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A NEW UPPER BOUND FOR THE MINIMUM OF AN 
INTEGRAL LATTICE OF DETERMINANT 1 

J. H. CONWAY AND N. J. A. SLOANE 

ABSTRACT. Let A be an «-dimensional integral lattice of de
terminant 1. We show that, for all sufficiently large n , the 
minimal nonzero squared length in A does not exceed [(n + 
6)/10]. This bound is a consequence of some new conditions 
on the theta series of these lattices; these conditions also en
able us to find the greatest possible minimal squared length in 
all dimensions n < 33 . In particular, we settle the "no-roots" 
problem: There is a determinant 1 lattice containing no vec
tors of squared length 1 or 2 precisely when w > 2 3 , « ^ 2 5 . 
There are also analogues of all these results for codes. 

1. INTRODUCTION 

The problem of classifying «-dimensional integral lattices of 
determinant 1 has been studied by Magnus, Mordell, Ko, Witt, 
Kneser, Niemeier and others [4, Chapters 1, 16, and 17]. The 
lattices A of this type for which the minimal norm 

min{w • u: u e A, u ^ 0} 

takes its highest possible value ju are of the greatest interest. It was 
shown in [7] that for even lattices (those in which u • u is always 
even), the minimal norm is at most 2[n/24] + 2, while for odd 
lattices (those in which u • u is sometimes odd) the corresponding 
bound is [n/$]+l [7, 11]. These are the bounds one would expect 
from the dimension of the space of available theta series. In fact, 
it is known that JU differs from these bounds by an amount that 
tends to infinity with n , so that equality can hold for only finitely 
many lattices [7]. In the odd case, the bound holds with equality 
for precisely 12 lattices, the highest dimension of which is 23 [2, 4, 
Chapter 19]. As to lower bounds, it is known that both even and 
odd lattices exist in which the minimal norm is asymptotically at 
least n/2ne [4, Chapter 7; 10]. 
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The purpose of this paper is to announce the following improved 
bound. 

Theorem 1. For all sufficiently large n, we have ju <[(n + 6)/10]. 

(An upper bound asymptotic to ft/9.793... is implied by the 
Kabatiansky-Levenshtein sphere-packing bound [4, Chapter 9; 5].) 
We believe that for odd lattices the bound of Theorem 1 in fact 
holds for all dimensions n except 1, 2, 3, 12, 23 and 32, where 
special circumstances permit JU to exceed the bound by 1. 

In particular cases we can often obtain additional information. 
For dimensions 1 through 33, we have been able to find the exact 
value of ju. 

Theorem 2. ju = 1 for n = 1 to 7, 9 to 11 and 13; ju = 2 for 
n = 8, 12, 14 to 22 and 25; ju = 3 for n = 23, 26 to 31 and 33; 
and ju = 4 for n — 24 and 32. 

We also have information about the optimal lattices (those 
whose minimal norm equals fi). For example, there are precisely 
five odd optimal lattices in 32 dimensions, while there are more 

20 

than 8 x 1 0 optimal lattices (which are necessarily odd) in 33 
dimensions! 

Vectors of norms 1 or 2 in a lattice of determinant 1 are called 
roots (the reflections in such vectors are symmetries of the lattice). 
Theorem 3. Determinant 1 lattices with no roots exist precisely for 
n > 23, n ^ 25. 

Most of these theorems have analogues for binary self-dual 
codes. 

Theorem 4. For all n > 50, the minimal distance d of a self dual 
code of length n satisfies d < 2 [(n + 6)/10]. 

We can show that, for self-dual codes in which the weights are 
not all multiples of 4, the bound of Theorem 4 holds for all lengths 
n except 2, 12, 22 and 32. Here, however, the bound of McEliece 
et al. [6, Chapter 17; 9] is asymptotically stronger, yielding d < 
0.182 n + o(n). 

Theorem 5. The greatest minimal distance of any self dual code of 
length n is 2 for n = 2, 4, 6 and 10; 4 for n = 8 and 12 to 20; 
6 for n = 22, 26, 28, 30 and 34; 8 for n = 24, 32 and 36 to 44; 
10 for n = 46, 50, 52, 54 and 5S\ and 12 for n = 48, 56 and 60. 
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Theorem 6. Self dual codes with minimal distance 
d > 6 exist precisely for n>22, 

d > 8 exist precisely for n = 24 and 32 and n>36, and 

d > 10 exist precisely for n>46. 

There are precisely three self-dual codes with n = 32, d = 8 
such that not all weights are multiples of 4. (In the case where 
the weights are multiples of 4, it was already known that there are 
precisely 5 codes [3].) 

2. REMARKS ON THE PROOFS 

Theorem 2 follows from a detailed study of the theta series and 
by explicit constructions in dimensions n < 32, while Theorem 3 
also uses an analytic argument (involving the average theta series) 
for n > 33. We now sketch the proof of Theorem 1. Complete 
details will appear elsewhere. 

Let A be an «-dimensional integral lattice of determinant 1. 
If A is even, the result follows from [7], so we assume A is odd. 
The theta series @A(q) = X ^ A ^ " " can be written as 

[1/8] 

where 
A / \ T T / i 2m-K8 / i 4mx8 
A8^)= l i t 1 - # ) (1-9 ) 

[4, page 187]. (02, 03 and 04 are the usual Jacobi theta series 
[4, page 102; 12, page 464]. If A has minimal norm at least a, 
then a0, . . . , aa_x are determined and can be found from the 
Bürmann-Lagrange theorem [7; 8; 12, page 128]. We obtain 

n 
(.) a , - j aqJ 

J<7=0 

where h(q) = qA^(q)~l (cf. [7, Equation (6); 8, page 191]). 
Suppose, seeking a contradiction, that a = [(n + 6)/10] + 1. 

Let n = 10A: + S, - 6 < ô < 3 , so cr = k 4 -1 . We use (1) and the 
saddle point method (as in Lemma 1 of [7]) to obtain 

cx k 

*k~ Vk*2' 
(2) ak ~c2 , as/c->oo, 

where c2 = 14.91050 and c{ is a positive number (depending on 
3). 
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We now obtain a second estimate for ak, incompatible with 
(2). Let A0 denote the even sublattice of A, of index 2. The dual 
lattice AQ is the union of four cosets of A0 , say AQ = U/=o^o > 
with A0 = Kf, A = Af u hf . We set Q = A ^ u hf. The 
theta series of £1 is given by [4, page 440, Equations (5) and (6)]: 

[n/S] (_ y 

(3) eo(tf) = £ [-^aje4(q
2)Sje2(q)n-Sj = £ / ? / (say). 

Note that the values of r in (3) are rational numbers congruent to 
n/4 (mod 2). 

For two distinct pairs ±u, ±v G Q. we cannot have N(u) + 
N(v) < a, since u±v e A. This principle implies that there 
is at most one nonzero fir for r < {a + 2)/2, that /?,. = 0 for 
r < a/4, fir = 0 or 2 for r < a/2 and (by consideration of inner 
products) that Pr<2n for r < (a+1)/2, n ^ 3 . (R. E. Borcherds 
[1] used similar ideas in studying lattices in dimensions 25 to 27.) 

Thus the values of fir for r < (a + l)/2 are small. A second 
application of the Bürmann-Lagrange theorem now enables us to 
determine <z[n/8], a^n,^_x, . . . , ak . Again applying Lemma 1 of 
[7], we obtain an upper bound for ak which is asymptotic to 

(4) - ^ c 4 , as k -• oo, 

where c3 is positive and independent of k , and c4 — 7.10716... . 
Comparison of (2) and (4) yields the desired contradiction. 
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