
414 BOOK REVIEWS 

Wiener integral expansion mentioned above. This conjecture was settled af
firmatively only in 1980 [1]. However, this point can be avoided by making a 
Girsanov transformation after which the observation process Z, is a brownian 
motion, and by using a stopping time argument. 

There have been a number of interesting recent developments in nonlinear 
filtering theory, which are beyond the scope of Kallianpur's book. One 
direction concerns the theory of "robust" or "pathwise" solutions to the 
filtering equations [4]. The objective is to obtain st for all possible observation 
trajectories Z., not just for a set of probability 1, in such a way that st depends 
continuously on Z. in the uniform norm. Another direction of recent research 
is to explain the structure of the optimal filter by studying a certain Lie algebra 
associated with it [3]. A related problem is to find finite-dimensional nonlinear 
filters, in other words, filters whose evolution in time is described by a finite 
number of stochastic differential equations [2]. 
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Singular perturbations, in 1982, is a maturing mathematical subject with a 
fairly long history and a strong promise for continued important applications 
throughout science. Though the basic intuitive ideas involving local patching of 
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solutions can be found in early work by Laplace, Kirchhoff, and others, 
Prandtl's paper at the 1904 Leipzig Mathematical Congress began the study of 
fluid dynamical boundary layers by analyzing viscous incompressible flow past 
an object as the Reynolds number becomes infinite (Prandtl [1905]). The 
distinguishing feature of singular perturbation problems occurs, viz. a thin 
region near the solid boundary where the velocity changes from zero (as 
required by the no-slip condition) to an outer flow which is essentially inviscid. 
Expressed mathematically, the solution converges nonuniformly in the domain 
as a parameter e = Re" l tends to zero. In the first part of this century, analysis 
of asymptotic solutions to linear ordinary differential equations progressed 
through the work of Birkhoff [1908], Langer [1931], and others, with significant 
work on turning point problems being done by physicists (Wentzel [1926], 
Kramers [1926], Brillouin [1926], and the survey by McHugh [1971]). Friedrichs 
and his student Wasow seem to be the first mathematicians to initiate a 
prolonged study of the asymptotic solution of singularly perturbed boundary 
value problems (cf. Wasow [1941,1944a, 1944b], Friedrichs and Wasow [1946], 
Friedrichs [1953, 1955]; noting that Tschen [1935], Nagumo [1938], and Rothe 
[1939] certainly preceded them). Their work was motivated by an analysis of 
the edge effect for buckled plates (Friedrichs and Stoker [1941] and Stoker 
[1942]); they first used the term singular perturbations in print in the title of 
Friedrichs and Wasow [1946]. Other mathematicians, including Levinson and 
Tikhonov, began studying related problems soon afterwards (Levinson [1950a], 
[1950b], Tikhonov [1948], and Vasil'eva and Volosov [1967]). Levinson began 
the study of a wide spectrum of important topics in asymptotics and made 
definitive contributions to singular perturbations (before the mid-1950's) to
gether with a number of promising students and young collaborators including 
Aronson, Coddington, Davis, Flatto, Haber, and Levin. The Russian school 
also did outstanding work on many subjects including boundary layer methods 
(Vishik and Lyusternik [1957] and Vasil'eva [1963]), relaxation oscillators 
(Pontryagin [1961] and Mishchenko and Rozov [1980]), and the method of 
averaging (Bogoliubov and Mitropolsky [1955] and Volosov [1962]). 

From around 1950, fluid dynamicists solved some very interesting physical 
problems like the linoleum-rolling problem (Carrier [1953]) and low Reynolds 
number flow past bodies (Proudman and Pearson [1957] and Kaplun [1957]). 
At Caltech's Guggenheim Aeronautical Laboratory, Lagerstrom, Cole, Latta, 
Van Dyke, Kaplun and others became equally involved in asymptotic expan
sion procedures for more general singular perturbation problems. Many would 
claim that the most significant work was done by Kaplun (see the posthumous 
book, Kaplun [1967]), though numerous engineers who later successfully used 
perturbation methods would probably not understand his Extension Principle. 

