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is hard to take it seriously. One is more likely to think of a certain Swiss 
hotelier and the German word for seat. Though these are colorful words they 
bear no relation to the concepts they represent. Extremes of brevity are 
reached in such statements as "After it has been established that G VF c ST 
and PSA « ST it is natural also to ask whether GVF « S77" (p. 596). 

Fully three quarters of the chapter are devoted to a discussion of RITZ 
fractions, that is regular C-fractions or continued fractions of the form 
K(anz/l). RITZ-fractions are soon specialized to the S-fractions of Stieltjes, 
here all an > 0, and z is replaced by 1/z, S-fractions are studied in their 
relation to positive symmetric functions, functions expressible as Stieltjes 
transforms Jo>d^{i)/{z + t), as well as to the moment problem. A sketch of 
the theory of Stieltjes integrals as well as inclusion of proofs of the Montel 
and Vitali theorems help in making the material accessible to readers of 
modest preparation. 

The computational aspects of the subject are always kept in mind. Not only 
are many examples considered and worked out, but also if there is a more 
constructive as well as a more existential approach to a topic, the former is 
usually chosen. It is thus not surprising that a good deal of emphasis is placed 
on the quotient-difference algorithm (treated in Chapter 7 in the first volume) 
which was introduced by Rutishauser in 1954. The q.-d. scheme can be used 
to compute the coefficients of the RITZ expansion of a formal power series. 
It is also used in giving a solution to the problem, proposed and solved by 
Hurwitz, of finding necessary and sufficient conditions for a polynomial with 
real coefficients to have all of its roots in R (w) < 0. (The problem can be 
solved by means of terminating RITZ fractions.) 

In conclusion the author must be congratulated on having written an 
eminently readable account of a series of interesting topics. This is a book 
one wants to browse in. 
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A "multifunction" T from X to Y is simply a map from X into the set 
9(Y) of all subsets of Y. This has also been called a "correspondence", or a 
"multi-valued mapping" by other authors. Whatever the name, the concept is 
quite elementary, so much so that it is not clear at a glance that there is 
anything to be learned from it. For instance, it is a straightforward exercise in 
general topology to define continuity for compact-valued multifunctions from 
one metric space to another. The set %(Y) of all compact nonempty subsets 
of Y is endowed with the Hausdorff metric: 

S(Kl9 K2 ) = max! sup d(xx, K2), sup d(x2, Kx ) 1 
^*,e#, X2GK2 * 

and T should be continuous if and only if it is continuous as a map from X 
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into %(Y). Incidentally, most properties of the space Y (completeness, 
compactness, Hausdorff countability) carry over to ty(Y) (see [20]). 

To get more interesting answers, one must ask better questions. During the 
sixties, there was an outbreak of such questions, from widely different areas 
of applied mathematics: mathematical programming, control theory, 
mathematical economics, partial differential equations. I shall try to classify 
subsequent developments under four headings: measurable selections, 
Liapunov's theorem, differential inclusions, generalized gradients. But I 
would like first to recall some facts about continuous selections. 

A. Continuous selections. Topologists realized quite early that continuity 
was too strong a requirement to be of much use, and split it up between upper 
and lower semi-continuity. A multifunction T is lower semi-continuous (l.s.c.) 
if, whenever T(x0) meets some open subset U c Y, so does T(x), for x close 
enough to JCQ. It is upper semi-continuous (u.s.c.) if, whenever T(x0) is 
contained in some open subset U c Y9 so is T(x), for x close enough to x0. It 
is usually required that T(x) be compact, or at least closed, for all x. With 
that understanding, any u.s.c. multifunction has closed graph, the converse 
being true when Y is compact. 

