BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 33, Number 1, January 1996

Compatibility, stability and sheaves, by J.L. Bueso, P. Jara, and A. Verschoren,
Pure and Appl. Math., vol. 185, Marcel Dekker, New York, 1995, xiv + 265
pp-, $125.00, ISBN 0-8247-9589-X

The focus of this book is to construct an appropriate setting in which to do
algebraic geometry over noncommutative noetherian rings. The principal tool of
“modern” algebraic geometry is the structure sheaf Og associated to the topological
space Spec(R) of any commutative ring R. The space Spec(R) consists of all prime
ideals of R endowed with the Zariski topology, i.e., open subsets are determined by
the ideals I of R as follows:

X(I)={P € Spec(R) : I ¢ P}.

For a principal ideal J with generator f, the sheaf associates to the basic open
set X (J) the ring of fractions Ry. Here, Ry is the localization of R at the mul-
tiplicative set consisting of the powers of f. This can be extended in a natural
fashion so that to any open set X (I) one associates the ring of sections, denoted
I'(X(I),Ogr). Furthermore, this extension defines a contravariant functor to the
category of sheaves of rings. If R is noetherian, then the explicit structure for the
ring of sections for an arbitrary open set X (I) is given by Deligne’s formula

D(X(I), Or) = lim Hom(I", R).

The stalk over a point P € Spec(R) is then Rp, the localization of R at the set-
theoretic complement of P.

Several difficulties arise when one attempts to extend this sheaf construction to
noncommutative rings. To simplify matters, assume that all noncommutative rings
are both left and right noetherian. While there are some “obvious” methods of
constructing a presheaf over Spec(R), in general these do not yield a sheaf. Even
when restricting to a certain subtopology of the Zariski topology on Spec(R)—
which insures that the presheaf is a sheaf—the process will not be functorial. Before
proceeding to describe how the authors address these issues, it is convenient to
review the basic definitions and terminology of noncommutative localization theory.

The process of “inverting” the elements of a multiplicative subset of a commuta-
tive ring is a relatively simple one seen in a first year graduate algebra course. The
first example one considers, of course, is the construction of the rationals from the
ring of integers, the rationals being the set of all “fractions” a/b, a and b integers,
b # 0 with the usual relation a/b = ¢/d if ad = be. More generally, if S is a multi-
plicatively closed subset of R, then one forms the ring of fractions of R with respect
to S by considering all fractions with the denominator an element of S and defining
a/b = c¢/d if ad —be is annihilated by an element of S. Addition and multiplication
extend in a natural fashion from R to this new set so as to form a ring. The most
important example of a multiplicatively closed set is the complement of a prime
ideal P in R. Recall that an ideal of a commutative ring is prime precisely when its
complement is a multiplicatively closed set. The ring of quotients at such a set is a
local ring, i.e., a ring with a unique maximal ideal. Furthermore, noetherian local
rings are well understood. Hence this process of forming a ring of fractions with
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respect to a multiplicative set is commonly called localization (at a multiplicative
set).

The relation defined above on the “fractions” is not, in general, a congruence
relation when the ring is noncommutative. Hence this process of localization or
inverting elements cannot be applied to noncommutative rings to obtain a sheaf
over Spec(R). However, an abstract technique of localization due to Gabriel [G]
can be used in its place. This method is motivated by the observation that the
rational number 2/3 can be thought of as the map from the ideal 3Z to the integers
Z which sends 3 — 2. Then two maps are “equal” if, when restricted to the
intersection of their domains, they are equal as functions. Hence, if Q is the ring
of rationals and J the set of nonzero ideals of the integers Z, then

Q ~ lim Hom(J,Z).
Jeg
The set of nonzero ideals of Z is an example of what is called an idempotent or
Gabriel filter of left ideals in a ring R (see also [Gol], [Go2] or [S] for the definitions
and basic results). If o is such a filter of left ideals and if T = {z € R : Jx =
0, for some J € o}, then one can show that T is an ideal and

Qs(R) = lim Hom(J, R/T)
JEO‘
is a ring called the localization or ring of quotients of R at o.

An important example of an idempotent filter is obtained by fixing some two-
sided ideal I of R and letting o7 be the set of ideals that contains some power
of I. If R is commutative and I = (f) is principal, then the localization of R
at oy is canonically isomorphic to the localization of R at the multiplicative set
consisting of the powers of f. Denote by Q;(R) the localization of R at o;. In
a result of interest in its own right that also motivates some of the later work in
the book, the authors prove a generalization of Deligne’s formula that states that
if R is commutative and I a finitely generated ideal (for the moment we need not
assume the R is noetherian), then

L(X(I), Or) = Q1(R).

