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Perhaps the most famous theorem of the 1960’s, the Atiyah-Singer index theorem
bears all the hallmarks of great mathematics: it draws on and relates several fields
in mathematics, explicating and amplifying relationships between them, and in turn
contributes to the internal structure of each. Mathematicians such as Agranovic,
Gelfand and Seeley had already attacked the basic problem from an analytic view-
point, and various beguiling special cases, such as Hirzebruch’s signature formula,
were already known. But it was the insight of Atiyah and Singer to use K-theory to
formulate and solve this problem. Another of their principal discoveries was the use
of spinors and the existence of the Dirac operator in a general Riemannian context.
Atiyah [At] has given an excellent account of his role in the development of the
subject.

The index theorem itself equates an analytic quantity, the index of an elliptic
operator P on a compact manifold M , with certain characteristic numbers of M .
More precisely, P : C∞(M ;E)→ C∞(M ;F ) is a differential (or pseudodifferential)
operator carrying smooth sections of a bundle E over M to smooth sections of
another bundle F . For every point of the cotangent bundle (x, ξ) ∈ T ∗M the
principal symbol of P , σ(P )(x, ξ), is a homomorphism carrying Ex, the fibre of E
at x, to Fx. When P is differential, the symbol may be defined in local coordinates
by formally replacing each derivative ∂/∂xj by 1

i ξj to obtain a polynomial in ξ
(with coefficients depending on x) of order m, the order of P ; the principal symbol
is obtained by dropping all terms of homogeneity less than m. P is said to be
elliptic when this homomorphism is invertible for all x ∈ M and 0 6= ξ ∈ T ∗x (M).
In particular, if P is elliptic, the rank of the bundles E and F is the same. Basic
elliptic theory shows that when M is compact

P : C∞(M ;E) −→ C∞(M ;F )

is a Fredholm mapping: namely, its nullspace is finite dimensional, and its range is
closed and has finite dimensional complement. The index of P is defined to be the
difference of the dimensions of the nullspace and of this complement. In terms of
the adjoint operator P ∗ it may also be expressed as

indP = dim null (P )− dim null (P ∗).

The formula of Atiyah and Singer equates this index with a characteristic number
of M associated to a bundle over M constructed using the principal symbol σ(P ).

Although it might seem unlikely that one could compute a quantity of this com-
plexity, the index possesses considerable stability properties. In particular, if Pt is a
continuous one-parameter family of elliptic operators, then ind (Pt) is independent
of t, even though the dimensions of the nullspace and cokernel of Pt may jump as
t varies. The first proof of the general theorem [AS1] uses this and other, more
dramatic, forms of stability (invariance under cobordism) to reduce the problem
to the consideration of twisted Dirac operators on products of complex projective
spaces. This proof is exposed in [Pa].

c©1996 American Mathematical Society

125



126 BOOK REVIEWS

Central to this argument is the fact that these twisted Dirac operators generate,
in a K-theoretic sense, and up to deformation, all elliptic operators. (This is more
straightforward if the underlying manifold M is spin, but somewhat subtler and
less direct in general.) In making this precise, it is important to widen our scope
to let P vary amongst elliptic pseudodifferential operators. These are defined by
replacing the symbol of P by a more general function which has an expansion, as
|ξ| → ∞, in homogeneous functions in ξ of degrees decreasing to −∞. In the early
’60’s, pseudodifferential operators were new on the scene; only a few years earlier
Seeley had demonstrated the coordinate invariance, in a suitable sense, of singular
integral operators, leading to the possibility of defining them on manifolds. (Indeed,
the index theorem, along with Calderon’s proof of uniqueness for the Cauchy prob-
lem, was a principal motivation for the further development of pseudodifferential
operator theory.)

This original proof was sufficiently complicated, and drew on enough sophisti-
cated machinery, that there was a real motivation to simplify it. The K-theoretic
part of this argument works quite generally and shows that it suffices to establish
the theorem for Dirac-type operators on any manifold in order to establish the gen-
eral result. Not long after, Atiyah and Singer found another argument [AS2] which
proceeds by embedding the manifold into Euclidean space and applying a direct
image construction from K-theory, thus obviating the use of cobordism.

