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1. Introduction

One hundred years ago a Russian mathematician, A. M. Lyapunov, published

a major work (printed or translated variously as [10, 11]) setting forth a method

for studying stability properties of solutions of ordinary differential equations.

The method is based on the construction of a function (now called a Lyapunov

function) that serves as a generalized norm of a solution. Its appeal comes from

the fact that properties of the solutions are derived directly from the differential
equation itself (whence comes the name "Lyapunov's direct method").

This method is recognized by many investigators as the only general way

of dealing effectively with stability questions of nonlinear ordinary differential

equations. But for the past forty years it has also been used with marked success

in the study of functional and partial differential equations. A careful look

at many of these results shows that the method introduces a unifying thread
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through these historically diverse areas. And this is a thread that seems well
worth studying.

2. Stability

Let D be an open set in R" with 0 € D and let /: [0, oo) x D -> Rn be

continuous. Then

( 1 ) x' = f(t,x)   (' denotes d/dt)

is a system of ordinary differential equations and if (to, Xq) e [0, oo) x D then

there is a solution x(t, to, xq) satisfying (1) on an interval to < t < a with

x(to, to, Xq) — Xq ; if the solution remains in a compact subset of D then

a = oo. This is an existence theorem and it does not produce a solution. The

insurmountable problem we face in finding a solution is that we must integrate

an unknown function.

One alternative is to study qualitative properties of solutions from informa-

tion contained in the differential equation itself. In many problems of interest

there are special solutions that are readily found by inspection, called equilib-

rium or constant solutions. It is then fruitful to study the behavior of solutions
starting near the constant solution, and this is stability theory. There is a vast

number of important types of stability, but two of the most fundamental ones

are called uniform stability and uniform asymptotic stability. The typical exam-

ple is the model of a pendulum. When it hangs straight down or stands straight

up, it is in equilibrium. When the equilibrium is disturbed, the pendulum may

move far from that equilibrium (instability), it may oscillate periodically and
stay near that equilibrium (stability), or it may oscillate and approach that equi-
librium (asymptotic stability).

Definition 1. Let f(t, 0) = 0. The solution x(t) = 0 of (1) is
(i) uniformly stable if for each e > 0 there is a ô > 0 such that [i0 > 0,

t>to, \xo\ < S] imply that \x(t, t0, x0)\<e;
(ii) uniformly asymptotically stable if it is uniformly stable and if there is

an n > 0 and for each p > 0 there is a K > 0 such that [t0 > 0, |jc0| < n,

t > to + K] imply that \x(t, t0, x0)\ < p.

Lyapunov's direct method enters in the following way. For a given scalar

function V: [0, oo) x D -* [0, oo), if (t0, xo) is given then there is a solution

x(t) - x(t, to, xo) and, even if V bears no relation to (1), still V(t, x(t)) is
a well-defined function of t so long as the solution remains in D. If F has
continuous first partials, then we may compute

(d/dt)V(t,x(t)) ^ V(x)(t, x) = grad V . / + (dV/dt)

(2) A
= Y/(dV/dxi)f(t,x) + (dV/dt)

/=i

by the chain rule. Here, f is the z'th component of /. If V,\Jt, x) < 0, then

V is called a Lyapunov function for (1). Thus, the derivative of V(t, x(t)) is

a known function of (t, x) obtained directly from (1) itself.

Lyapunov's idea was that if V is positive definite and chosen so shrewdly

that VÁJt, x) < 0 then V(t, x(t)) < V(t0, x0), which may yield important
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boundedness properties of x(t) itself. Theorem 1 is the fundamental classi-

cal result for (1). Here, a wedge is a continuous strictly increasing function

W: [0, oo) —> [0, oo) with W(0) = 0. All functions W¡ are wedges in this

discussion.

Theorem 1. Suppose there is a differentiable function V: [0, oo) x D —> [0, oo)

and wedges W¡.

(i) If Wi(\x\) < V(t, x) < W2(\x\) and V{\}(t, x) < 0, then the zero solu-

tion of (I) is uniformly stable.

(ii) // Wi(\x\) < V(t, x) < rV2(\x\) and V(x)(t, x) < -W3(\x\), then x = 0

is uniformly asymptotically stable.

The contents of Theorem 1 are not idle suppositions. If / is smooth enough

then the theorem can be reversed; stability can be characterized by Lyapunov

functions.

The reviewed book devotes the first fifty-two pages to an introduction, appli-

cations, and refinements of these concepts. While Theorem 1 can be reversed, it

is an existence theorem and seldom do we find a Lyapunov function satisfying

its conditions perfectly. There is a long and interesting line of investigation

that proceeds from imperfect fulfillment of the conditions of Theorem 1. Its

genesis is traced to Marachkov [ 13] in 1940 and it has had much impact on the

development of functional differential equations.

Theorem 2. Suppose that V: [0, oo)xD -+ [0, oo) with V(t,0) = 0, Wi(\x\) <

V(t,x), VÁj(t,x) < -Wi(\x\), and suppose that f(t,x) is bounded for \x\

bounded. Then x = 0 is asymptotically stable.

