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In preparation for this review, I decided to remind myself how I became interested
in automorphic forms as an undergraduate. I seem to remember that Eric Temple
Bell [1] had something to do with it. Imagine my surprise when I found the following
statement on page 333 of [1]: “The subject, elliptic functions, in which Jacobi did
his first great work, has already been given what may seem like its share of space;
for after all it is today more or less of a detail in the vaster theory of functions of
a complex variable which, in its turn, is fading from the ever-changing scene as a
thing of living interest.”

After wondering how I could have gone into a dead field, I looked up my review
[19] of Serge Lang [10]. I think that review made a pretty good case that the subject
of automorphic forms (even the special case of modular forms) was still alive in 1980.
Now we can also point to the proof by Andrew Wiles of Fermat’s Last Theorem via
the Shimura-Taniyana conjecture (and as mentioned in a recent “Star Trek Deep
Space Nine” episode, the subject may still be alive in the twenty-fourth century).

So then I looked again at Paul Garrett’s review [3] of my book [18]. The upshot
of the review was a complaint that I had not written a book about group repre-
sentations and further had skipped the hard details. But I will try not to play a
similar trick on the author of the book under review. For once more, the Bulletin
has chosen a reviewer who would write a completely different book. Unlike [18], the
book under review is certainly not full of “extra-mathematical applications and ref-
erences”, nor can it be criticized for leaving out the hard details. This is a treatise
for the specialists.

This book does give evidence that E. T. Bell was wrong. We are dealing here
with a living field. It is not a subfield of complex analysis. Nor is it a subfield of
group representations. Bruggeman’s book uses functional analysis and the theory
of several complex variables instead. But there is an intersection with most parts
of mathematics.

As I have hinted, if you do not know anything about modular forms, this is
not the book for you. You should first look perhaps at Svetlana Katok’s beautiful
introduction to the subject [9], or at [10], or even at [18, Chapter 3]. A brief
summary of the entire subject can be fund in the Japan Mathematical Society
Encyclopedia article on automorphic forms [8].

To explain a bit about the subject, let us consider a favorite modular form, the
cuspidal Maass wave form. It is an SL(2,Z)-invariant eigenfunction for the non-
Euclidean Laplacian on the Poincaré upper half plane H, such that f(z) goes to 0
as z approaches the cusp at infinity. More precisely, a cuspidal Maass wave form is
a function f : H → C which satisfies the following three conditions for all z ∈ H:
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= f(z), for all a, b, c, d ∈ Z, ad− bc = 1;2)

f has vanishing constant term in its Fourier expansion3)

in the x = Re(z) variable.

At the time of E. T. Bell’s book, people such as Erich Hecke studied holomorphic
cuspidal modular forms of weight k. This means that 1) was replaced with f(z)
holomorphic and the right-hand side of 2) was replaced with (cz + d)kf(z). Hans
Maass changed all this around 1949 (see [13]), and by the mid-1950s Atle Selberg
[17] saw how to use Maass wave forms in his trace formula. It turns out that
the cuspidal Maass wave forms are much more mysterious than their holomorphic
counterparts. For example, the Ramanujan conjecture is still open for the Maass
cusp forms, but not for the holomorphic cusp forms. Moreover, there is no nice
construction of Maass cusp forms. The tables of eigenvalues and Fourier coefficients
in [18] were obtained using computers and are mere approximations to reality.

There are also favorite functions satisfying 1) and 2) but having polynomial
growth in y as y goes to infinity and thus not satisfying 3). Eisenstein series
span this space. The main object of Part I of the book under review is to give a
generalization of work of Y. Colin de Verdière [2]. This leads to the meromorphic
continuation of Eisenstein series jointly in weight k and spectral parameter. The
subject of meromorphic continuation of Eisenstein series has probably caused a
number of forests to be decimated. In the higher rank case (e.g., for SL(n,Z),
n > 2) you can get some feel for the subject by reading Langlands’s review [11] of
the book of Osborne and Warner.

