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Topological manifolds are very simple objects to define: they are separable metric
spaces that are locally homeomorphic to Euclidean space. In other words, these
are objects which are locally coordinatized but not globally so.

Smooth manifolds require additional effort in definition; one must choose coor-
dinate charts and insist on compatibilities among them. This makes it possible to
define the class of smooth maps between manifolds. Sard’s theorem, the implicit
function theorem, and other tools of calculus are now available, and one can begin
to explore the geometry of manifolds. For instance, if one starts with an arbitrary
map M — R and takes a suitable generic approximation, one obtains a smooth
function with isolated critical points and nonvanishing Hessian at each of these
points. Applying the Morse lemma (see [Mi2]) to this function gives what is called
a “handlebody decomposition” for the manifold. This is an essentially combina-
torial object that can be successfully manipulated. Moreover, the calculus of such
manipulations can be algebraicized in a rich and beautiful fashion.

Ultimately, transversality and handlebody decompositions together with the
techniques of surgery and healthy doses of homotopy theory and algebra/number
theory give us our modern theory of smooth high-dimensional manifolds as de-
veloped by Smale, Kervaire-Milnor, Browder, Novikov, Sullivan, Wall, and many
others. A rather good explanation of this development can be found in Wall’s book
[Wal] (or Browder’s [B] for the simply connected case), augmented by [O, H] for
the necessary algebra and [MM] for the homotopy theory. (A useful introduction
may be found in [KO].) Rothenberg’s review [RO] gives an historical overview of
this work.

For topological manifolds the analogous geometric tools do not seem to be avail-
able. Moreover, there are a number of very useful generalizations of manifolds, such
as orbifolds, where one can prove that these tools do not exist: transversality is
obstructed!, and the analogs of handlebody structures generally do not exist. Even
when they do exist, they are not unique in the usual sense. (See e.g. [MR], [Q1],
and [CS1].)

Despite these difficulties, there is a beautiful and remarkably comprehensible
classification theory of topological manifolds and their generalizations which is in
many ways simpler than the smooth theory. It turns out that the tool theorems
remain true for topological manifolds but that the implications of these theorems are
somewhat different. (For the other generalizations, as I mentioned, even the tools
are gone.) One sees this immediately in the classification of manifolds homotopy
equivalent to the sphere: smoothly there are very many, and their number is a quite
irregular function of dimension. Topologically the sphere is the only such manifold
(except perhaps in dimension three). Formally this is reflected in the classifying
space of topological bundles being rather different from Grassmanians. The extra
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complexity in the classifying space for topological bundles precisely counters the
complexity of the smooth homotopy spheres.

Here would be an appropriate place for me to describe the long and tortuous
path to this classification, how the missing tools are provided for the topological
category and the surprising role that understanding manifolds homotopy equivalent
to the n-torus (provided by [HS] and [Wa2]) plays, but developing this theory is
the focus of the book [KS]. Instead I will focus on what the answer is.

For that I need notation. Let M be a manifold, perhaps with boundary. S(M)
will denote the set of pairs (N, f), where f is a (simple) homotopy equivalence
from a manifold N to M. We view (N, f) as being trivial if f is homotopic to a
homeomorphism. If there is boundary, we assume that all maps restrict to homeo-
morphisms on the boundary.

Theorem. If n = dim M is at least 5,S(M) is an abelian group. If OM # 0, it
can be computed via the following long exact sequence:

- — Lpt1(mM) - S(M) — Hy,(M; L) — L,(mM).

Here the groups L, (m1 M) are functors of the fundamental group (and orientation
character, which we have suppressed from the notation) and Hy,(M;L) is the nth
term in a generalized homology theory.

The hypothesis is that M # @ can always be achieved by removing a small
open ball from M and is only a very small nuisance. One would otherwise have to
replace the homology term by a slightly more complicated one than I have in mind.
(It would also be homological, but it would differ slightly depending on n.)

