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A SOLUTION TO A PROBLEM OF J. R. RINGROSE1 

BY DAVID R. LARSON 

We announce a solution to a multiplicity problem for nests posed by J. R. 
Ringrose approximately twenty years ago. This also answers a question posed by 
R. V. Kadison and I. M. Singer, and independently by I. Gohberg and M. Krein 
concerning the invariant subspace lattice of a compact operator. The key to the 
proof is a result concerning compact perturbations of nest algebras which was 
recently obtained by Niels Andersen in his doctoral dissertation. The complete 
proof of the general result as well as of a number of related results will appear 
elsewhere. A proof for the special case which answers Ringrose's original ques
tion is included herein. 

Let H be infinite dimensional separable Hubert space. A nest W is a family 
of closed subspaces of H linearly ordered by inclusion. W is complete if it con
tains {0} and H and contains the intersection and the join (closed linear span) 
of each subfamily. The corresponding nest algebra alg M is the algebra of all 
operators in L(H) which leave every member of M invariant. The core Cw is the 
von Neumann algebra generated by the projections on the members of W, and the 
diagonal Pw is the von Neumann algebra (alg W) n (alg hi)*. M is continuous if 
no member of M has an immediate predecessor or immediate successor. Equiva
lently, W is continuous if the core Cw is a nonatomic von Neumann algebra. M 
has multiplicity one (is multiplicity free) if VN is abelian, or equivalently, if Cw is 
a m.a.s.a. 

J. R. Ringrose posed the following question: Let M be a multiplicity free 
nest and T: H —• H a bounded invertible operator. Is the image nest TN = 
{TN: NGN] necessarily multiplicity free? Note that T(alg N)JT1 = alg(n/), so 
it is natural to say that TN is the similarity transform of M. Is multiplicity 
preserved under similarity? We show that the answer is no. It should be noted 
that a negative answer was conjectured in recent years by several mathematicians 
including J. Ringrose and W. Arveson. 

The following key result is due to N. Andersen [1]. Let LC denote the 
compact operators in L(H). 
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THEOREM (ANDERSEN). If H is separable, and if W, M are arbitrary con
tinuous nests in H, then there exists a unitary operator U such that alg W + LC 
= £/(alg M + LQU* = alg(tfM) + LC. 

Next, we answer Ringrose's question. 

THEOREM 1. Let W be a continuous nest of multiplicity 1. Then there 
exists a positive invertible operator T E L(H) such that Thl = {77V: N E W} fails 
to have multiplicity 1. 

PROOF. By Andersen's theorem there exists a continuous nest M not of 
multiplicity 1 such that alg M + LC = alg W 4- LC. Since for any algebra A we 
have A + LC/LC « A/A n LC, the algebras alg M/alg M n LC and alg W/alg W n 
LC are algebraically isomorphic. The diagonal VM = alg M n (alg M)* is a non-
abelian von Neumann algebra so contains a nonzero partial isometry v with ortho
gonal initial and final spaces. Let S = v + v* - vv* - v*v + I and P = vv*. 
Then S2 = I and PSP = 0. Since M is continuous V^ contains no compacts, so 
P has infinite rank. Thus via the algebraic isomorphism between quotients it.fol
lows that alg W/alg W n LC contains elements P, S with P2 = P j± 0,S2 = I, 
PSP = 0. 

Let A and B be elements of alg W whose images in the quotient are P and 
S respectively. Then A2 - A, B2 - I and ABA are contained in alg W n LC, and 
this is contained in the Jacobson radical Rw of alg W since W is continuous. So B 
is invertible in alg W. Also, a well-known result [cf. 9, Theorem 2.3.9] states 
that an element of a Banach algebra which is idempotent modulo the radical is 
equal modulo the radical to an idempotent. So there exists an idempotent P G 
alg W with A - P E Rw. We have P =£ 0 since otherwise A would be in Rw and 
hence P above would be a quasinilpotent idempotent, hence 0. 

We have PBP E Rw. Set Bt = B - PBP. Then Bx is also invertible in alg W, 
and PBXP = 0. Now set 

S = BXP + PB'^I-P) -B^B^il-P) + I-P. 

We have PSP = 0, and it can be verified that S2 = I. (Let a denote the sum of 
the first two terms, j3 the sum of the remaining terms, and compute |82 = ]3, 
o0 = 0a = 0, a2 = I - 0.) 

Let R = ƒ - 2P. Then # 2 = I, S2 = I, RS ± SR. Let G be the group 
generated by R, S. We have SRS = I- 2SPS, and P5P = 0, so PSRS = P = SRSP 
Hence R commutes with SRS since P does. It easily follows that 

G = {/, S, R, RS, SR, SRS, RSR, SRSR}. 

So G is a finite noncommutative group contained in alg W. Set T = 

(2 G G g*g)Vz. Then TGT~l = {TgT~l: g E G} is a noncommutative group of 
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unitaries contained in the diagonal of alg(7W), and thus TU fails to have multipli
city 1. D 

Theorem 1 serves to answer an open question concerning invariant subspace 
lattices of compact operators due to Kadison and Singer [5] and to Gohberg and 
Krein [4]. An operator is said to be hyperintransitive if its lattice of invariant 
subspaces contains a multiplicity one nest. 

COROLLARY 2. There exists a nonhyperintransitive compact operator. 

PROOF. Let F be the Volterra operator. Then Lat Fis a continuous mul
tiplicity one nest. Let U = Lat V and let T be an invertible operator such that 
TU does not have multiplicity one. Since LatiTVT^1) = TN and since TU is a 
maximal nest the similarity TVT~X is not hyperintransitive. D 

REMARK . It was known for a number of years that a negative resolution 
to the Ringrose problem would yield Corollary 2. I believe that this connection 
was first observed by J. Erdos, and it was first shown to me by W. Arveson. 

We strengthen Theorem 1 as follows. 

THEOREM 3. Let U be a continuous nest of multiplicity one. Then given 
e > 0 there exists a positive invertible operator T G L(H) with T -1 compact and 
\\T-I\\ < e such that TU = {TN: NEU} fails to have multiplicity one. 

A nest has purely atomic core if its core is generated by its minimal projec
tions. The following shows that similarity transforms can fail to act "absolutely 
continuously" on nests. 

THEOREM 4. If U is a complete uncountable nest with purely atomic core 
there exists a positive invertible operator T such that TU does not have purely 
atomic core. 

A nest U is said to have the factorization property if every invertible posi
tive operator T factors T = A*A for A 6 (alg U) n (alg W)""1. Arveson [2] 
proved that nests of the "simplest type" have the factorization property. We 
generalize this to countable complete nests, and then show that these are the 
only ones with this property. 

THEOREM 5. A complete nest has the factorization property if and only 
if it is countable. 

In contrast, if we drop the requirement that A~l also be in alg U we 
obtain. 

THEOREM 6. Let U be an arbitrary nest. Then every invertible positive 
operator T factors T = A*A for A G alg W, A invertible in L(H). 

The following answers a question of J. Erdos [3]. 
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THEOREM 7. Let H be a continuous nest. Then the commutator ideal of 
alg N is not proper. 
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