A (possibly oversimplified) matching procedure was presented in the book of 
Van Dyke [1964]. The straightforward recipe he provided made it easy for a 
tremendous variety of scientists to learn the rudiments of matching and to 
solve important problems in their own disciplines. The basic idea, much as in 
Friedrich's early and Erdélyi's current lectures (Erdélyi [1961]), involved an 
asymptotic matching of the inner and outer expansions at the edge of the 
boundary layer (where they should both be appropriate). A uniformly valid 
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composite asymptotic approximation might be obtained by adding the inner 
and outer expansions (to an appropriate number of terms) and subtracting 
their common part. (The novice can roughly figure out the procedure by 
determining the limiting behavior of the solution to the sample problem 
£ƒ" + j>' = 1 on 0 < x < 1, with y(0) and y (I) prescribed, as e -> 0 + .) Fraen-
kel [1969] and Lagers trom [1976] questioned the universality and orthodoxy of 
Van Dyke's rules, while Cole [1968] instead stressed "limit process expansions" 
and "two-timing" in a context far broader than fluid mechanics. Important 
new applications had arisen including geometrical optics (cf. Keller [1958 and 
1978]), enzyme kinetics (e.g., Bowen, Acrivos, and Oppenheim [1963]), shell 
theory (Gol'denveizer [1961]), and stiff differential equations (Dahlquist [1969]). 
Indeed, results obtained through matching generally coincided with those 
known through the intuitive folkways of the various fields. 

Wasow's [1965] book placed singular perturbations in the context of the 
analytic theory of differential equations, including singular point and turning 
point theory, and presented much recent research of the author, Sibuya, and 
others. It stimulated much more research by mathematicians, both pure and 
applied, since it was becoming clear that much important formal work could 
be proven to be asymptotically valid. Certainly numerous theses on related 
topics were appearing in Cambridge, Madison, Minneapolis, New York, 
Pasadena, Stanford, and elsewhere throughout the world. 

By 1970, courses in perturbation methods became common in engineering 
and applied mathematics departments, and inevitably a string of textbooks and 
higher level monographs began to appear. They included Nayfeh [1973], which 
presented numerous specialized methods and referenced hundreds of applied 
papers; Lions [1973] which emphasized partial differential equations, with 
applications to control, from a modern point of view; Eckhaus [1973] (with a 
more complete book in 1979) which examined the basis of matching and 
included much Dutch work involving boundary value problems for linear 
elliptic and nonlinear ordinary differential equations; Vasil'eva and Butuzov 
[1973], which primarily surveyed expansion techniques from the extensive 
Soviet literature, though mostly for ordinary differential equations; and O'Mal-
ley [1974], which also emphasized ordinary differential equations and applica
tions via boundary layer corrections, instead of the traditional matching. 
Carrier's various presentations (Carrier [1974]) emphasized the use of intuitive 
singular perturbation concepts when more elementary approaches break down. 
Recently, several introductory texts include chapters on singular perturbations. 
(One might well argue that perturbation methods will help most sophomores 
more than a few days exposure to the Laplace transform or power series about 
regular singular points.) Bender and Orszag [1978] emphasized more general 
asymptotic techniques for ODE's. It has an especially good collection of 
examples (with many solution portraits) and some very challenging exercises. 
Among more specialized monographs, Bensoussan et al. [1978] uses a two-time 
analysis to develop a theory of homogenization; Schuss [1980] shows how to 
use singular perturbation concepts to analyze solutions to stochastic differen
tial equations; and Miranker [1981] shows some ways to use asymptotic results 
to develop numerical algorithms for stiff differential equations. (My jaundiced 
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opinions of Nayfeh [1973], Eckhaus [1973], and Schuss [1980] are, incidentally, 
noted after those references.) Numerous conference proceedings (note, espe
cially, Meyer and Parter [1980], Miller [1980], and Eckhaus and deJager [1982]) 
and special topic and review articles (note, e.g., Howes [1978] and O'Malley 
[1978]) attest to the present vitality of the field. Primary motivation for 
mathematical research still comes from important new applications (e.g., 
Buckmaster and Ludford [1982] which would teach combustion experts 
asymptotics and vice-versa). New books by Lagerstrom and Boa, Chang and 
Howes, Smith, Kapila, and others will continue to enliven and enrich the 
subject for some time to come. 