The groups L, (m1 M), called surgery groups, are generalizations of Witt groups
of quadratic forms over the integral group ring of my M. The group H,(M;L) is
not too mysterious: at 2 it is a sum of (ordinary) homology groups, and away
from 2 it is KO-theory (i.e. the theory dual to real vector bundles). The map
H,(M;L) — Lu(m M) is remarkable: it relates characteristic class theory (i.e.
tangential information) to underlying algebraic topological invariants of the space.
When M is simply connected and n = 4k, this map encodes the Hirzebruch signa-
ture theorem (see [Hi]). It is traditional, although mystifying to beginning surgeons
and, even more so, to specialists in other fields, to call this map the assembly map.

I should remark that just as the modern approach to the Hirzebruch signature
theorem sees it as a special case of the Atiyah-Singer index theorem, there is a close
analogy between many aspects of surgery theory (and, in particular, the assembly
map) and more modern index theory; see [Ros, W1, Ob] for more details.

The connection between geometry and algebra implied by the assembly map can
be achieved in one of two ways: given a geometric definition of L-groups (already
done in Wall’s book) or giving more algebraic treatments of the geometry.? Ranicki
has been an active advocate for this second approach, and it has much to recommend
it. Extending earlier work of Mishchenko, he has shown that the Witt groups can be
thought of as “cobordism classes of algebraic Poincaré complexes”. These flexible
objects can sometimes be chopped up as manifolds can, and they can be glued
together. On the other hand, since they are defined by pure algebra, one can use
all of the standard algebraic tools, like localization and completion, to study them.

Note that here the characteristic class theory is viewed as being a theory of
homology characteristic classes. Of course, for manifolds one generally has Poincaré

2In index theory this is provided by the Ext interpretation of K-homology; see e.g. [D].
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duality, and the choice of homology over cohomology is therefore a matter of taste;
but (1) the orientability of manifolds for the relevant homology theory is quite a
deep matter (due to Quinn and Ranicki), and (2) the translation of the data into
homology makes functoriality possible, as the L-groups are covariantly functorial,
while cohomology theories are contravariant. Thus, a rather deep aspect of this
sequence is that it enables one to make S(M) a covariant functor of M (with respect
to orientation-preserving maps between manifolds whose dimensions only differ by
multiples of 4). Yet more remarkable is the fact that this sequence has a 4-fold
periodicity (due to Siebenmann, with a correction by Necas)—analogous to Bott
periodicity (see [B1])—at least if M has nonempty boundary S(M) =2 S(M x D*).
This is one place where the topological theory is simpler than the corresponding
smooth theory—functoriality is not known in the smooth category, and periodicity
is hopelessly false.

To summarize, I have presented a formal exact sequence that computes the
manifolds homotopy equivalent to a given one up to homeomorphism. I have asked
you to believe this summary, despite the fact that the tools that could prove it in
the smooth case are absent and the fact that it is not even true, as stated, in the
smooth category. What happens in the smooth case is that there is in fact a surgery
sequence, except that the term replacing H,,(M; L) in the sequence is of the form
[M: F/O], where F/O is a very mysterious space, so that calculations are hard.
Furthermore, the functor M — [M: F/O] is contravariant—a defect which does
not allow for producing a functorial surgery exact sequence, since the L-groups are
covariant functors of the groups.

This understanding of the subject would be enough for someone who is just
interested in the problem of computing S(M) in the topological category. (And
occasionally, one can get smooth results by comparison; see [W2].) All of the terms
in the surgery exact sequence have been carefully studied, and one can appeal to
the literature I mentioned before.?> But that would really miss another key aspect
of the whole subject. Notice the notation: The homology theory is with coefficients
labeled by the same symbol as the surgery group L. This is not abuse of notation.
From the modern point of view, the homology term is essentially the same sort of
object as the algebraic term. In other words, the homology term is a group built
up out of something like a self-dual complex of modules “spread over M”, while
the algebraic term is described as the same thing, except that it is concentrated at
a point.

