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A few years ago I heard a prominent algebraic number theorist exclaim: 
"What, the Hardy-Littlewood method is still alive? I thought it had been dead 
long ago". The book under review shows that the method is alive and well! 

Let g: ® -» Z be a map into the integers assuming each value at most 
finitely often. The number N = iV(gf, ®) of zeros of ^Fis the constant term of 
the formal series 

F(z) = 2 ^ ( x ) -

Assuming that F is analytic in the disk | z \ < 1 with the possible exception of 
z — 0, we may invoke Cauchy's integral formula to obtain 

(1) N = ±-.j^F{z)dz, 

where C is a circle centered at 0 with radius p < 1. What is surprising is not 
this formula, but the way in which the integral on the right may often be 
evaluated or approximated so as to give information about diophantine 
problems. 

Hardy and Ramanujan [1918] used this integral formula to obtain an 
asymptotic relation for the partition function, and to deal with the number of 
representations of integers by sums of squares. More generally, in a series of 
papers beginning in 1920, Hardy and Littlewood applied the formula to 
Waring's problem, i.e. the representation of integers n by sums of nonnegative 
A:th powers: 

(2) „ = * * + . . . +JÇ*. 

Here ® = Z + X - - - X Z + where Z + are the nonnegative integers, g(x) = 
S(x , , . . . ,xs) = jef + • • • +JC* — n, and N = N(k, s, n). Hardy and Ramanu
jan noted that in the case k — 2, i.e. in the case of squares, the integrand in (1) 
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has a simple approximation when z is close to e(a/q) = el7Tta/g where a/q is 
rational with small denominator. If the radius p is sufficiently close to 1, then 
the circle of integration can be divided into a finite number of arcs, each of 
which is close to some such point e(a/q\ and hence a good estimate for the 
integral (1) may be given. The situation is more complicated when k > 2. The 
integrand still can be well approximated when z is very close to e (a/q) with 
very small denominator, i.e. when z is on an arc very close to such a point 
e(a/q). Hardy and Littlewood call these arcs "major arcs" and their comple
ment on C the "minor arcs". They were fortunate to have available Weyl's 
[1916] paper to show that for large s the contribution of the minor arcs to the 
integral (1) is small. The Hardy-Littlewood method, also called "Circle 
Method", thus consists of the formula (1), together with a judicious division of 
the path of integration into major and minor arcs. 

Vinogradov [1928] noted that when ® is finite, then (1) is valid with C the 
unit circle. This applies in particular to Waring's problem, for we may take ® 
to be I(n) X • • • XI(n) where I(n) consists of the integers in 0 < x < [nl/k]9 

with [ ] denoting integer parts. Making the substitution z — e(a), one gets 

(3) N= fg(a)da 

where T = R /Z and where 

(4) g(«) = 2 *(«3«) . 
xE2) 

In fact (3) is obvious from first principles. Nowadays (3) is used instead of (1), 
and the "arcs" become intervals on T. 

Hardy and Littlewood in [1919] could show that when s > k • 2k~\ then 

(5) N(k, s, n) = $@/i<*/*>-* + 0(nW-l-*)9 

where 8 = 8(k9 s) > 0 and where the constant implicit in O may depend on k 
and s. Here 3 — 3(£> s), the "singular integral", is defined in terms of the real 
manifold given by (2), while @ = (©(&, s, «), the "singular series", depends on 
arithmetical properties of our equation. Furthermore, S > 0, and 0 < cx(k, s) 
<(&< c2(k9 s). It follows that G(k) < k • 2k~l + 1, where G(k) is the least 
value of s such that (2) is soluble for every sufficiently large n. Hubert [1909] in 
his solution to Waring's problem had only shown that G(k) was finite. 

The formula (5) is typical. Whenever the Hardy-Littlewood method works 
for a diophantine problem depending on a parameter «, the number N(n) of 
solutions satisfies 

N(n)~%<BnP 

where ft is a suitable exponent. Here 

3 = *(oo), @= J! *(p), 
primes p 

where ^(oo) is defined in terms of the embedding of the underlying variety into 
the real space defined over R = Q^, say, whereas \p(p) for a prime/? depends 
on the embedding into the/?-adic space defined over Q^. One could call \p(p) 
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" the density of />-adic solutions". Thus it may be said that the Circle Method 
gives a quantitative version of the "local to global principle", from the local 
fields Qp to the global field Q. 

The method is easiest to apply to "additive problems", i.e. for polynomials 
S (x„ . . . , x 5 ) = 8f,(x,) + • • • +g 5 (x 5 ) and sets © = Ix X • • • XIS. Waring's 
problem is of this type. For additive problems the function g(a) of (4) becomes 
g (a )= / 1 ( a ) - - - / , ( a )wi th 

fj(a)= 2 e{a^j(x)). 