Not until the end of the decade was the fundamental role played by the heat equa-
tion realized. This new sort of proof opened up many connections with physics,
as well as leading to numerous generalizations of the basic theorem. McKean and
Singer [McS] discovered the basic spectral cancellation. Namely, the action of P
yields an isomorphism between the eigenspaces corresponding to nonzero eigenval-
ues of the auxiliary nonnegative self-adjoint operators P ∗P and PP ∗. This means
that all terms arising from nonzero eigenvalues in

Tr e−tP
∗P − Tr e−tPP

∗
=
∞∑
j=0

e−tλj −
∞∑
k=0

e−tµk ≡ f(t)

cancel, where {λj} and {µk} are the sets of eigenvalues for P ∗P and PP ∗, respec-
tively. (Other functions of P ∗P and PP ∗ can (and have been) used instead; the
heat kernel is a sensible choice since it can be characterized by a simple PDE, hence
is more directly constructible.) Thus f(t) is independent of t and identically equals
the index of P . But we may also compute its value as t → 0+. In this limit, the
heat kernels may be approximated by their parametrices up to any finite order in
t, and these are constructed from local data alone. This shows that indP is the
integral over the manifold of an integrand constructed purely from local data; the
important problem of identifying this local integrand remains. As noted earlier, it
suffices to do this for generalized Dirac operators.

The trace of the heat kernel of a second order self-adjoint elliptic operator L,
with eigenvalues {λj}, on an n-dimensional manifold has an expansion of the form

Tr e−tL =
∞∑
j=0

e−tλj ∼ t−n2
∞∑
`=0

a`t
`.

The coefficients a` are called the “heat invariants” of L, and they are known to be
integrals of quantities depending only on a finite jet of the metric and the symbol
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of the operator (the order of the jet increases with `). The term of interest here is
the difference in the coefficient of t0 in the two heat kernel expansions.

At this stage, the problem becomes essentially algebraic. Patodi first made the
calculations, by heroic brute force, for the Gauss-Bonnet operator (d+d∗ acting on
even degree forms of a manifold), and some other natural geometric operators. He
discovered “a miraculous cancellation” — namely, even though both heat invariants
have quite complicated expressions, the difference between the two is much sim-
pler and can be identified with a representative in cohomology of the appropriate
characteristic class. A simpler approach was found by Gilkey [Gi] for these and
other geometric operators, and the procedure was finally systematized fully using
invariant theory by Atiyah, Bott and Patodi.

This final argument is still not elementary, but in the early 1980’s, Getzler [Ge]
discovered a very simple explanation for the miraculous cancellation for generalized
Dirac operators D. (Closely related approaches were discovered independently,
and essentially simultaneously, by the physicists Friedan, Windey and Alvarez-
Gaumé.) He defined a rescaling of the underlying Clifford bundle, using the variable
t, in terms of which the heat kernel expansions commence with t0, rather than
t−n/2. (Patodi and Kasparov also understood the filtration of the Clifford bundle
and its possible uses in this direction.) In fact, the heat kernel restricted to the
diagonal (rather than just its trace) has an asymptotic expansion of this form.
Since the leading term of an asymptotic expansion is always the easiest one to
compute, it is then not hard to see that the coefficient of t0 in this expansion,
which is a differential form of mixed degree, has top degree component precisely
the Chern-Weil representative for the characteristic class! The rescaling reveals that
the correct model operator for D∗D and DD∗ is a (quantum) harmonic oscillator,
i.e. an operator of the form ∆ + a2|x|2, where the coefficient a is the curvature
2-form of the metric. The form of the heat-kernel for the harmonic oscillator was
discovered by Mehler in the 19th century, and inserting this curvature form into it
yields the expected answer.