Maass’s generalization of the concept of modular form in [13] manages to include
holomorphic modular forms as well as Maass wave forms. The book under review
follows Maass. Then a real analytic modular form f of even weight k satisfies:
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for all a, b, c, d ∈ Z, ad− bc = 1;

f(z) = O(ya), as y →∞, uniformly in x.3′)

If k is not an even integer, as is the case for the Dedekind eta function

η(z) = eπiz/12
∏
n≥1

(1− e2πinz),

one needs to introduce multipliers into 2′). See page 11 of the book under review.
The multiplier system for the eta function can be described explicitly in terms of
Dedekind sums (see Lang [10, Chapter 9]):
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{
0, if t ∈ Z,
t− btc − 1/2, otherwise,

where btc = Floor of t = [t] = greatest integer ≤ t. Dedekind sums have been of
great interest to number theorists and others. The book [21] of Hans Rademacher
and Emil Grosswald explains some of the fascination with the subject.

One application of the meromorphic continuation of the Eisenstein family, jointly
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in weight k and spectral parameter λ, is to obtain distribution results for Dedekind
sums. This can be found in Bruggeman, Chapter 13. There is an interesting picture
on page 260 showing the distribution of a quantity connected with Dedekind sums.

One must also replace Γ = SL(2,Z) with other discrete subgroups Γ of G =
SL(2,R) such that the volume of Γ\H is finite. Examples studied in later chapters
are the theta group and the commutator subgroup of Γ. Bruggeman considers
subgroups of the universal covering group of SL(2,R) as well. This makes it easier
to deal with multipliers.

The local behavior of cusp forms under variation of the discrete group or the
multiplier system has also been considered by Dennis Hejhal [6]. Ralph Phillips and
Peter Sarnak [14] consider analytic variation of the Riemannian metric and show
that the nonvanishing of certain L-functions at a point implies the annihilation of
a cusp form. This has led Sarnak to conjecture that the existence of cusp forms
is tied to arithmetic groups such as congruence subgroups of SL(2,Z). See Sarnak
[15].

Some of these topics are connected with some new life that physicists have been
blowing into the subject. We are talking “arithmetic quantum chaos” here (see
M. C. Gutzwiller [5] and Sarnak [15]). Quantum physicists and Colin de Verdière
asked if the contour maps of cusp forms would localize on geodesics as the eigenvalue
λ goes to infinity. Z. Rudnick and P. Sarnak proved this does not happen for
congruence subgroups.

D. Hejhal and B. Rackner [7] conjectured that the distribution functions of the
cuspidal Maass wave forms for SL(2,Z) tend to Gaussian with mean 0 and standard
deviation Vol(X)−1/2 as λ goes to infinity. You should look at this last reference
just for the beautiful color pictures giving the contour maps for Maass cusp forms
for SL(2,Z). Pictures of the level curves are also given. The curves given by
f(z) = 0 are called “nodal lines”, and they show where a non-Euclidean vibrating
drum will be at rest during eigenvibrations. The computations were done with a
supercomputer.

Many people tody are working on higher rank groups, despite the complicated
formulas these groups produce. Yes, the subject is recondite and complex enough
that sometimes audiences laugh at you when you produce your beloved formulas.
Still, one can derive some joy from seeing progress. I personally have been happy
to see the papers of my students Dorothy Wallace [20] and Doug Grenier [4]. They
show that in fact one can successfully stick to the classical style of Hecke, Siegel,
and Maass in the study of automorphic forms for GL(n,Z).

Finally, the subject lives in the books of Peter Sarnak [16] and Alexander
Lubotzky [12]. These books show that modular forms can be applied to the most
amazingly diverse subjects—expander graphs which can be used to produce efficient
communications networks and to the question of whether the Lebesgue measure on
the n-sphere is the unique rotationally invariant mean on L∞(Sn). These problems
are reduced to that of estimating the size of Fourier coefficients of modular forms.
That is, they are reduced to the Ramanujan conjecture on the size of the Fourier
coefficients of holomorphic cuspidal modular forms.

A last question is: Why is this book so expensive? Which leads to another
question: Why are my books so expensive? Perhaps there should be a special price
for students. I do not know any graduate student who will spend $50 for a book,
much less $99.
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