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expository in character, and they are quite good. I think that Chapter 0 gives a 
good introduction to the basic facts about representations. Chapter 1 discusses 
the case of SL2(R) and can be recommended as a very readable description of 
the infinite-dimensional representations of SL2(R). It needs few prerequisites. 
This cannot be said of the book as a whole, though. The subject matter of the 
book is difficult, and has many ramifications. This imposes high requirements 
on a prospective reader. To start with, he needs a thorough familiarity with 
complex Lie algebras and their representations. 

The author makes an effort to present things clearly and efficiently, and 
usually succeeds in achieving this. 

It is to be expected that future developments of the theory expounded in 
Vogan's book will lead to improvements and simplifications. I hope that the 
book will stimulate readers to find such improvements. Their efforts will be 
well spent. 
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An introduction to homological algebra, by Joseph J. Rotman,1 Academic Press, 
New York, 1979, xi + 376 pp., $26.50. 

Homological algebra was invented by Henri Cartan and Samuel Eilenberg 
after World War II. It is essentially a technique borrowed from topology and 

'The author writes that a complete list of errata for the first printing is available from the 
Educational Department of Academic Press, New York. All these errors have been corrected in the 
second printing. 
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applied to module theory. Inasmuch as it has a subject matter, this may be 
described as the deviation from exactness of the tensor product and the 
Hom-functor. I shall attempt to make this description more precise. 

Given an associative ring R with identity, let AR, BR and CR be right 
/^-modules, RD a left jR-module, and consider the additive functors 

H o m ^ , - ) : Mod R - Ab, Hom^(~, B) : (Mod R)op -* Ab, 

C ®R- : RMod -> Ab, -®RD: Mod R -> Ab. 

The first preserves products and kernels, and so does the second (more 
precisely, it sends coproducts and cokernels of Mod R to products and kernels 
of Ab respectively), while the third preserves coproducts and cokernels, as does 
the fourth. Actually, we need not worry about the fourth functor, as it is just 
the mirror image of the third and we did not mention the mirror images of the 
first and second. 

To be exact an additive functor has to preserve both kernels and cokernels. 
When are the above functors exact? 

PR is called projective if HomR(P, - ) is exact, 
IR is called injective if Hom^(-, ƒ ) is exact, 
FR is called flat if F <8>R - is exact. 

These important concepts and their properties constitute what may be called 
elementary homological algebra. They have revitalized ring theory and com
mutative algebra, justifying many old notions and motivating several fertile 
new ones. Thus, semisimple rings are rings all of whose modules are projective 
(or injective) and von Neumann regular rings are rings all of whose modules are 
flat. Dedekind domains are those integral domains for which all divisible 
modules are injective and Prüfer domains are those for which all finitely 
generated torsionfree modules are projective. Among the important new no
tions that have turned up in ring theory are right perfect rings, all of whose flat 
right modules are projective, and right hereditary rings, for which all submod
ules of projective right modules are projective (or factor modules of injective 
right modules are injective). Moreover, there is an intimate connection between 
rings of quotients and injective hulls. Look at any modern text on ring theory 
and you will find that concepts inspired by elementary homological algebra 
predominate. 

So much about the elementary aspects of homological algebra. To explain its 
more advanced aspects a small amount of machinery is necessary. Consider a 
sequence of modules and homomorphisms: 

> An+\ -> An ~^An-\ ~> " ' ( " G Z ) ' 

This is called a complex if dndn+l = 0; that is, imdn+l Çkerd„, for all 
integers n. It is called an exact sequence i(imdn+l — ker dn for all n. 

It is perhaps unnecessary to remind the reader that the exactness of 
0 -* A -* B, B -» C -> 0 and 0 -+ A - B -> C -> 0 means that A -> B is a 
monomorphism, B -» C is an epimorphism and C s B/A' with A' = A respec
tively. 
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For a complex A one defines the homology modules 

Hn{A) = kcrdn/imdn+l. 

Given any short exact sequence of complexes 

0 -* A ' ^ A -+ A' -> 0, 
there is a so-called connecting homomorphism 

\: Hn{\") ^ H„_,{\'), 

giving rise to a long exact sequence 

. . . - Hn(A) *Hn(k") - / /„_XA')'-X-i(A) 

Given any module M — M0, there is a free module F0 and an epimorphism 
F0 -» M0, hence an exact sequence 

0 -> Mx -» F0 -> M0 -> 0. 

Repeating the same argument for Mx, and so on, we obtain an exact sequence 

» F2 ^ F\ -* F0 ~* M "* °> 

where the F„ are free modules. Such an exact sequence is called a free resolution 
of M. Projective and flat resolutions are defined similarly; they exist because 

free => projective => flat. 

An injective resolution of M is an exact sequence 

0-* M ^1° ^ I1 ^ 7 2 -* 

where the / " are injective modules. It exists because every module can be 
embedded in an injective one. This can be seen in various ways; my favourite 
is the following, probably due to Northcott. Let M* = Hom^(M, Q/Z); then 
M* is a right module if M is a left module (or the other way around). 
Composing the canonical monomorphism M -> M** with the monomorphism 
M** -* F* obtained from the epimorphism F -> M* where F is free, we obtain 
a monomorphism M -* F* where F* is injective. 

Consider now projective, injective and flat resolutions of A, B and C as 
follows: 

• • • - P2 - ƒ>, - P0 - ^ - 0, 

0 - £ - 1° -> ƒ ' - 72 -> • • •, 

and form the three complexes 

0 - Hom^Po, B) -* Hom /?(P1, Z?) - • , 

0 -» H o m ^ , 7°) -> Hom^(v4, 71) -> • • • , 

-•-+Fl®RD-»F0®RD-*0. 

