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For a bounded polygonal domain Q c K2 consider the boundary value prob-

lem

2 Q

(1) "z3t~b'(x' "' Vm) + ¿>o(*> u, Vu) = f   inQ,
,=i 0Xi

u = 0   ondQ,

where b¡: ßxlxl2-»!, i = 0, 1, 2,  are smooth functions satisfying the

ellipticity and growth conditions

2      o,

(2) E »jr(x> QWj * a^i + *&)   Vx € a, V£, n e R3 ;
i,j=0°Çj

(3)

(4)
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+ |*/(jc,{)I<c(H-|{|),    Vxefí, V¿eR3;
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Examples of functions satisfying (2)-(4) are linear elliptic operators such as the

Laplacian (bo = 0, b¡ = d¡u, i = 1, 2) or the more general operator

2

(5) - Y, di(kij(x)djU)
i,j=i

with a positive definite matrix (fcy(jc))/j=i,2 f°r all x € Q. Due to the
restrictive growth conditions (3), (4) there are not many examples of non-

linear problems. A typical equation is the stationary magnetic field, where

b,\ — v(x, | V«|)d,m and v is the permeability.

In order to approximate problem ( 1 ) by the finite element method we intro-

duce the weak formulation that is obtained by multiplying ( 1 ) with a function

v with v\aa = 0 and using integration by parts.

Find ueH0l'2(Q) suchthat

(6) a(u,v) = (f,v),    VveH0l'2(Q),

where

a(u, v) =      \^2 b'(x ' u ' ^u)^'v + bo(x, u, Vu)v [ dx

and (•>•) denotes the inner product in L2(Q). The space H0l'2(Q) consists

of all functions with generalized first derivatives in L2(Q) that vanish on dil.

It can easily be verified that problems (1) and (6) are equivalent if the corre-

sponding solutions are sufficiently smooth.

The finite element method for approximating ( 1 ) consists in restricting the

weak formulation to a finite-dimensional space of continuous and piecewise

polynomial functions. At first, we describe the space of piecewise linear shape

functions. Let Ylh be a triangulation of the polygonal domain Q into triangles
with exterior diameter Cih and interior diameter c2h with Ci, c2 independent
of the discretization parameter h. This condition means that the sides of the

triangles are bounded by ch and the smallest interior angle is bounded below

by c*o > 0 independent of h . Furthermore, we require that the intersection of

any two triangles is void or consists of a common side or vertex. Now the space
of piecewise linear shape functions is defined by

So — {vh S C°(Q) : the restriction vn\Ah is linear for

each triangle Ah e Ylh and vh = 0 on d£i}.

Using the definition of weak derivatives we see that each vh e S0l is differen-

tiable, especially S0l c Hq'2(Q) .

The finite element method is defined:

(7) Find uh e Si such that a(uh, vh) = (/, vh)   VvA e S¿.

The actual computation of u^ is carried out by the use of the natural basis of
S¿. Let Pi, ... , Pn be the interior nodal points of the triangulation II/,. To

each i = l,_, JV we associate a function y/¡ € S¿ by

(8) y/i(Pj) = öij,        j=\,...,N.



338 BOOK REVIEWS

Clearly, the set { ̂ , },=i.n forms a basis of S0l that has the important property

that the support of y/¡ consists of the triangles adjacent to P¡. Inserting the

expansion Uh(x) = J^'Li ^iWi(x) >   & G R, in (7) we obtain that

(9) Fj(£) = bj,        7 = 1,...,7V,

where

(10) Fj(Q =a(^m, ¥j) ,        bj = (f, Wj).
^ i=i '

It is obvious that the nonlinear system (9) is equivalent to the more abstract

definition (7). The system (9) can be solved by Newton's method. We remark

that the corresponding linearized system (A = (a,,))

aj, = {d/dt,)Fj(t)

is sparse since

Uji ̂  0 => y/j■, y/i have common support.