The first interesting question was answered by Michael: when does there 
exist a continuous function y: X -» Y such that y(x) E T(x), all x G X. Such 
a mapping is called a continuous selection from T. Michael [19] has proved 
that a continuous selection exists whenever X is paracompact (for instance, 
metrizable), y is a Banach space, and T is l.s.c. with closed convex nonempty 
values. Since I am already so far off the track, I cannot resist mentioning a 
beautiful result by Lazar (see [17]): if X is a Choquet simplex and Y a Banach 
space, any linear (i.e. aT(x) + ftT(y) c T(ax + fiy) for a, /? > 0, x,y E X, 
and a + /? * 1) l.s.c. multifunction T from X to Y has a linear continuous 
selection. 

Beautiful though they are, these theorems do not meet the needs of applied 
mathematicians, because multifunctions arising from applications very rarely 
are lower semi-continuous. Consider, for instance, a function </> on X X y, 
continuous with respect to y; assuming Y to be compact, define T(x) as the 
set of points in Y where <J>(x, • ) attains its minimum. In other words, T(x) is 
the set of solutions of the optimization problem 'm{y&Y^{x,y\ depending on 
the parameter x E X; this is a very usual situation in applied mathematics. 
Even with very strong continuity or regularity assumptions on </>, with respect 
to both variables, the multifunction T will not be lower semi-continuous; 
however, continuity is enough to make it upper semi-continuous (see [4] for 
an excellent treatment; believers in catastrophe theory might find [9] to their 
liking). 

The upshot is that applied mathematicians, at a very early stage, have 
abandoned all hope for continuous selections, and have turned to measurable 
selections (see, however, [13] for an alternative approach). 

B. Measurable selections. Two early results on measurable selections are 
recognized as seminal in optimization and control literature. The first one is 
due to von Neumann [21] the second to Fillipov [11], and both are called 
lemmas, although the original proofs were quite intricate, because they were 
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used as tools for some other purpose. Two separate kinds of results have 
flown from them, and they have merged but recently (see [24]). The first type 
of measurable selection theorem imposes some very strong measurability 
condition on T (typically, that its graph be a borelian subset o f l x Y), but 
nothing at all on the values T(x) (except that they be nonempty). The second 
type has a weaker measurability condition on T (typically, that T be borelian 
as a map from X to %(Y))> but requires T(x) to be compact-valued. 

Measurable selection theorems are of particular importance to control 
theory. Systems in engineering or economics are usually modelled by 
differential equations 

dx/dt=f(t,x(t),u(t))9 in /T, (S) 

where x(t) is the state of the system and u(t) the control, to be chosen at each 
time t in some prescribed set U. The set T(t9 x) * ƒ(f, x, %) certainly has 
physical relevance, as the set of all permissible velocities at time t, in state x, 
so that one might consider it more realistic to replace the original differential 
equations (£) by the so-called differential inclusion: 

dx/dt G T(t, x{t)). (4) 

The equivalence of (S) and 0) is not a trivial matter, and certainly 
requires a measurable selection theorem. 

C. Differential inclusions. Differential inclusions, such as (5), can be 
studied for their own sake, independently of any control system they might 
arise from. The question then is raised: when does the initial-value problem: 

dx/dt G T(t, x(t)), x(0) « JC0 G Rn (%) 

have a solution? I mean a local solution, on some time interval [-e, + e]; 
uniqueness, of course, is not to be expected. 

The first answer is: when T is lower semi-continuous and the T(x) convex, 
closed, nonempty; for then Michael's theorem applies, there is a continuous 
selection f(t, x) in T(t, x), and any solution of dx/dt = ƒ(/, x) will do. 
However, this is useless, because the multifunctions encountered in practice 
are not likely to be lower semi-continuous. We need a statement for upper 
semi-continuous right-hand sides. 

Such a statement can be given as follows: assume that the multifunction 
r ( r , x) is measurable with respect to t, u.s.c. with respect to JC, and satisfies 
some boundedness condition; assume moreover that the values T(t, x) are all 
convex, compact, nonempty. Then the initial-value problem (%) has a local 
solution. 

