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1. Finite automata and formal languages

Mathematical models of computing machines were first used in 1936 by

Turing [22] in the proof that certain problems admit no algorithm for their

solution. Since then, mathematical automata of various sorts have proliferated

in the research literature. Today, however, the term 'finite automaton' usually

refers to a very restricted version of a Turing machine. Such an automaton

consists of a finite set Q, a finite alphabet Z of input symbols, and a state-

transition rule, which is a function from Q x L into Q. One state is designated

as the start state, and a subset of Q is designated as the set of accepting states.
The automaton, beginning in the start state, reads a finite string of input sym-

bols. As each new symbol is read, the automaton changes its state, based on

the current state and the symbol, according to the state transition rule. The

input string is accepted or rejected depending on whether the machine is in an

accepting state when the reading of the input is completed.

For example, let
Z = ß = {0,l},

and let the state transition rule be given by

S(i, j) = i + j    mod2.

With 0 as both the initial state and the sole accepting state, the resulting au-

tomaton accepts a string if and only if the number of 1 's in the string is even.

The first important theorem concerning these automata, due to Kleene [9], as-

serts that a set of strings is accepted by a finite automaton if and only if it can

be constructed from the letters of X and the empty set by repeated application

of the operations of finite union, concatenation

(U, V)^ UV = {uv: ueU, v e V),

and closure

U^U* = {X}UUUUUU--- .

(The symbol A denotes the empty string.) In the example above, the set of

strings containing an even number of 1 's can be obtained as

(0*10*10*)*.

(Writing 0 and 1 instead of {0} and {1} is a standard abuse of notation.)

The set of strings accepted by a finite automaton is called a regular set of
strings or regular language. Expressions, such as the one that appears above to

denote the set of strings with an even number of 1 's, are called regular expres-

sions. (There appears to be no good reason for this terminology, apart from

tradition. The terms recognizable set and rational set—the latter because of

important connections with rational numbers and rational power series—have
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been used, but 'regular' has resisted replacement.) The regular languages are

remarkably insensitive to changes in the definition of the underlying machine

model. For example, one can allow the automaton to move back and forth

on its input string or to operate 'nondeterministically'—so that from a given

state reading a particular input symbol, the machine may move into any one of

several states—and the set of strings accepted is still a regular language. This

suggests that, as with the recursive and recursively enumerable languages (the

sets of strings accepted by Turing machines), the regular languages capture a

notion of fundamental importance in computation, and not just the accidental

properties of one of many possible machine models. The regular languages also

arise as noncommutative generalizations of rational power series [17] and as

the sets of strings definable in the monadic second-order theory of strict linear

order [3].
The study of finite automata and the languages they accept continues to play

an important role, although no longer a central one, in theoretical computer sci-

ence. It has, in addition, generated a good deal of research in other areas: The

work by Krohn and Rhodes [10] on the serial decomposition of automata has led

to detailed investigations in the global structure of finite semigroups, with im-

portant applications to regular languages (see Eilenberg [7] and Pin [11]) and the

complexity of boolean circuits (Barrington and Thérien [2]). Questions in the

temporal logic of programs (Pnueli [12]) have renewed interest in the behavior

of finite automata on infinite strings (Safra and Vardi [16]). Finite automata
and their genralizations (especially to automata that accept trees rather than

strings as input) have been applied in formal logic to characterize the classes

of finite models of certain kinds of sentences and to provide deep results on

the decidability of logical theories (Biichi [3], Rabin [15], Thatcher and Wright
[18]). The theory also figures in the design of computer software: Some pro-

grams that scan a text file for a given pattern take a regular expression as input

and simulate a finite automaton that accepts the specified language; programs

used to generate the lexical analysis phase of compilers for programming lan-

guages work on similar principles (see Kernighan and Pike [8] for descriptions

of the programs grep and lex and for further references).

A closely connected area of research is the study of systems of generating
rules, or grammars, for sets of strings. In the most general form, a grammar

consists of an alphabet Z, an auxiliary alphabet T, an initial string w of

symbols from Z U F, and a finite set of rules of the form u —> v, where u and

v are strings over Z U T. The rule allows one to replace any string of the form

xuy by xvy. The language generated by the grammar is the set of all strings
over Z that can be derived from the initial string w by a sequence of such
replacements.

Fundamental investigations concerning these and related systems were car-

ried out by Thue [ 19-21 ] eighty years ago. It was subsequently recognized that

the sets of strings generated by such grammars are precisely the recursively enu-

merable languages. Thus basic problems concerning these grammars, such as the

derivability of a given string in a given grammar, are algorithmically unsolvable
(Post [13, 14]).

Restricting the form of the rules in the grammar restricts the class of lan-
guages that are generated. Thus, for example, the regular languages are pre-

cisely those generated by grammars in which every rule has one of the two
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forms I-» 7fl,   X -> a,  where X, Y e T,   a e A. (These grammars are

often called finite-state grammars or right-linear grammars.

