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mixture of standard theory and new research work which has not previously 
appeared in book form. It is a good textbook for mathematicians and physi­
cists who want to learn the C*-quantum physics. In the following, I will review 
the book chapter by chapter. It consists of two volumes. The first volume is 
devoted to mathematical theory of operator algebras and their dynamics, and 
the second to its applications to quantum statistical mechanics, and to the 
models of quantum statistical mechanics. The first volume contains four 
chapters and the second contains two chapters. The chapters of the second 
volume are numbered consecutively with those of the first. Chapter 1 is a brief 
historical introduction. The historical introduction is not concerned with the 
theory of operator algebras, but it is concerned with the interplay between 
operator algebras and quantum physics. Chapter 2 is C*-algebras and von 
Neumann algebras. It discusses the elementary theory of operator algebras, 
Tomita-Takesaki theory and the standard form of von Neumann algebras, 
quasilocal algebras, and miscellaneous results and structure. The authors select 
material from the general theory of operator algebras which is needed for 
quantum physics. Chapter 3 is groups, semigroups, generators. In this chapter, 
the authors discuss mainly derivations, automorphism groups and generation 
problems. Chapter 4 is decomposition theory. Here various decompositions of 
states are treated. The authors use a modern method developed recently by 
many researchers, which combines the reduction theory of von Neumann with 
the Choquet theory. In the ergodic decomposition which is of importance in 
mathematical physics, the notion of G-abelianness introduced by Lanford and 
Ruelle is used. 

The contents of the first volume is rich enough to use it as a textbook for 
advanced graduate students in the field of functional analysis. For physics 
students, there might be too much abstraction. Chapter 5 is states in quantum 
statistical mechanics. Here the authors describe continuous quantum systems, 
KMS states, and stability and equilibrium. The material prepared in Volume 1 
is seriously used in the two sections of KMS states, and stability and equi­
librium. Chapter 6 is models of quantum statistical mechanics. Here, the 
authors describe quantum spin systems and continuous quantum systems. This 
chapter is most instructive for C*-algebraists, though there is little involvement 
of the theory of operator algebras. The reason is that it would be an interesting 
problem to extend various results in this chapter to more general C*-dynamics. 
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Global Lorentzian geometry, by John K. Beem and Paul E. Ehrlich, Pure and 
Applied Mathematics, vol. 67, Dekker, New York, 1981, vi + 460 pp., 

The past two decades have witnessed an enormous growth in the develop­
ment of global methods in Lorentzian geometry. The time seems ripe for a 
systematic treatment of global Lorentzian geometry written in the language of 
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modern differential geometry by mathematicians for mathematicians 
acquainted with Riemannian geometry and interested in the geometry of 
general relativity. Responding to this need, the authors have written a lucid 
and mathematically precise account of a significant portion of the global 
theory of Lorentzian manifolds, frequently offering a fresh and illuminating 
perspective to what now has become standard material. In addition, their 
monograph includes a well integrated and expanded presentation of many of 
their own results which have appeared in the literature in recent years, as well 
as some new results which have not. Those uninitiated in Lorentzian geometry 
will especially appreciate the authors' painstaking effort to point out the 
similarities and differences between Lorentzian and Riemannian geometry. 
Here we touch upon some of these similarities and differences and, also, briefly 
discuss the issue of singularities in general relativity which, to a large extent, 
provided the stimulus for the surge of activity in global Lorentzian geometry. 

A Lorentzian manifold is a smooth manifold M equipped with a Lorentzian 
metric g which is a smooth assignment of a nondegenerate bilinear form g \p: 
TpM X TpM -» R with diagonal form ( - , + , • • • , + ) to each tangent space 
TpM of M. Thus each tangent space of a Lorentzian manifold (M, g) is 
naturally isometric to Minkowski space, the space-time of special relativity. A 
distinguishing feature of a Lorentzian manifold is that it admits a causal 
structure. The Lorentzian metric g divides the vectors at each point into three 
classes: a vector A" is said to be timelike, spacelike, or null according to whether 
g(X, X) is negative, positive, or zero, respectively. (X is said to be nonspace-
like if it is timelike or null.) The null vectors in Tp M form a double cone which 
is filled by the timelike vectors. A curve in M is said to be timelike, spacelike, 
or null if its tangent at each point is timelike, spacelike, or null, respectively. In 
order to discuss the causal structure of (M, g) in the large it is necessary that 
(M, g) be time orientable, i.e. that there exist a continuous assignment of a 
future direction at each point of M. If M is not time orientable, it at least 
admits a two sheeted covering which is. In a space-time (i.e. a time oriented 
Lorentzian manifold) the following two causal relations can be defined. For 
points /?, q in M, the point q is said to be in the chronological future of /?, 
written p « qy if there is a future directed timelike curve from p to q, and q is 
said to be in the causal future of/?, written/? < q, if q — p or if there is a future 
directed nonspacelike curve from/7 to q. The global causal structure of (M, g) 
is determined by the properties of the causal relations " « " and " < ". Of 
special importance is the fact (which has been exploited by Penrose [9]) that 
the causal structure of a space-time is conformally invariant. 

