay between
the behaviour of random walks on those objects on one hand and properties of the
underlying structure itself on the other.” For instance, in this view, the theory of
discrete groups is naturally connected to the theory of random walks. Namely we
relate properties of random walks on the Cayley graph associated with a finitely
generated group G to the group structure of G, say group growth, amenability,
hyperbolicity, etc. (see H. Kesten [4] as a pioneer work). If the reader is geometry-
oriented, he would agree with the opinion that this standpoint serves as a natural
“guiding principle” to develop the “fine” theory of random walk. In fact, we may
undertake, if not always, a parallel discussion to the analysis of Laplace operators
on (open) Riemannian manifolds (see [5] and N. Th. Varopoulos, L. Saloff-Coaste
and T. Coulhon [8] for instance.)

Let me give a brief account of the “geometric” view of random walks. Consider
a connected graph X = (V,E), V being the set of vertices and E being the set of
all oriented edges. Let p : E −→ R be a function satisfying p(e) ≥ 0 (e ∈ E) and∑
e∈Ex p(e) = 1 where Ex denotes the set of edges whose origin o(e) is x (we also

denote by t(e) and e the terminus and the inverse edge of e, respectively). If there
exists a positive valued function m on V such that p(e)m(o(e)) = p(e)m(t(e)),
the random walk associated with p is said to be symmetric (or reversible). The
simple random walk is the one given by p(e) = (deg o(e))−1 where deg x = #Ex.
Associated with p, we define the transition operator P acting on functions on V by

(Pf)(x) =
∑
e∈Ex

p(e)f(t(e)).

Note that the n-step transition probability pn(x, y) is the kernel function of Pn in
the sense that (Pnf)(x) =

∑
y∈V pn(x, y)f(y), and that if we put fn = Pnf , then

fn+1 − fn = (P − I)fn, f0 = f

which may be regarded as a discrete analogue of the heat equation

∂f

∂t
= ∆f.

The operator P − I looks much more like the Laplace operator if we introduce the
space of “1-forms” C−(E) and the operator d : C(V ) −→ C−(E), δ : C−(E) −→
C(V ) by

C−(E) = {ω : E −→ R; ω(e) = −ω(e)}

df(e) = f(t(e))− f(o(e)), δω(x) =
∑
e∈Ex

p(e)ω(e)
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(we should recall that d is the coboundary operator acting in 0th-cochains). We
easily check that P − I = δd, and that if p is symmetric with a reversible measure
m, then −δ is the formal adjoint operator of d, and hence P (and ∆ = P − I) is
symmetric with respect to the inner product defined by

〈f, g〉 =
∑
x∈V

f(x)g(x)m(x).

In this view, it is natural to say that a function f is harmonic if Pf = f , and that
ω ∈ C−(E) is a harmonic 1-form if δω = 0. Moreover, if the linear operator ∆ is
invertible, then the kernel function of ∆−1 is given by (1).

Graphs themselves are regarded as an analogue of (non-positively curved) mani-
folds. For example, regular graphs correspond to manifolds with constant negative
curvature so that regular trees (simply connected regular graphs) are the corre-
sponding counterparts of unit balls with the Poincaré metric. Harmonic analysis
of discrete Laplacians on regular trees associated with simple random walks is well
developed as an analogue of the one for hyperbolic spaces (P. Cartier [1]). In this
book, regular trees appear, once in a while, as examples for which explicit compu-
tations are performed.

Here is a minor remark. In the geometric setting above, the graph X is allowed
to have loop edges and multiple edges. In almost all literature, including this
book, however, graphs are supposed to have no multiple edges, and hence edges
are represented by pairs of vertices. The reason is that, if we are concerned with
only sites of a random walker, multiple edges joining two vertices can be reduced
to one edge without loss of generality; but if we want to take into consideration
which edge is passed by a walker, it is more natural to allow graphs to have multiple
edges. An extreme case is a random walk on a bouquet graph, a graph with only
one vertex, say o. This being the case, a random walker is always on o, thereby
randomness being seen only for (loop) edges the walker passes. By “lifting ” the
random walker to a regular covering graph of the bouquet graph with covering
transformation group G, we obtain a random walk on the Cayley graph associated
with G.

Roughly speaking, the contents of this book are made up along the subjects
mentioned above. In Chapter I, the author starts with Polya’s observation and
introduces the basic definitions and concepts in the random walk theory. Various
examples and results on recurrence and transience are given. Chapter II discusses
the spectral radius ρ = lim supn→∞ pn(x, y)1/n ∈ (0, 1] with which random walks
are classified (as the author admits, the name “spectral radius” is misleading since
we are not considering the spectral radius of a linear operator acting on a Banach
space except for the case of symmetric random walks). It should be noted that ρ−1

is the radius of convergence for the power series
∞∑
n=0

pn(x, y)zn

so that, if ρ < 1, then the random walk is transient (the converse is not true in
general as is seen for the case of Zk (k ≥ 3)). For several classes of infinite graphs,
the estimates for ρ are established. The main topic in Chapter III is the local
limit formulae. A rough idea is to compare pn(x, y) with a function of the form
Cn−αe−nβ exp(−g(x, y)n−1). In particular, this chapter includes the local central
limit theorem on Zk (due to P. Ney and F. Spitzer [6]), Gaussian upper and lower
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bounds for pn(x, y), simple random walks on the Sierpinski graphs, and asymptotics
of pn(x, y) for various graphs. A highlight is in the section on the Sierpinski graphs
where some fractal properties of the Green function (the kernel function of the
operator (z − P )−1) are deduced. The most interesting part in this book is in
Chapter IV, which treats the ideal boundaries. It contains the exposition of the
traditional treatment of Martin and Poisson boundaries in connection with the
Dirichlet problem at infinity and the recent developments in the boundary theory
of discrete groups and hyperbolic graphs.

The reader might still think that the random walk problems are easy to solve
and no complications should appear because the geometric object is just one di-
mensional and the transition operator is a difference operator. Admittedly, it is
true that looking at peculiar phenomena appearing in higher dimensional spaces
and in analysis of differential operators is not the business for graphs. Furthermore,
the easy construction of examples of graphs possessing desired properties is a big
advantage as exhibited in this book. But, there are nonetheless difficulties in the
analytic study of infinite graphs which are of the same degree of difficulty as in
the case of open Riemannian manifolds. For instance, we do not know, in general,
much about the spectra of the transition operators on an infinite regular graph even
though its universal covering graph is the regular tree for which the spectra of the
transition operators are well-understood, The case of Sierpinski graphs suggests to
us that the spectra can be quite complicated. In some cases, exotic phenomena
that never appear in “continuous models” may arise for graphs (for example, Can-
tor spectra for discrete magnetic Schrödinger operators on Z2, a discrete analogue
of the Schrödinger operator with a uniform magnetic field on R2 whose spectrum
consists only of eigenvalues called the Landau level; see M.-D. Choi, G. Elliott and
N. Yui [2]).

This carefully written book grew out of the survey paper by the author [9]
published in 1994, which became a fundamental reference for the geometric studies
of random walks. The organization of the book is well-thought-out. A “Note”
which contains information and comments on further studies is found at the end
of each chapter. This Note, together with the extensive list of references, is useful
to newcomers to the subject who want to know what has already been known. As
pointed out by the author in the preface, this book is not self-contained, so that it
is intended for graduate students and researchers working in stochastic processes.
I think, however, that from the nature of the materials and their presentations,
the book is also accessible to undergraduate students and a motivated reader with
some basic knowledge of probability and functional analysis. The reviewer has a
very high opinion of this book.
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