Identifying this local integrand (or better, the leading term in the expansion of
the heat kernel on the diagonal) in more general contexts is an industry in its own
right, and the result is known as the “local index theorem”. Beyond its role in the
proof of the original index theorem, outlined above, it is needed for the numerous
generalizations of the Atiyah-Singer theorem for which the heat-kernel proof is the
only one known. Chief amongst these generalizations is the Atiyah-Patodi-Singer
index theorem for manifolds with boundary [APS]. Another generalization which
has also proved important in physics is the families index theorem; the local index
theorem in this context was originally proved by Bismut [B] using probabilistic
methods, but it can also be proved quite efficiently by more direct heat-kernel
methods. The local index formula of Connes and Moscovici [CM] should also be
included here.

Beyond the names already mentioned, many others have contributed significantly
to the development of this subject, including Quillen, Cheeger, Müller, Donnelly,
Stern, Lott, Freed and Melrose, to name just a very few. The subject is still very
active and expanding in many directions. To this reviewer, one of the most inter-
esting is the extension of index theory to various classes of noncompact manifolds,
including locally symmetric spaces.

The book under review, by Berline, Getzler and Vergne, is an outstanding mono-
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graph on this beautiful subject. As its title promises, the viewpoint adopted here
is the systematic use of heat-kernel techniques to study a variety of topics in index
theory. The topics covered reflect the tastes of the authors; many results here are
due to them, and many other important results are included, often with new proofs
to fit the general flow of ideas. Also noteworthy is the consistent use of the Quillen-
Bismut superconnection formalism. Although in principle self-contained, this book
might be a bit heavy for the utter novice, but it treats all the background material
thoroughly and well. In particular, a construction of the heat-kernel for second
order geometric operators is included; although this appears in other places, this is
a particularly readable and complete account. The section on geometry, including
the discussion of characteristic classes, is probably too brief for someone who has
never encountered them before, but the discussion of superconnections is good.

There are two, essentially independent, proofs of the local index theorem given
in the fourth and fifth chapters. The first of these follows the method of Getzler
sketched above, while the second involves a different construction of the heat-kernel
by working on the principal bundle due to Berline and Vergne. This second proof
brings in the group theory quite explicitly, leading to the central focus of the next
few chapters. This is an explanation of why the index density function is so similar
to the Jacobian of the exponential map of a Lie group, and ultimately to the
quantity appearing in Kirillov’s formula for the equivariant index of a compact Lie
group. Vergne’s address at the Warsaw International Congress [V] gives a very nice
overview of her work with Berline on these matters. Chapter 7 covers some classical
material on equivariant differential forms, as well as newer results. This chapter
is invaluable for the reader with a more geometric and/or analytical bent, since
this material is not presented anywhere else (to my knowledge) in such a unified
fashion, and other sources for it are written assuming much more knowledge of Lie
theory.

The ninth and tenth chapters contain a very accessible treatment of the con-
struction of the index bundle and the families index theory, much of which is due
to Bismut.

A specific and novel goal throughout the book is the construction of explicit dif-
ferential forms representing the index class. Although this is not strictly necessary
for the index theorem itself, it becomes much more important when considering
anomaly formulæ, or the construction of eta and analytic torsion forms arising in
adiabatic limits.

This book joins other recent monographs on closely related topics, in particular
the excellent books by Lawson and Michelsohn [LM] and Roe [R]. Roe’s book is
the more closely related of the two to the book by Berline, Getzler and Vergne,
but it is somewhat more elementary and covers fewer topics, in particular, none
of the more group-theoretic results. The book by Lawson and Michelsohn is more
consistently topological and includes, for example, a more complete discussion of
Clifford modules. Each of these books has a rather different viewpoint and covers
rather different material than the others, but they all belong on the bookshelf of
anyone seriously interested in this field. Obviously there are relevant topics which
had to be left out, such as the work of Bismut, Gillet and Soulé on the arithmetic
Riemann-Roch theorem, but by any standard this book is an outstanding addition
to the literature.
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