The proof is quite similar to the existence proof for differential equations 
with continuous right-hand side: one can either use a fixed-point theorem, or 
follow the Peano approximation procedure. The convexity assumption has 
particular significance. Without it, the theorem is false (try solving dx/dt * 
T(0, with T defined by T(t) - +1 for t < 0, T(t) - - 1 for t> 0, and 
T(0 * { - 1 , + 1} for t * 0). It is needed at several stages of the proof, and 
implies that the set of all solutions x(-) to 0O) is compact in (?([-e, + e]). It 
is all the more remarkable that Fillipov should have been able to trade 
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convexity for continuity of T with respect to both variables ([12]; sec [1] for 
another proof). 

The end of that line of investigation lies in stating necessary condition for 
optimality when a payoff function, usually J(x(T)) or foJ(t, x(t\ x(t)) dt, is 
defined on the trajectories of (50). This would yield a Pontrjagin maximum 
principle, independent of the particular representation ƒ (/, x(t\ u(t)) chosen 
for the permissible velocities, and applicable to problems too irregular to be 
tractable by classical means (for instance, problems with constraints on the 
state x(t) in Rn). Clarke [8] has begun fulfilling this program. 

D. Liapunov's theorem. Let now X be endowed with a <j-algebra & and a 
finite positive measure //,; we assume this measure to have no atoms, i.e. no 
sets A E 6E, ii(A) > 0, such that for any subset B c A, B E 6E, either 
fi(B) =•= fi(A) or ji(B) = 0. For instance, the Lebesgue measure would fit the 
case, whereas the Dirac measure would not. 

Consider a measurable multifunction T from (X, &) to Rn, all values T(x) 
to be compact, convex, nonempty, and uniformly bounded. Denote by f(x) 
the set of extreme points in T(x), so that T(x) is the closed convex hull of 
f(x). Finally, denote by §(T) the set of all measurable selections of T 
(similarly, S (f) for f ): 

§(T) = {<t> E L°°(X; Rn )\<t>(x) E T(x) Vx}. 

It is clear that § (T) is convex, closed, bounded in all Lp spaces, and hence 
compact in the weak-* topology o(L°°, L1). It is not so obvious that S(f) is 
exactly the set of extreme points in S(T), so that by the Krein-Milman 
theorem, S (T) is the closed convex hull of S (f) for o^L™, L1). As a matter of 
fact, we have even better: for any <f> E S(T), k E N, and ƒ„ . . . 9fk E 
L\X; Rn), some \p E § (f ) can be found with the property that: 

f^fiydii^f^f^dii îorKKk. 

The Liapunov convexity theorem (see [18] for a short proof) is essentially 
the case when T(x) is just the constant interval [0, 1] in R. Note that, if the/ , 
1 < i < k, are kept fixed, the sets 

{jT<<»,/.>^eS(r)} cRk, 

{/<^/.>rfH^eS(f)}c/?\ 

are equal; it is obvious that the first one is convex (because S(T) is), so the 
second one has to be convex too (although S(f) is not). The lesson is that 
integrating with respect to a nonatomic measure will produce some degree of 
convexity where it might be sorely lacking. 

These results have deep significance for applied mathematics. In control 
theory alone, I could mention at least two areas which depend heavily on 
these ideas: studying the bang-bang principle (see [15]), and understanding 
relaxed (or chattering) controls (see [10]). New applications have recently 
been found in partial differential equations (homogeneization theory). How-
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ever, I shall confine myself to mathematical economics, where the Liapunov 
convexity theorem is of such importance that a discrete version has been 
evolved (Shaplcy-Folkman [23]; see [10] for another proof). 

Roughly speaking, the fundamental theorem of mathematical economics 
states that it is possible for the market to equate supply and demand by a 
proper choice of prices. It is proved under stringent convexity assumptions, 
that may not be met in practice. On the other hand, in practice the number of 
consumers and (to a lesser degree) of producers is very large. Aumann [3] has 
shown how to trade one for the other: he represents the (supposedly infinite) 
set of all agents by the interval [0, 1] with Lebesgue measure, and uses a 
Liapunov-type theorem to do without the convexity assumptions. This 
approach has been very successful in understanding the economics of perfect 
competition, where the influence of any individual agent on overall prices can 
be considered negligible (see [16]). 