For instance, if any node of the triangulation has at most six neighbors then each

row and each column of A has not more than seven nonvanishing elements.

This explains why piecewise polynomial shape functions are preferred to more

classical ansatz functions.

The proof of existence and uniqueness of both (6) and (7) uses the theory

of monotone operators. By the ellipticity (2) and the growth condition (4) we

obtain that the nonlinear form a is monotone in HQl'2(Q.), i.e.,

(11) a(u, u-v)-a(v, u-v) > a\\V (u - v)\\2   V«, v £ H0l'2(Q).

Since (3) guarantees the boundedness of a in H1 -2, standard arguments show

that (6), (7) possess uniquely determined solutions in H0l'2(£i) and S0l, re-

spectively.

The monotonicity (11) can also be used for deriving an error estimate. We

obtain from (11) and (6), (7) for arbitrary vh e S¿ that

1
\\V(u-uh)\\¿ < -{a(u, u-uh)-a(uh, u - uh)}

= -{a(u ,u-vh)- a(uh ,u-vh}.
a

Now the mean value theorem and the growth condition (4) yield

||V(M - uh)\\2 < c\\V(u - uh)\\ ||V(w - vh)\\,

and hence

(12) \\V(u-uh)\\<c\\V(u-vh)\\   Vt>AeS5.

Thus, an error estimate is given by inserting a special approximation of u in

(12). Using the definition of the natural basis in (8) we define the nodal inter-

polation Inu e S0X of u by

hu(x) = Y^u(Pi)y/i(x).
i=i
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For the interpolation error one can prove that

(13) ||V(M-/AM)||<c/i||V2M||,

which implies that the finite element method with piecewise linear shape func-

tions is of first order in the energy norm ||V • || if the solution u is sufficiently

smooth.
This approach can be generalized in various respects without essentially

changing the arguments demonstrated above. Nevertheless, the book contains

a lot of technical materials.
Other finite element spaces. Instead of using piecewise linear shape functions

one can improve the accuracy of the scheme by using elements of higher degree.

The author presents his own theory on the construction of finite elements lying

in the space Cm(Q). Furthermore, Zlàmal's ideal elements for nonpolygonal

boundaries are described and error estimates similar to (13) are proved. Both
topics cannot be found in other books concerning the finite element method.

Numerical cubature. In general it is impossible to compute the integrals in

(11) exactly so that numerical cubature has to be used. The author proves

conditions on the cubature formula such that the modified discrete solution

exists and converges with the same rate as the solution of (7).

Problems with lower regularity. The author also considers piecewise smooth

problems, which means that condition (3) only holds in a set of subdomains

of Q. This corresponds to nonsmooth solutions u e Hi+e(Q) or u e Hl(il)

for which the interpolation is not defined. In this case, one can use smoothing

arguments or other approximations for proving convergence.

The last part of the book is devoted to the analysis of the fully discrete finite

element method for parabolic and mixed parabolic-elliptic problems in a more

abstract setting. The results are similar to those proved in the elliptic case.

Alexander Zenisek's book presents a detailed mathematical and numerical

analysis of the conforming finite element method for second order elliptic and

parabolic problems. Some programs enable the reader to reproduce the results

on his own personal computer. Since the book is well written and contains a

chapter with mathematical background material, it can be read with great profit

by researchers and engineers as well as beginners. Especially the chapters on the

construction of finite element spaces and special approxmations for nonsmooth

solutions may be interesting for researchers. This topic is not contained in other

books in detail. But we remark that the title of the book is misleading as far as

the word nonlinear is concerned. The mathematical and numerical treatment of

the nonlinear problems introduced above does not essentially differ from that

of linear problems such as (5). Due to the restrictive growth and ellipticity

condition, typical nonlinear phenomena such as nonuniqueness and bifurcation

cannot occur.

M. Dobrowolski

Institute Für Angewandte Mathematik