For any natural number «, 7/w of the first complex is called Ext^(^4, B). 
Surprisingly it agrees with Hn of the second complex. It follows that Ext^(^4, B) 
is independent of the particular choice of the projective resolution of A or of 
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the injective resolution of B. H_n of the third complex is called Tor* (C, D). It 
could also have been obtained from a flat resolution of D. Thus Tor* (C, D) is 
independent of the choice of either flat resolution. 

What have these constructions to do with the description of homological 
algebra at the beginning of this review? Take for instance the second complex. 
Given a short exact sequence 0 -» A' -> A -> A" -> 0 of modules, one easily 
obtains a short exact sequence of complexes, hence a long exact sequence of 
Abelian groups as follows: 

0 -* Hom(,4", B) -> Hom(A, B) -* Hom(,4', B) -> Ext 1 ^" , £ ) - + • • . 

This shows how, in a manner of speaking, Ext^-, B) measures the deviation 
from exactness of the functor Hom(-, B). The situations regarding Hom(^4, - ) 
and C ® - are quite similar. 

Why the names Ext and Tor? Ext1 {A, B) may be regarded as the set of 
extensions of B by A, that is, the set of short exact sequences 0 -» B -» C -> 4̂ 
-* 0 modulo an obvious equivalence relation. If R is a domain with quotient 
field <2, t n e n Tor^ô/K, D) is the torsion submodule of D. However, the 
second etymology is somewhat misleading, as the true nature of torsion 
submodules is only captured by torsion theories, a more recent subject, albeit 
less prestigious than homological algebra. 

Advanced homological algebra may also be applied to ring theory through 
the notion of dimension. One says the projective dimension of a module A is 
< n provided Ext"+1(^4,-) is the zero functor. Injective and flat dimensions 
are defined similarly. The left global dimension of a ring R is the supremum of 
all projective (equivalently of injective) dimensions of left jR-modules. 

Although several books on homological algebra have appeared since its 
inception, the present text has much to recommend it, both contentwise and 
pedagogically. All the matters discussed above and much more are set forth 
admirably. The reader is gently taken by the hand and led to master the 
abstract machinery in easy steps, always bearing the concrete applications in 
mind. 

One may quarrel with the author in some details of exposition. He defines 
Ext twice using the same notation before showing that the two definitions 
agree, relenting only in the next chapter by introducing an alternative notation 
for one of the two notions. He defines Tor from projective resolutions instead 
of the more general and more natural flat ones, basing himself on the dubious 
principle that covariant functors require projective resolutions, and only points 
out later that flat resolutions could have been used instead. 

This book is particularly strong in applications. Here are some of the 
highlights. After a tour of modern ring theory, the author discusses the 
Quillen-Suslin theorem answering Serre's conjecture: if R is a polynomial ring 
over a field, every finitely generated projective module is free. He presents 
Vaserstein's version of Suslin's proof and sketches Quillen's proof. 

He establishes Hubert's theorem on syzigies in the form: if k is a field, the 
global dimension of k[tl9...,tn] is n. He gives an outline of the proof of the 
theorem of Auslander-Buchsbaum-Nagata, which asserts that every commuta
tive Noetherian local ring with finite global dimension is a unique factorization 
domain. (But where is it shown that such a ring is a domain?) 
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Two chapters are devoted to group extensions. The cohomology and homol
ogy groups of the group G with coefficients in the ZG-module A are defined by 

H"(G, A) = Ext"Z(7(Z, A), Hn(G, A) = Tor„ZG(Z, A), 

and the lower-dimensional ones are interpreted. Of particular interest are 
H2(G, A), the group of extensions of A by G, and H2(G, A), the Schur 
multiplier of G according to a formula by Hopf. 

There is a final chapter on spectral sequences, which occupies about one 
sixth of the book and which emphasizes their use as a technique for computing 
homology. The reviewer admits regretfully that he did not read this chapter. 

It is unusual for textbook writers to bother much about who originated 
what. The present author should therefore be applauded for going out of his 
way to attribute credit for theorems and proofs. 

I found this book pleasant and stimulating reading. Its enthusiastic style is 
infectious and managed to rekindle my interest in the subject. 

J. LAMBEK 
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Schottky groups and Mumford curves, by L. Gerritzen and M. van der Put, 
Lecture Notes in Math., vol. 817, Springer-Verlag, Berlin and New York, 
1980, viii + 316 pp., $19.54. 

I suspect that even in this modern age of categories and functors, most 
mathematicians still view /?-adic analysis with a certain amount of disdain. If 
you're one such person, before you flip back to the research announcements, 
please allow me to show you a very important result, due to John Tate, that 
will change your mind, I hope. 

We begin by reviewing some well-known concepts. Let H be the upper 
half-plane {x + iy G C \y > 0). Let T G H and let L = (Z + Z T } . Thus, L is 
a two-dimensional lattice and it is a standard beautiful fact that C/L — E "is" 
an elliptic curve. This may be seen in either of the following ways: 

(a) The field of L-invariant meromorphic functions on C forms an elliptic 
function field; or, 

(b) the Riemann Surface E may be embedded into P2(C) as a nonsingular 
cubic 

y2 = 4x3 - g2x - g 3 , 

via the use of the classical Weierstrass ^-function: In this last case we set, as 
functions of E, 

A = g2
3-27g3

2 and y = (12g2)3/A. 

It is well known that A ^ O and that j characterizes E up to isomorphism 
(algebraic or complex, they are equivalent). We can, in fact, study such cubics 
over any algebraically closed field in a similar manner. 