Grammars in which every rule has the form X -* v , where X eT, are said

to be context-free, and the sets of strings they generate are called context-free
languages. Context-free grammars were introduced by Chomsky [5, 6] as one

element in a mathematical model of natural language competence. (The other

element is a set of rules for transforming the strings generated by the grammar

to the actual sentences of the languages.) This work has been very influential in

linguistics. An essentially equivalent scheme was devised by Backus and Naur

for describing the syntax of programming languages (see [23]). Programs written

in high-level programming languages must be parsed before they can be trans-

lated into low-level machine code. Parsing algorithms are generally constructed

by producing a table of moves for the parser (essentially a finite automaton con-

nected to a stack memory of unbounded capacity) from a context-free grammar

for the programming language. This fact has been made the basis for parser-

generator programs that, given a context-free grammar provided by the user,

automatically produce a parser for the language generated by the grammar (see

[I])-

2. BÜCHl'S BOOK

J. Richard Büchi made a number of important contributions to logic and the

theory of automata. The book under review was left unfinished at his death in

1984. A complete manuscript of the first five chapters had been used as lecture
notes in a course on automata that Büchi taught at Purdue University. The

last two chapters were reconstructed by the editor, Dirk Siefkes, on the basis of

assorted manuscripts and notes left by the author. While obvious gaps remain,

the book presents a remarkably seamless appearance.

American universities now commonly offer, especially to computer science
students, an undergraduate introductory course in the theory of computation,

treating the fundamentals of finite automata, context-free languages and com-

putability. As a result there has been a proliferation of textbooks in this area.

While the present book is nominally an introductory text on finite automata

(and, to a lesser degree, context-free languages) and contains many exercises,

it is decidedly not a new entry in this growing field of textbooks. Büchi is less

interested in showing the scope of the subject than in giving it a coherent devel-

opment as a solid body of mathematics carried out in a very general framework.
The point of departure is to view an automaton as an algebra with a finite

set of unary operations—the elements of the algebra correspond to the states

of the automaton and the operations to the input symbols. This way of doing

things was developed by Büchi and J. B. Wright around 1960. Their method
yields an elegant treatment of the construction of the smallest (in terms of the
number of states) automaton that accepts a given language: The minimal au-

tomaton appears as the minimal quotient algebra of all the automata accepting

the language. This material is presented, in the early chapters, along with fairly
standard expositions of the equivalence of deterministic and nondeterministic

automata and of the theorem of Kleene mentioned above, as well as some inter-

esting asides on codes and on star height. (These particular topics do not gain
anything from the treatment of automata as unary algebras.)

The real novelty of the book is in the later chapters. Grammars (here called
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canonical systems) are introduced, and Büchi proves a far-reaching generaliza-

tion (originally published in [4]) of the fact that regular languages are precisely

those generated by finite-state grammars. In the last two chapters the unary

algebras used to represent ordinary finite automata are replaced by algebras in

which operations of arbitrary arity are permitted to appear. This allows tree

automata, context-free grammars, pushdown automata, and even parsing algo-

rithms of practical interest to be presented in a uniform framework. Much of
the work of these later chapters remains unfinished and provides some intriguing
oportunities for researchers.

Büchi had strong convictions about how things ought to be done, and the

result is a highly individual book. One particularly maddening consequence

of this is that his private notation and terminology, at variance with standard
practice, are used without any mention of what everybody else calls the same

things. (Input symbols, for example, are called 'input states,' which is very

confusing. My favorite example is the 'Bunny Easter algorithm'—it's the inverse
of the Easter Bunny algorithm—for the preorder traversal of a binary tree.) The

book is filled with lively informal remarks intended to instruct the student and

air the author's occasionally curmudgeonly opinions. Büchi gives due credit

to Thue (and even to Leibniz!) for having anticipated many of the important

developments in the area, but this leads him to make faintly disparaging remarks

about the accomplishments of those who rediscovered and developed these ideas
in more recent years.

I would not hand this book to a bright student seeking to learn about the
theory of automata; other sources are more accessible and contain a more thor-

ough exposition. But the reader who already knows something of the subject

will find here a few deep and beautiful ideas and much food for thought.
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1. Introduction

One hundred years ago a Russian mathematician, A. M. Lyapunov, published

a major work (printed or translated variously as [10, 11]) setting forth a method

for studying stability properties of solutions of ordinary differential equations.

The method is based on the construction of a function (now called a Lyapunov

function) that serves as a generalized norm of a solution. Its appeal comes from

the fact that properties of the solutions are derived directly from the differential
equation itself (whence comes the name "Lyapunov's direct method").

This method is recognized by many investigators as the only general way

of dealing effectively with stability questions of nonlinear ordinary differential

equations. But for the past forty years it has also been used with marked success

in the study of functional and partial differential equations. A careful look

at many of these results shows that the method introduces a unifying thread