E. Generalized gradients. Let ƒ be a real function defined on a subset dom ƒ 
of some Banach space X. Generalized gradients have been defined when ƒ is 
convex l.s.c. (in which case dom ƒ is convex), and when/ is locally lipschitzian 
(in which case dom/= X). Their common feature is that the set df(x0) of 
generalized gradients off at the point x0 is convex and closed in X* (see [10], 
[22] and [6], [7]). Thus, we have a natural multifunction 3/ from dom ƒ into 
X*^ with convex closed values. 

It would certainly be unfair to classify the study of generalized gradients as 
a branch of multifunction theory. They exhibit features, and require methods, 
of their own, particularly in the convex case. The equation dx/dt E - 3<K*)> 
for instance, with $ a convex Ls.c. function, is really a nonlinear partial 
differential equation of parabolic type, with the heat equation as a special 
case; curiously enough, the solution to the initial-value problem is unique, 
although the right-hand side is multivalued (see [5]). 

There is some overlapping, however, Differential equations of the form 
dx/dt E - 3<K*) + T(x), with T(x) an u.s.c. multifunction with compact 
convex values, have been used for modelling planning procedures in 
economics with public goods ([14]); there seems to be a bright future for them 
in other areas of applied mathematics (see [2]). On quite another tack, convex 
analysis has developed methods for solving optimization problems in Banach 
spaces. In practice, these will be Lp spaces or Sobolev spaces, and the 
functional involved will be in integral form. The usual calculus of variations, 
for instance, seeks to minimize the functional 

F(x( ))= ƒƒƒ(<>*(<), f ('))<* 
over some path space. Convex analysis will provide conditions for optimality 
in terms of F9 and they will have to be translated in terms of ƒ to become 
practicable. Relating integral concepts (such as dF) to pointwise concepts 
(such as 3/) is an essential step in these methods, and typically requires a 
measurable selection theorem. 

Conclusion. I shall now pay some lip service to the role of reviewer and say 
a few words about the book at hand. Castaing and Valadier are leading 
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experts on the subject, and their book is long overdue. It is a technical and 
complete exposition of the theory in sections B, C, D, and the part of section 
E concerning convex integrals. The statements arc precise to the point of 
ponderousness; there are no frills, no brightening up things for the reader 
(except for the misprints; I recommend the one on page 37, where the authors 
"pretend" the Hausdorff metric), no motivations nor applications outside 
mathematics. The authors' idea of an application is to prove Strassen's 
theorem, without actually stating it (the reader is expected to know or to 
guess), or to define the conditional expectation of a random closed convex 
set. 

This is a book for the expert. Right at the beginning, the reader is expected 
to know what a multifunction is (no definition is provided), and as it goes on, 
he will be expected to know much more. Indeed, it is doubtful whether one 
could actually read the book without a complete set of Bourbakis close at 
hand, if only for the vocabulary (Dunford-Schwartz will not do). The authors* 
statement that "the only necessary prerequisite for an intelligent reading is a 
good knowledge of analysis" has the same ring of truthfulness as the famous 
claim of Bourbaki, that reading his treatise should require no particular 
knowledge of mathematics. Nor is functional analysis the main ingredient. 
Measure theory lends its flavour throughout, as it should be with any book 
dealing with measurable multifunctions. The book culminates in a decompo
sition theorem for the dual space of Lf (E a Banach space), two proofs of 
which are provided in the last chapter. This kind of result does crop up in the 
detailed study of convex integrands, but it certainly is measure theoretic in 
nature. 

For all its defects this is the best reference on the subject. It contains a 
wealth of material which previously was very hard to find, scattered away in 
minor French publications, and makes rewarding, if hard, reading. It is a pity, 
though, that no attempts were made at historical perspective, or to broaden 
the scope. An introductory book on the subject, in the spirit of [4], remains to 
be written; meanwhile, the beginner is referred to [25]. 
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