In general relativity the actual space-time universe in which we live is 
modeled by a four dimensional Lorentzian manifold. In this way the local 
accuracy of special relativity is built into the theory. The timelike curves 
describe the histories (or world lines) of material particles or "observers", with 
the timelike geodesies representing the worldlines of freely falling observers. 
The null geodesies represent the histories of light rays. The proper time (i.e. arc 
length) along a timelike curve which describes the world line of some observer 
corresponds to the time kept by a suitably physical (e.g. atomic) clock carried 
by the observer. The metric g is assumed to satisfy the Einstein field equation 
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which relates the geometry of space-time to the energy-momentum content of 
the universe. The Einstein equation may be thought of as a generalization of 
Poisson's equation for the gravitational potential in Newtonian theory. 

To the Riemannian geometer perhaps no assumption is more natural than 
that of geodesic completeness. The situation in Lorentzian geometry, however, 
is quite different. Many of the space-times which are exact solutions to the 
Einstein equations are timelike geodesically incomplete. For instance the 
Friedmann models which are the classical, and to this day standard, cosmo-
logical models based on general relativity all predict a fantastic "big bang" 
beginning to the universe. All the timelike geodesies are past incomplete, with 
the mass density (and hence curvature) becoming infinite in a finite proper 
time along each such geodesic. In the (extended) Schwarzschild solution, which 
today is understood to represent the geometry of spherically symmetric gravita­
tional collapse, the world line of any observer (freely falling or not) who has 
entered into the "black hole" region by crossing the "event horizon" at the 
Schwarzschild radius r — 2m (where m is the mass of the black hole) is future 
incomplete. These classical solutions, although constructed to model important 
physical situations, are based on stringent symmetry assumptions (e.g. the 
Friedmann models are spatially isotropic). It was long felt by many (including 
Einstein) that the "singular nature" of these exact solutions (as is evidenced by 
their incompleteness) might be due to their extreme symmetry. Perhaps less 
idealized models which allow for inhomogeneities don't exhibit such singular 
behavior. 

The question as to whether or not such singular behavior is inherent in the 
theory of general relativity was resolved by a remarkable series of papers 
published in the second half of the 1960's beginning with the innovative paper 
of Penrose [10] and culminating with the triumphant paper of Hawking and 
Penrose [6]. The results of these papers show that the incompleteness exhibited 
in the idealized exact solutions is generic, i.e. there are generic classes of 
physically relevant space-times which are either timelike or null geodesically 
incomplete. Unfortunately, even today not a great deal is known about the 
nature or structure of such incompleteness. As is well known, a Riemannian 
manifold is geodesically complete if and only if it is complete as a metric space 
(with distance function d, defined by d(p,q) = inf{length of y: y a curve from 
p to q}). Thus if an inextendible Riemannian manifold M is geodesically 
incomplete then the points added to M to obtain its Cauchy completion may 
be viewed as its singular points. Unfortunately, there is no such tidy mathe­
matical interpretation of geodesic incompleteness in the Lorentzian case since 
the indefinite metric of a Lorentzian manifold M cannot be used in the same 
way to endow M with a metric space structure. In contrast to the Riemannian 
case, there are examples of compact Lorentzian manifolds which are geodesi­
cally incomplete (see [7]). Procedures have been devised for attaching a 
singularity boundary to an incomplete space-time but no such procedure has 
yet proven to be completely satisfactory. At any rate, the physical interpre­
tation of an incomplete timelike geodesic is clear: there is a freely falling 
observer with either a finite past or a finite future (as measured by the 
observer). The physical significance of an incomplete null geodesic is not so 
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apparent since its affine parameters do not correspond to local time as 
measured by some observer. 

The global analysis of Lorentzian manifolds, much of which was developed 
during the period in which these generic singularity theorems appeared, focuses 
attention on the causal structure of a space-time and the behavior of its 
timelike and null geodesies. Although there are significant differences, much of 
the treatment of the structure of timelike geodesies is analogous to the 
treatment of geodesies in a Riemannian manifold. For example one can show 
by methods quite similar to the Riemannian case that timelike geodesies locally 
maximize arc length. The reason that they locally maximize (instead of 
minimize as in the Riemannian case) boils down to the fact that future directed 
timelike vectors obey the "reverse triangle inequality": for future directed 
timelike vectors A, B, \\A + B\\> \\A\\ + IlB|| (where Mil = [-(A, A)]1/2). 
(It is worth noting that in Lorentzian manifolds having dimension > 3, 
spacelike geodesies are neither locally maximizing nor locally minimizing.) 