With these tools a presheaf over Spec(R) can readily be constructed by asso-
ciating to each open set X (I) the ring Q;(R). However, this fails to be a sheaf
on Spec(R) because for arbitrary idempotent filters ¢ and 7 over noncommutative
rings the localization functors @, and @, need not commute as they do over com-
mutative rings. To remedy this situation the authors consider a subtopology of the
Zariski topology (a topology that yields the full Zariski topology on Spec(R) when
R is commutative) by using only open sets of the form X (I), where o is a cen-
tralizing biradical. The functors Q; and @ ; will commute in this case, and so one
obtains a sheaf over Spec(R). Without going into a precise definition, o; will be a
centralizing biradical essentially when [ satisfies the left and right Artin-Rees prop-
erty. In fact, these two properties are equivalent with the additional assumption
that R satisfies the strong second layer condition. This condition will be discussed
in more detail later. An ideal I in R is said to have the (left) Artin-Rees property
if for any left R-module M and submodule N, given a positive integer n, there
exists a positive integer r such that I"M NN C I"N. The well-known Artin-Rees
Lemma (cf. [Ma]) states that every ideal in a commutative noetherian ring has the
Artin-Rees property.
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While the subtopology determined by the ideals with the Artin-Rees property
appears to be rather small, there are in fact many noncommutative rings that
have sufficiently large numbers of ideals satisfying this property, e.g., enveloping
algebras, certain group rings, pi rings. As stated above, the presheaf over Spec(R)
with this subtopology is a sheaf; unfortunately it is not functorial. Indeed, an
arbitrary ring homomorphism ¢ : R — S does not even induce a map from
Spec(S) to Spec(R), since the inverse image of a prime ideal is not necessarily
prime. However, there are large classes of homomorphisms that behave well with
respect to prime ideals. In recent years much work has been done on centralizing
and strongly normalizing ring extensions. A ring homomorphism ¢ : R — § is
called centralizing if S, as a module over R, is generated by elements that commute
with the image of each element of R. It is called strongly normalizing if S, as a
module over R, is generated by elements that commute with the image of each ideal
of R. If ¢ is a centralizing ring homomorphism, then it will induce a continuous
function from Spec(S) to Spec(R), assuming they are endowed with the above
subtopology. A strongly normalizing extension, which is a weaker condition, will
also induce a continuous map between the prime spectrums if R is assumed to have
an additional property. This property is again the strong second layer condition,
which involves the structure of the indecomposable injective modules. Roughly
speaking, R satisfies the strong second layer condition if the second layer of any
indecomposable module FE is well behaved. By the second layer of £ we mean the
module E/Np(E), where P is the prime ideal of R associated to E and Np(E) =
{zr € E : Pz = 0}. The structure of this module is well understood when R
is commutative noetherian (see [M]). The second layer and strong second layer
condition arose in the study of classical localization theory, i.e., determining when
a multiplicative subset S of a noncommutative ring R is sufficiently nice so that the
classical localization of R with respect to S exists. By the classical localization we
mean a ring Q(R) and a ring map ¢ : R — Q(R) such that (i) ¢(s) is invertible
for each s € S and (ii) each element of Q(R) can be written in the form ¢(s)™1p(r)
for some s € S and r € R. See for example [GW] or [J]. One then has the following
result on the functorial properties of the sheaf:

Theorem. Let ¢ : R — S be a ring homomorphism between noetherian prime
rings. Then ¢ induces a morphism of ringed spaces

(Spec(S),0s) — (Spec(R), Or),
whenever one of the following is true:

1. ¢ is a centralizing extension,
2. ¢ is a strongly normalizing extension and R satisfies the strong second layer
condition.

By taking global sections, the above morphism of ringed spaces will yield back
the ring homomorphism ¢ : R — S.

The book contains a complete and quite readable introduction to both abstract
and classical localization theory. In fact, it is somewhat rare to find a book that
deals with both of these topics, since most ring theorists tend to work on one
of these areas to the exclusion of the other. The authors use tools from both
areas to examine the ideal structure of noncommutative rings and the behavior of
this structure under localization and ring extensions. Ring theorists working in
either abstract or classical localization theory will be interested in this book to see
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the interplay between the two subjects and how they combine so as to describe a
noncommutative setting for algebraic geometry. The book also sheds light on some
of the geometry of commutative, non-noetherian rings.

While the book draws on existing papers, many of which were written by the
authors themselves, it also contains improvements on the known results along with
shorter proofs. The final sections of the book contain new results on structure
sheaves and their functorial properties for certain classes of ring extensions. The
book is a very accessible introduction to noncommutative algebraic geometry as
well as a valuable resource for any mathematician interested in working on this
topic.
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