Chapter 1 of the present book contains an introduction and an historical 
background. In Chapter 2 the validity of the asymptotic formula (5) is proved 
for s > 2*, which nowadays, after Hua's [1938] work, is easy. The functions 
ƒ, , . . . ,^ are, except for a factor e(-an) in one of them, equal to 

ƒ ( « ) = 2 e(axk) 
x = 0 

with N = [nl/k]. In estimating the contribution to the integral (3) from the 
minor arcs m, one needs 2k variables to apply Hua's inequality 

f\f(a)fda^N2k-k+\ 
J Y 

and the remaining variable to estimate |ƒ(«) | on m by "Weyl's inequality". 
Chapter 3 deals with Vinogradov's [1937] solution to the ternary Goldbach's 
problem, and for the binary problem contains a proof that almost every even 
integer is a sum of two primes. Chapter 4 gives a better approximation (than 
did Chapter 2) to the integrand on the major arcs. In particular it is shown that 
(&(n) = @(fc, 5, n) > c,(A:, s) > 0 when s > 4k. Chapter 5 deals (a) with 
Vinogradov's "mean value theorem", which is a bound, on the one hand for 
the number of solutions of a certain system of equations, and on the other 
hand for the mean value of | S( ƒ ) |25 = | 2^= 1 e( f(x)) \2\ the mean value being 
taken over certain polynomials ƒ of degree k. (b) by a remarkable argument 
from the mean to the particular (but see also Mordell's lemma in §7.2, and the 
proof of Theorem 4.1) a better bound for S( ƒ ) is given than Weyl's. (c) the 
asymptotic formula (5) is proved for s > c3k

2 log k, and finally, (d) the bound 
G(k) < k(\ogk)(3 + o(\)) is derived. Although Vinogradov's approach has 
been simplified by Karatsuba and by Bombieri, the impression is as dazzling as 
ever. For the bound on G(k) one sets 2) = ƒ, X • • • X/5 with distinct sets Ij. 
About 2 A: log A: variables are needed for an improved inequality of Hua type, 
k log k variables for an improved inequality of Weyl type (i.e. part (b)), and 4k 
variables to make sure that @ > 0. Chapter 6 brings Davenport's work on 
G(k) for small /c, in particular the relation G(4) = 16. In Chapter 7, Vinogra
dov's G(k) < A:(log k) (2 + o(l)) is derived, which is the best known to date. 
Chapter 8 contains the author's formidable recent result that almost every 
integer is the sum of a square, a cube, and a fifth power. 
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The remaining three chapters are no longer connected with Waring's prob
lem. Chapter 9 contains Birch's [1957] theorem that a homogeneous poly
nomial equation of odd degree k has a nontrivial integer solution if the number 
of variables exceeds c4(k). Chapter 10 deals with work of Roth and of Sarközy 
which is most interesting since the Circle Method is applied not to a given 
sequence such as the kth powers, but to arbitrary sequences of positive density. 
Finally, Chapter 11 explains Davenport and Heilbronn's [1946] variation of 
the method, which deals with diophantine inequalities rather than equations. 

The book thus contains rather more material than its size would suggest. 
Single additive equations are treated fairly thoroughly, but little is said about 
systems of equations (see e.g. Davenport and Lewis [1969]) or nonadditive 
equations. In particular, there is no account of Davenport's [1963] work on the 
solubility of homogeneous cubic equations in 16 variables. Recently (to ap
pear) the reviewer has shown that a system of r cubic forms has a rational zero 
if the number of variables exceeds c5r

5. Extending the result of Birch, the 
reviewer [1980] has shown that a cubic form g of odd degree k with real 
coefficients has a nontrivial integer solution of | g(x) |< 1 if the number of 
variables exceeds c6(k). It is certain that much future work will deal with 
nonadditive problems. 

The author's style is concise and might pose some difficulties for novices in 
the area. Often it is necessary to get out paper and pencil to fill in details. 

The reviewer and many of his generation first learned the Circle Method 
from Davenport's very readable [1962] lecture notes. Vinogradov's books 
[1947, 1971] on trigonometrical sums, although on the whole more specialized, 
also deal with the Circle Method. The book under review is more economical 
in its presentation and more thorough on Waring's problem. The books by 
Greenberg [1969] on forms in many variables and by Igusa [1978] on forms of 
higher degree do not contain the Hardy-Littlewood method, but deal with 
related questions. Greenberg's book is elementary and algebraic in outlook, 
while Igusa's contains modern analytic tools. 

Various analytic methods have now been developed to deal with diophantine 
equations. Linnik [1960] used his "dispersion method" inspired by probability 
theory to show that every large number is the sum of two squares and a prime. 
Hooley [1981] has developed his own method, capable of dealing with certain 
up to now intractable additive problems. Inter alia he has given another proof 
of the square plus cube plus fifth power theorem. These approaches appear to 
be limited to special additive problems. On the other hand Igusa's [1978] 
approach is quite general, and in particular he has proved the rationality of 
Poincaré series. Igusa is optimistic that his methods will yield concrete results 
on rational forms, although so far the classical problems here have not been 
notably advanced by the modern tools. The reviewer believes that eventually 
the modern viewpoint will help, especially for nonadditive problems, but that 
much of the present elementary and combinatorial machinery will remain, 
albeit in disguise. 

The author does not mention these other methods. He does not even 
mention concepts such as torus, group, finite field, or p-àdic number. And 
indeed, these concepts would not have shortened any of his arguments. The 
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author does not make far-ranging conjectures, and does not philosophize. The 
book is lean and beautiful. 
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Group theoretic methods in bifurcation theory, by D. H. Sattinger, Lecture Notes 
in Math., vol. 762, Springer-Verlag, Berlin, Heidelberg, 1979, 241 pp., 
$14.00. 

Analysis of nonlinear problems has always been a rich area in terms of 
mathematical difficulties and interesting problems. For the last two decades 
there has been a flurry of activity related to nonlinear eigenvalue problems and 