An important element in the proofs of many of the singularity theorems is 
knowing when a timelike (or null) geodesic maximizes in the large in some 
sense. Let p and q be points in a space-time M with q in the causal future of /?. 
Motivated by the Riemannian case, a nonspacelike geodesic from p to q is said 
to be maximal if its length is greater than or equal to the length of any other 
nonspacelike curve from/? to q. It can be shown, just as for minimal curves in a 
Riemannian manifold, that a maximal curve from p to q is a geodesic. The 
well-known theorem of Hopf and Rinow ensures that if a Riemannian mani­
fold is geodesically complete then any two distinct points can be joined by a 
minimal geodesic. The Lorentzian analogue of this result is false. Indeed, there 
are examples of geodesically complete space-times for which there are points/?, 
q with p < q such that there are no timelike geodesies whatsoever from p to q 
(e.g. anti-de Sitter space; see [2] and [11]). Seeking conditions which ensure the 
existence of maximal geodesies in a space-time M, one expects causality 
conditions to come into play. For instance, there is obviously no maximal 
geodesic joining two points of a closed timelike curve in M. (The existence of 
such a curve signifies within the context of general relativity the most flagrant 
type of causality violation since it implies the ability of some observer to 
communicate with his past.) The strong causality condition asserts that there 
can be no closed or even "almost closed" timelike curves in M. As was proved 
by Seifert ([12, 1967]; see also Avez [1, 1963]) the (now standard) condition in 
Lorentzian geometry which ensures that causally related points can be joined 
by a maximal geodesic is global hyperbolicity. A space-time M is said to be 
globally hyperbolic if it is strongly causal and if the sets of the form / + (/?) n 
J~ (q) are compact in M (where ƒ+(/?) = causal future of /? = {x E M: 
p < x} and J~ (q) = causal past of q). A classical theorem of causal theory 
due to Geroch [3] says that a space-time M is globally hyperbolic if and only if 
it admits a Cauchy surface. A Cauchy surface is a set which is intersected by 
each inextendible nonspacelike curve in M once and only once. It is necessarily 
a codimension 1 topological submanifold of M. For an in depth account of the 
Cauchy surface concept and the closely related concepts of the domain of 
dependence and the Cauchy horizon—topics which are not treated in great 
detail in Beem and Ehrlich—see, for example, Hawking and Ellis [5], 
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The calculus of variations of timelike and null geodesies also plays an 
important role in singularity theory. One can derive formulas for the first and 
second variations of arc length along timelike curves and introduce the notion 
of conjugate points along timelike geodesies via Jacobi fields in a manner very 
similar to what is done in Riemannian geometry. (To our knowledge the first 
discussion and application of the second variation of arc length along timelike 
curves to global problems in general relativity was given by Avez [1].) One can 
then show, for instance, by methods analogous to the Riemannian case, that a 
timelike geodesic cannot maximize beyond its first conjugate point. Beem and 
Ehrlich give a definitive treatment of the Morse index theory of timelike and 
null geodesies, and include a discussion of the timelike path space of a globally 
hyperbolic space-time. The index theory of null geodesies is considerably more 
delicate. Part of the difficulty stems from the fact that a null vector has square 
norm zero and, hence, lies in its own orthogonal space. 

To illustrate how these global techniques come into play in singularity 
theory we consider an extremely simplified version of the Hawking-Penrose 
theorem [6]. 

PROPOSITION. Suppose M admits a compact Cauchy surface V. Suppose, in 
addition that 

(1) Ric( X, X) > 0 for all nonspacelike vectors X on M, and 
(2) Ric(dy/ds, dy/ds) > 0 at some point of each inextendible nonspacelike 

geodesic. Then M is either timelike or null geodesically incomplete. (Here, 
Ric^A", X) = 'ZjjRjjX'X-', where RtJ are the components of the Ricci tensor.) 

When interpreted within the context of general relativity the curvature 
conditions are referred to as energy conditions. Roughly, condition (1) ex­
presses the nonnegativity of mass-energy density and condition (2) asserts that 
each nonspacelike geodesic encounters some matter. Briefly, the proof pro­
ceeds as follows. Let TJ be an arbitrary future directed inextendible timelike 
curve in M which intersects V. Let qt be a sequence of points extending 
indefinitely into the future of V along i\ and let pt be a sequence of points 
extending indefinitely into the past of V along TJ. Since M is globally hyper­
bolic there is a maximal timelike geodesic segment y, from pt to qi for each i. 
Furthermore, since V is Cauchy, it can be easily shown that each segment y, 
must intersect V. Using the compactness of V one can obtain an inextendible 
limit curve y of the yi9 each finite segment of which is maximal. Hence y is a 
timelike, or possibly null, geodesic line, and in particular cannot contain any 
pairs of conjugate points. On the other hand if we assume that y is a complete 
geodesic then standard index form techniques can be used (in the spirit of 
Myers [8]) together with the curvature assumptions (which have a focusing 
effect on nonspacelike geodesies) to show that y must contain a pair of 
conjugate points. The conclusion must be that y is incomplete. The proposition 
is analogous to the result of Gromoll and Meyer [4] that a complete Riemann­
ian manifold with positive Ricci curvature has only one end. 