In other words, surgery theory asserts that S(M) is a measure of the difference
between “local” and “global ” L-groups. This local-global aspect of the answer has
been of profound significance in a number of more recent theoretical investigations.
(In other words, it is good for proving theorems even if it doesn’t usually help that
much for doing calculations.)

I should remark that much work done since the mid-1980s has clarified the
sense in which the homology term is to be viewed as “local L-theory”. See e.g.
[Q2, Y, FP]. (This is a major part of the subject of “controlled topology”.) But
deep and important as this work is, and while necessary for many other important
applications, its understanding is not critical for a suitably Olympian understanding
of the statement of classification as a measure of local-global mismatch.

31t seems worth noting that the calculations tend to be quite algebraic for finite groups, very
geometric for torsion-free groups, and an intricate mix for infinite groups with torsion.
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This view of classification, bereft of complicated classifying spaces, has now
spread to many other problems in high-dimensional geometric topology. The sim-
plest one to state, although the most recent, is the classification of homology mani-
folds (see [BFMW, W3]. These are spaces defined by a local homological condition
(namely, that H,.(X, X —p) =2 H,(R",R™ —0), which is the local cause of Poincaré
duality). These can be classified up to s-cobordism exactly by the sequence asserted
by the classification theorem above! In other words, by enlarging the class of spaces
considered, one can avoid the OM # () condition: it turns out that one had all along
been requiring an unnatural additional local condition (namely, manifoldness) not
required by the problem and that this extra condition only becomes natural for
spaces with boundary, when the boundary condition forces it.

Here the homology class associated to X is the result of the methods of controlled
topology applied to the self-dual sheaf given by the singular chain complex of X
(the self-duality following from the homology manifold condition). This gives a
roundabout but topologically invariant definition of rational Pontrjagin classes, the
topological invariance of which, given the usual smooth definition, was the occasion
of Novikov’s Fields Medal.

On the other hand, there are sources of self-dual sheaves other than just homol-
ogy manifolds. Intersection homology provides another important source (see [GM]
II). Self-dual sheaves can be pushed forward and occasionally pulled back, and for-
mulae for these have been quite useful in problems related to characteristic classes
of singular varieties and lattice point counting problems and Euler-MacLauren for-
mulae (see [CS2, CS3, Sh]).

Another place where assembly maps play a large role is in the theory of rigidity.
The fact about tori mentioned before is that PL homotopy tori have finite sheeted
covers that are PL homeomorphic to the torus. Topologically, there is no need
for passing to covers, and indeed in all known examples where one can understand
the manifolds homotopy equivalent to an aspherical one, there is only one! This
statement is called the Borel conjecture, and it has been verified in many cases
(see [FJ] for a survey). Critical for its understanding is the algebraic reformulation
asserting that for aspherical manifolds, an assembly map is an isomorphism. Much
of the work on this problem is devoted to proving that the assembly map is an
isomorphism for all torsion free groups. This extension would be quite hard to
phrase purely geometrically but is clearly central to the problem. In addition, this
algebraic formulation also suggests analogs in K-theory and for other functors—
generalizations that are intrinsically interesting and sometimes shed light on the
original question.

Yet another example of the power of the assembly point of view on classification
is in the theory of orbifolds (and stratified spaces; see [W1]). For simplicity let us
consider quotients of manifolds by finite group actions (rather than objects that
are just locally such). For actions of odd-order groups that are locally smooth,
Madsen and Rothenberg [MR], have, by a tour de force of geometric reasoning
combined with algebraic calculations, shown that all of the tool theorems of the
smooth (unequivariant) category have counterparts. This gave a surgery exact
sequence of cohomological type (as in the classical smooth category) and implied,
for instance, that topologically conjugate representations of odd-order groups are
linearly conjugate. (This had also been proven independently in [HP] by a less
fundamental but more direct approach.)
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On the other hand, in 1982 already Cappell and Shaneson [CS1] had shown that
topological conjugacies are quite common for representations of even-order groups,
so one knew that the tool theorems could not be pushed to this generality.

