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Stochastic filtering theory, by G. Kallianpur, Springer-Verlag, New York, 
Heidelberg, Berlin, 1980, xvi + 316 pp.,$29.80. 

An important problem in statistical communication theory is the separation 
of random signals from random noise. These phenomena are modelled by 
stochastic processes sn nt called respectively the signal and noise processes. 
The signal cannot be observed directly; instead, at time / the sum 

(1) *t = st + nt 

is observed. Roughly speaking, the filtering problem is to make a "best" 
estimate for st given observations zT for times r < t. Closely related problems 
are to best estimate sT when t < T (the prediction problem) and for T < t (the 
data smoothing problem). By "best" estimate st let us mean an estimate 
minimizing the mean squared error E(st — st)

2, with E(-) denoting expected 
value. Pioneering work on the filtering problem was done by Wiener and 
Kolmogorov during the 1940s. In that work, the filtering problem was consid
ered in the frequency domain, by taking Fourier transforms of z„ st, nr The 
problem was reduced to solving an integral equation of Wiener-Hopf type. 

Linear filtering theory took a distinctive new direction around 1960, stimu
lated by two key papers by Kalman [9] and Kalman and Bucy [10]. In their 
approach the filtering problem is considered in the time domain (rather than 
the frequency domain), and state space representations are introduced. The 
signal is expressed as a linear function of an N-dimensional state vector Xn 
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namely, st — CXr In the continuous-time Kalman-Bucy model, the state 
process Xt evolves according to the differential equations 

(2) Xt = AXt + rn t>0, 

with initial state X0 some gaussian random vector and with vt a white noise 
process. Equation (1) takes the form 

(3) zt=CXt + nn 

with the observation noise nt also assumed white, and with X09 v, n indepen
dent. A white noise process vt is supposed to be a stationary, gaussian process 
whose values vs, vt at different times s, t are independent. One should also have 
vt — dfijdt, where /?, is a brownian motion process. However, with probability 
1 the brownian sample paths /?. are continuous but nowhere differentiable 
functions of /. In the linear filter model this difficulty can be avoided by 
interpreting equations (2), (3) in a generalized sense (e.g. in terms of Schwartz 
distributions). However, for the nonlinear filter problem with which Kallian-
pur's book is mainly concerned, stochastic differential equations provide a 
convenient framework for nonlinear filtering theory. The formal nonlinear 
equation (5) below corresponding to (2) is then rewritten as the stochastic 
differential equation (7). 

For the linear Kalman-Bucy model, there is a rather simple and elegant 
solution to the filter problem: st = CXn where Xt obeys a linear differential 
equation similar to (2): 

(4) i = AX, + F,Pt, 

with vt — zt — CXt another white noise (called the innovation.) The error 
st — st is gaussian and independent of the observations up to time t. Moreover, 
both the coefficient Ft in (4) and the error covariance matrix can be precom-
puted by solving a matrix Riccati equation. The technique has been widely 
applied. See for example [7]. 

The simplicity of the Kalman-Bucy filter results depends on the linearity of 
equations (2), (3) and on the gaussian nature of all stochastic processes 
involved. However, in practice problems are often encountered for which the 
linear-gaussian model is not a good approximation. The extensive literature on 
nonlinear filtering (theoretical and applied) which has appeared since 1965 is 
concerned with this question. Kallianpur's book gives a treatment of the basic 
nonlinear filter equation, together with the rather sophisticated probabilistic 
tools needed to derive it in a mathematically rigorous way. A more comprehen
sive development of this material appears in [11]. However, Kallianpur's more 
concise treatment may be more accessible to nonspecialists. 