As suggested above, Cole's 1968 book was important because it reem-
phasized the point that the art of singular perturbation techniques could be 
successfully applied in a variety of fields. Little attempt was made to solve 
general classes of problems or to justify (in the sense of pure mathematics) the 
approaches taken, but the reader who worked his or her way through the 
sequence of challenging model and physical problems gained the perspective 
and experience to enable him to attack new problems requiring modelling, 
skill, perseverance, and understanding. (I am still not completely satisfied with 
my solution of the two-point (dust jacket) problem for ey" + yy' — y = 0 or of 
the relaxation oscillations for van der Pol's equation, but I learn more about 
them and the subject every time I try to work through the material.) The book 
benefitted greatly from Cole's long involvement with the Caltech community. 
It also included the first textbook presentation of the two-variable expansion 
procedure which was highly developed through the combined efforts of 
Kevorkian and Cole (Kevorkian [1962]). An appreciation of that method can 
be gained by examining the linear oscillator with small damping. On a long 
time scale, the cumulative effect of the damping can be accounted for through 
use of a slow time et together with a fast time of the form (1 + eco, + e2w2 
+ •••)/ for appropriate w/s. Here, the approach is more related to averaging 
than to the layer methods discussed previously. It is also natural to use 
two-timing for analyzing equations with slowly-varying coefficients. 

The new Kevorkian and Cole contains revised presentations of virtually all 
the topics found in Cole [1968], with somewhat expanded discussions and a 
generally more readable text. This is especially welcome, since the original Cole 
has been out of print for some time. Except for a couple of PDE models 
(MHD pipe flow and viscous boundary layers for rotating fluids), all the 
favorite examples are still there, plus more, with stimulating exercises. Consid
erably more material has been added relating to Kevorkian's continuing 
involvement with multi-variable expansion procedures and their appHcation to 
the motion of satellites. The approach throughout is personal, reflecting the 
authors' expert viewpoints. In particular, the book does not generally survey 
recent related work of other writers. AMS members will generally be glad to 
know, as one would expect from the efforts of talented senior applied mathe
maticians, that much of the work can be extended to more general contexts, 
and much can be shown to be rigorous (Greenlee and Snow [1975] and Sanders 
and Verhuist [1981], for example, give theory appropriate for two-timing and 
averaging). The difficult problem of passage through resonance (for systems 
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with slowly-varying coefficients) has occupied Kevorkian for many years and it 
is discussed in some detail. Alternatives to multi-timing are also summarized. 
The chapter on partial differential equations now includes a discussion of 
Burgers' equation euxx = ut + uux with various initial and boundary condi
tions, a potential problem from cell physiology which Cole has worked on, and 
applications to nonlinear dispersive and weakly nonlinear waves. The final 
chapter now discusses weakly nonlinear one-dimensional acoustics, small am
plitude waves on shallow water, and more material on thin airfoil theory. The 
book is important to mathematicians, since it shows how mathematics can be 
applied by those who have a physical understanding and a command of the 
appropriate mathematical tools, including perturbation methods. 

Nayfeh's new book is not a revision of his 1973 Perturbation methods or his 
more recent Nonlinear oscillations (written with Mook). (Nayfeh, incidentally, 
was a student of Van Dyke at Stanford and has since done a variety of applied 
asymptotics.) This book, instead, seeks to teach a diverse audience of advanced 
undergraduates and beginning graduate students about perturbation tech
niques and asymptotics in general. He elaborately presents numerous exam
ples, so that readers can follow the calculations step-by-step. This is important 
because, until symbol manipulators become available to all, few students will 
be able to do the necessary and laborious operations correctly. The subjects 
presented are useful ones that many engineers and all applied mathematicians 
should be acquainted with, to wit: asymptotic expansions, solutions of alge
braic equations with a small parameter (the implicit function theorem and the 
Newton polygon method should be added for some audiences), asymptotic 
expansions of integrals, perturbation schemes in nonlinear oscillations, etc. 
Most of the topics are also covered in Bender and Orszag [1978], but at a 
generally higher level which would not be reachable by the broader clientele 
who could still benefit from learning elementary techniques. More experienced 
readers will find the amount of detail overwhelming, but the book is not 
intended for them. The numerous calculations are generally well done; I 
would, however, quibble with the decision to play down the trivial singular 
solution to Cole's dust cover problem since this involves a complicated 
algebraic matching at one or two interior locations. One hopes that textbooks 
such as Nayfeh's will make the elementary concepts of singular and regular 
perturbation theory part of the undergraduate study of most scientists and 
engineers. 
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