It should be mentioned that, historically, mathematical relativists developed 
an alternative method for predicting the occurrence of conjugate points (or 
focal points). This method makes use of the so-called Raychaudhuri equation, 
which is a formula for the rate of change of the expansion of a congruence of 
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timelike (or null) geodesies and which can sometimes be used to predict the 
occurrence of conjugate points and focal points in situations where index 
methods fail. Beem and Ehrlich give a careful treatment of Raychaudhuri's 
equation and its applications via the concept of Jacobi tensors which they 
discuss in a neat coordinate and frame independent manner. 

The proof of the general Hawking-Penrose theorem still entails establishing 
the existence of a nonspacelike geodesic line in a space-time which, by the 
hypotheses (and the negation of the conclusion), is strongly causal, but which 
needn't be globally hyperbolic. Beem and Ehrlich give an especially beautiful 
treatment of this result. The Hawking-Penrose theorem essentially falls out of a 
general exposition on the existence of nonspacelike geodesic lines and rays 
which occupies one chapter of their book. Since they obtain results about 
space-times which are assumed to be strongly causal but not necessarily 
globally hyperbolic, the existence problem is substantially more complicated 
than the corresponding problem in Riemannian geometry. The proofs in this 
chapter make significant use of the Lorentzian distance function d which is 
defined as follows, 

JO q£J+(p), 
KP'q) [sup{lengthofy} 

where the sup is taken over all future directed nonspacelike curves y from p to 
q. Of course this is not a distance function in the sense of metric spaces, but it 
does have a few nice properties which the authors judiciously exploit. In fact 
the authors present a detailed study of the Lorentzian distance function and, in 
particular, derive some interesting results relating properties of the Lorentzian 
distance function to the causal structure of space-time. 

Many other topics, in addition to those considered above, are covered in the 
book under review, such as the causality and completeness of warped product 
spaces, the structure of two-dimensional space-times, the stability of Robert­
son-Walker spaces, the Lorentzian cut locus, and Lorentzian comparison 
theorems. Included among the appendices is a geometric explication of the 
so-called generic curvature condition and a presentation of Harris' Lorentzian 
version of Toponogov's triangle comparison theorem. All topics are treated in 
an invariant manner and are written with impressive clarity and precision. 

The global theory of Lorentzian geometry has "grown up" during the last 
twenty years, and Beem and Ehrlich have given us an authoratative and highly 
readable treatment of the subject as it stands today. 
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The Hardy-Littlewood method, by R. C. Vaughan, Cambridge Tracts in 
Mathematics, vol. 80, Cambridge University Press, Cambridge, 1981, xii -f 
172 pp., $34.50. 

A few years ago I heard a prominent algebraic number theorist exclaim: 
"What, the Hardy-Littlewood method is still alive? I thought it had been dead 
long ago". The book under review shows that the method is alive and well! 

Let g: ® -» Z be a map into the integers assuming each value at most 
finitely often. The number N = iV(gf, ®) of zeros of ^Fis the constant term of 
the formal series 

F(z) = 2 ^ ( x ) -

Assuming that F is analytic in the disk | z \ < 1 with the possible exception of 
z — 0, we may invoke Cauchy's integral formula to obtain 

(1) N = ±-.j^F{z)dz, 

where C is a circle centered at 0 with radius p < 1. What is surprising is not 
this formula, but the way in which the integral on the right may often be 
evaluated or approximated so as to give information about diophantine 
problems. 

Hardy and Ramanujan [1918] used this integral formula to obtain an 
asymptotic relation for the partition function, and to deal with the number of 
representations of integers by sums of squares. More generally, in a series of 
papers beginning in 1920, Hardy and Littlewood applied the formula to 
Waring's problem, i.e. the representation of integers n by sums of nonnegative 
A:th powers: 

(2) „ = * * + . . . +JÇ*. 

Here ® = Z + X - - - X Z + where Z + are the nonnegative integers, g(x) = 
S(x , , . . . ,xs) = jef + • • • +JC* — n, and N = N(k, s, n). Hardy and Ramanu­
jan noted that in the case k — 2, i.e. in the case of squares, the integrand in (1) 