We now understand the reason. When algebraic geometers began defining char-
acteristic classes for singular varieties (see [Mp, GM], they discovered that what gen-
eralizes well are not the characteristic cohomology classes, but rather their Poincaré
duals. For nonmanifolds the difference is quite serious, because often the homology
classes cannot be pulled back to cohomology.

It turns out that the same is true in topology. We now understand that the
tools used in the smooth category such as transversality and handlebody structures
were a gift and that for a host of other problems where one wants classification
they do not exist. Nonetheless, the theory obtained by formally replacing the
cohomology classes by homology exists, has good geometric meaning, and is more
widely available. Cohomological theories are available only when transversality is.
Thus, for even-order orbifolds, it still turns out that there is a homological form
of equivariant surgery that remains valid; of necessity, it must be proven by more
complicated methods circumventing the lack of familiar tools. (Both the theorems
of [CS1] and of [HP, MR] can be obtained from this homological theory.)

Now let me turn to the book under review. Its main goal is to describe the theory
of topological manifolds as set out above. (It does not go as far as explaining how
the homological viewpoint avoids the sometimes insurmountable difficulties involved
with transversality; the author mainly deals with a situation where transversality
is true.) This involves defining the L-groups, the homology theory, and assembly
map and relating all of this to geometry. The algebraic approach to this, due
to the author, who is professor of algebraic surgery at Edinburgh, is presented
here in complete detail; this is a very valuable addition to the literature. As I
mentioned before, assembly maps arise in several areas of mathematics, and the
detailed explicit treatment given here will no doubt be widely studied.

The surgery exact sequence, as presented here, does depend on already knowing
the smooth case, and at critical points, one invokes (in effect) the topological s-
cobordism theorem and topological transversality in deducing the beautiful local-
global form from the smooth case. Thus, for the geometry behind the theory,
the reader will have to turn elsewhere. (Some sources for this kind of material
are, besides the classic works of Milnor, Browder, and Wall, the recent volumes of
[KO, W2] and unpublished notes, which I believe are available from the authors,
by Milgram-Ranicki on surgery theory and Ferry on the geometrical foundations
of the topological category.) However, the algebra, which is often omitted in more
geometric treatments and which is critical to many of the interactions between
surgery and others parts of mathematics, is here treated in great detail.

Besides this central goal, Ranicki describes a few of the directions in which
the theory is applied. He gives a rapid sketch of some of the ideas involved in
computing for finite groups, the theory of splitting homotopy equivalences, algebraic
reformulations of the celebrated Novikov and Borel conjectures, and the statements
of the results for homology manifolds mentioned above. I found these chapters
interesting and clear, and I think that a reader learning the subject from this book
would be motivated to turn also to the research literature on these topics, beginning
with the papers that Ranicki cites.

I think that the geometric topology student who wants to learn surgery theory
would still do best by starting with the classic papers and books. After one has a
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sufficient geometrical maturity, the treatment here could be better swallowed. The
organization, with Part I being “Algebra” and the topology part only beginning
after some 170 pages, would stymie such a student; but nonetheless, this material
is important, and the student must somehow ultimately come to terms with it.
On the other hand, someone who is more algebraically oriented or who is already
familiar with assembly maps from another point of view, either from, say, algebraic
K-theory, or operator theory, or even geometrically (seeing surgery problems by
gluing simplices of them together!) will find the current treatment insightful and
illuminating. I welcome its arrival to the literature (as I do Ranicki’s other efforts
aimed at covering related material in [R1, MiR]).

Final Remark. The author of this work has made available by anonymous ftp a
list of errata that he plans to update as necessary. These can be obtained on the
WWW: http://www.maths.ed.ac.uk/people/aar/. This seems to me a most
welcome application of computer technology.
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