The conclusion is similar, but weaker, than uniform asymptotic stability. The

loss of the upper wedge on V is replaced by f(t, x) being bounded.

Examining this result, Krasovskii [7, p. 67] had an idea that started a small

industry. For Krasovskii's theorem we note that a set is said to be positively

invariant if any solution entering the set remains in it for all future time. More-
over, observe that if f(t, x) is periodic in t then it is bounded for x bounded.

Theorem 3. Let f(t, x) be periodic in t, and suppose that F: [0, oc) x Z) —►

[0,oo) with Wi(\x\) < V(t,x) < W2(\x\) and V(x)(t,x) < 0. If the only

positively invariant set in which V = 0 is x = 0, then x = 0 is asymptotically
stable.

Yoshizawa [14] extended this result to nonperiodic systems and concluded
that bounded solutions remaining in D approach the set where V = 0 so long

as / is bounded for x bounded. LaSalle [9] concluded that bounded solutions
approach the largest invariant set where V = 0. Hale [4] and Haddock and

Terjéki [2] extend the idea to functional differential equations, while Henry [6,

p. 91 ] has a nice formulation for partial differential equations.

One of the most interesting consequences of Marachkov's result is the adverse

manner in which it affected functional differential equations for more than 20
years.

Let h > 0 and let C be the Banach space of continuous functions <p: [-h, 0]

-> Rn with the supremum norm ||• ||. For a continuous function x: [-h, A) —>

R" with A > 0, we denote by xt the restriction of x to the interval [t-h, t]
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translated back to [-h, 0] so that xteC and xt(s) — x(t+s) for -h < s < 0.

Let Ch be the //-ball in C and F: [0, oo) x Ch —* R" be continuous, take
bounded sets into bounded sets, and let F(t, 0) = 0. Then

(3) x'(t) = F(t,xt)

is a functional differential equation with finite delay and it has the zero solution.

For a given to > 0 and <p e CH, there is at least one solution x(t, to, cp) of
(3) on an interval [to, a) with x,0 = cp ; if it remains in Ck with K < H then

a = oo . Stability definitions for (3) are obtained from those for (1) by replacing

xo by cp and | • | by || • ||.
About 1957 Krasovskii [7, pp. 126-175] developed stability theory for (3)

in a marvelously simple way. In Theorem 1 he essentially replaced xo by

cp and | • | by || • ||. The result was true, easy to prove, and it even had a

converse. Unfortunately, it was almost thirty years before investigators learned

how to construct Lyapunov functions of that type and Krasovskii abandoned

it (cf. [7, p. 151]) in favor of a version patterned after Marachkov's result

that was crippled by the requirement that F(t,cp) be bounded for cp bounded.

Examples were readily found for the latter formulation and this result remained

the standard (cf. [5, p. 105]) until the following result [1] appeared in 1978.
Here, ||| • ||| denotes the L2-norm.

Theorem 4. Let V: [0, oo) x CH -+ [0, oo) be differentiable with Wi(\cp(0)\) <

V(t,(p)<W2(\cp(0)\) + W3(\\\<p\\\) and V^(t, xt) < -WA(\x(t)\). Then the zero

solution of (3) is uniformly asymptotically stable.

Investigators have believed that the norm in the upper wedge might be re-

placed by the supremum norm, but a recent paper by a young Hungarian, Makay

[12], indicates that this is likely to be false.
This is a small sample of the traditional presentation as may be found in the

standard texts of Hahn [3], Krasovskii [7], and Yoshizawa [15]. And much of

this is also found in the reviewed book. But the authors focus on two additional

ideas that were mainly developed by Lakshmikantham and Leela [8]. To obtain

uniform asymptotic stability, they ask for one Lyapunov function satisfying

the conditions of Theorem l(i), thus ensuring uniform stability. In addition,

they ask for another Lyapunov function that is bounded and has a positive

definite derivative (It could just as well be negative definite.) Clearly, this is

more flexible than asking for both conditions (i) and (ii) of Theorem 1 for

the same Lyapunov function. Taking this to its logical conclusion, they ask

for a vector Lyapunov function. Next, note that Theorem l(ii) implies that

^'i)(i, x) < -W4(V(t, x)). Taking this also to its logical conclusion, they ask

for a set of differential inequalities V'(t, x) < g(t, V(t, x)), where r' = g(t, r)

has certain stability properties. They conclude that V(t, x(t)) < r(t), where
r(t) is a certain solution of r' = g(t, r). (Here, V, G, and r are vectors. The

inequalities are componentwise.)

Beyond any doubt, their treatment is more general than the standard ones.

The reviewed book also has significant material on boundedness that has
very interesting application to fixed point theory and to the existence of periodic

solutions. It contains general treatment of functional differential equations with

infinite delay, Volterra equations, control theory, partial differential equations,

difference equations, and applied problems. It is the work of investigators who
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have spent thirty fruitful years on the subject and it is a welcome contribution

to the literature.
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An orthonormal system on the interval  [0,1)  is a sequence of functions

(j)o, <f>i, ...  that satisfies

fjk(x)<Pj(x)dx = [l   k    J>

The Walsh system occupies a unique position among orthonormal systems on

[0,1).   It is the completion of the Rademacher system, a prototype for all