After a brief introductory chapter, Kallianpur summarizes parts of the 
theory of continuous time martingales and semimartingales. Proofs of some 
more technical results are omitted, with references to [12] and occasionally 
other sources. Next come three chapters of rather standard material on 
stochastic integrals with respect to a square integrable martingale (the Itô 
integral with respect to brownian motion is a special case) and to stochastic 
differential equations. These are followed by two more tools needed later in 
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deriving the nonlinear filter equation. One of these is Girsanov's theorem for 
change of probability measure corresponding to change of drift in a stochastic 
differential equation. The other concerns functionals of a brownian motion 
process, include the following beautiful result. Let W be a brownian motion, 
and ^T{W) the least a-algebra with respect to which the random variables Wt 

are measurable for 0 < / < T. Let £ e L2[$T(W)] with E£ = 0. Then £ is the 
sum of an L2-convergent series £ = £x + £2 + ' * * + £/> + ' ' * > °f orthogonal 
random variables, with £ a /?-fold multiple Wiener integral corresponding to 
Wiener's /?-fold homogeneous chaos. The reviewer found it illuminating to read 
K. Itô's original treatment of this result [8] along with Kallianpur's more 
general (and somewhat formalized) development. 

In the nonlinear filtering problem, to avoid undue complication, let us 
consider a model in which (2), (3) are replaced by nonlinear equations 

(5) Xt = b(Xt) + o(Xt)vn 

(6) z, = h(Xt) + nt9 

with bounded and sufficiently smooth functions b9 a, h. Actually, to formulate 
(5), (6) in a mathematically precise way, we introduce independent brownian 
motions /?,, Bt whose formal time-derivatives are the white noises vt9 nr Then 
(5) is interpreted as the Itô-sense stochastic differential equation 

(7) dX, = b(Xt)dt + o(Xt)dpt9 

and (6) becomes 

(8) dZt = h(Xt)dt + dBt9 Z0 = 0, 

with zt the formal time-derivative of Zt. The signal is now st — h{Xt). It is 
easily seen that the mean square optimal estimate st for st is the conditional 
expectation of h(Xt) with respect to the a-algebra %{Z). The problem is to 
describe the dynamics of st. Unlike the linear-gaussian case, one generally 
needs to know the conditional distribution of Xt to find sr This makes the 
nonlinear filter problem an infinite-dimensional one. Under suitable assump
tions (including nonsingularity of the matrix a in (5)) the conditional distribu
tion has a density p(x91)9 and then 

(9) st — ƒ xp(x91) dx. 

The density p(x91) satisfies a nonlinear stochastic partial differential/integral 
equation, called the nonlinear filter equation. The stochastic effects enter the 
nonlinear filter equation through the so-called innovation brownian motion 

(10) Bt = Zt- ((h{x)p(x91) dx. 
Jo 

The proof given for the nonlinear filter equation follows generally the 
original derivation in the fundamental paper [6]. A crucial step is to show that 
any square integrable %(Z) martingale of mean 0 is a stochastic integral with 
respect to the innovation process Êr If one knows that the Kailath innovations 
conjecture %(Z) — %(Ê) is true, then this follows directly from the multiple 
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Wiener integral expansion mentioned above. This conjecture was settled af
firmatively only in 1980 [1]. However, this point can be avoided by making a 
Girsanov transformation after which the observation process Z, is a brownian 
motion, and by using a stopping time argument. 

There have been a number of interesting recent developments in nonlinear 
filtering theory, which are beyond the scope of Kallianpur's book. One 
direction concerns the theory of "robust" or "pathwise" solutions to the 
filtering equations [4]. The objective is to obtain st for all possible observation 
trajectories Z., not just for a set of probability 1, in such a way that st depends 
continuously on Z. in the uniform norm. Another direction of recent research 
is to explain the structure of the optimal filter by studying a certain Lie algebra 
associated with it [3]. A related problem is to find finite-dimensional nonlinear 
filters, in other words, filters whose evolution in time is described by a finite 
number of stochastic differential equations [2]. 
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Singular perturbations, in 1982, is a maturing mathematical subject with a 
fairly long history and a strong promise for continued important applications 
throughout science. Though the basic intuitive ideas involving local patching of 


