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This book contains the principal sources of intuitionistic logic and mathe
matics, Brouwer's particular brand of so-called constructive foundations (cf.). 
To understand it, one must compare its merits and defects with those of other, 
better known versions of cf. (including incidentally the bulk of Brouwer's 
early writings on cf.).-To put first things first: Brouwer's final version is 
incomparably more imaginative. The commonplace versions are preoccupied 
with the business of 'pure' existence theorems 3xA(x) and the search for 
'explicit' realizations t: A(i). For the silent majority of mathematicians this 
business is hardly dramatic: there is nothing to stop one from presenting such 
t even if one does not reject pure existence theorems. What is more, 
mathematics has developed a whole arsenal of notions for stating significant 
differences between such /, much more pertinent than the crude idea of an 
'explicit't or the crude distinction between 'constructive' and 'nonconstruc-
tive' (definitions of) t.1 Commonplace cf. constitute a restriction, and thus 
form a proper part of ordinary mathematics-usually accompanied by grand, 
but dubious foundational (cl)aims, to which we return later on. 

Brouwer's version of cf. is incomparable with ordinary mathematics. On the 
one hand it does not contain higher set theory with the (transfinite) iteration 
of the power set operation applied to infinite sets. On the other it includes as 
principal objects of mathematical study (i) choice sequences of various kinds, 
for example, (the idealization of) the random sequences of throws of a die, and 

1 Specialists, for whom this and other footnotes are intended, may want some documentation, 
(i) A happy coincidence shows the appreciation by the Mathematical Establishment of significant 
'explicit' realizations. Without much exaggeration: a Fields Medal was awarded in 1958, to Roth, 
for the 'pure' existence theorem Vn3q0VpVq(q > q0 -» \%/2 - p/q\ > q~2~^n\ and another one 
in 1970, to Baker, for the «worse» result 3q0VpVq(q > q0 -» \y2 -p/q\ > q-*+005) where, 
however, a (manageable) value for q0 was supplied. So much for blind prejudice against an 
appropriate search for explicit realizations, (ii) In (topological) algebra, one asks whether for 
polynomials of odd degree, say a cubic with leading coefficient 1, a (real) zero is determined 
continuously in the coefficients. The answer is No for the field R with the usual topology (take 
* 3 - 3x — c); the answer is Yes for what Brouwer called real number generators (r.n.g.) such as 
binary expansions with the product topology provided the usual equivalence relation for r.n.g. 
need not be respected. (Quite generally, Brouwer's insistence on r.n.g. is appropriate when 
continuity is paramount: a continuous mapping from R into a discrete space is constant, but not 
for r.n.g.) (iii) In analysis, one asks about Brouwer's fixed point theorem, for the uniform 
convergence topology of mappings ƒ of, say S2 H» S2: IS there a continuous J: ƒ H> X E S2 such 
that ƒ[?(ƒ)] = ?(ƒ) ? The answer is No (also for r.n.g. x): approximations to a fixed point of ƒ 
are not generally determined by approximations to ƒ (and so one need not even ask if they are 
'constructively' determined).-Once the attention of mathematicians is drawn to the ideas involved 
in (i)—(iii), their relevance is plain without any foundational preoccupation. Incidentally, several 
questions seem still open, for example: Are there topological versions of Hilbert's Nullstellensatz 
or of Artin's solution of Hilbert's 17th problem for complex (resp. real) coefficients (or their 
generators)? ftfi Copyright © 1977, American Mathematical Society 
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(ii) proofs which enter into a new meaning of the familiar logical operations, 
the new meaning being used to state laws or 'axioms' concerning (i). In 
contrast, ordinary mathematics which (of course) uses proofs as tools, does not 
make them explicit objects of study, and paraphrases properties of random 
sequences, for example, in measure-theoretic or set-theoretic terms. Brouwer 
himself did not give full fledged axiomatic theories of (i), let alone of (ii). But 
it may fairly be said that modern axiomatic theories, especially of (i), stand in 
much the same relation to Brouwer's writings, as modern axiomatic theories 
of sets stand to Cantor's.2 While it would be quite inappropriate to go here 
into the details of axiomatic theories of (i) or (ii), it seems worthwhile-and 
easy!-to present the general idea. 

Quite naively: 'freely chosen' sequences, s, say of natural numbers are 
thought of as-necessarily- 'incomplete', only finite initial segments being 
'given'; so all operations on such s must be continuous for the product 
topology. (Thus, if we think of euclidean spaces as including all points given 
by such freely chosen sequences, Brouwer's theorem on the invariance of 
dimension, mentioned in footnote 2, holds for all 1-1 mappings, bicontinuity 
now being a consequence of the (new) conception of euclidean space.) More 
generally, if P is an arbitrary predicate of s, where s is freely chosen (no 
restriction on the choices being allowed except for a finite initial segment), we 
expect 

(*) Vs[P(s) -> 3nW{(\/m <n)[s(m) = s'(m)] -* P(sf)}] 

inasmuch as P(s) can only 'depend' on a finite segment of s. Evidently, in (*) 
the logical particles cannot have the usual truth functional meaning given in 
texts on logic, since (*) plainly contradicts p V -\p; take 3n[s(n) = 0] for 
/?, -\p for P(s), and s such that for all 'given' initial segments s(n) # 0. There 
is nothing dramatic about all this: in ordinary reasoning we relatively rarely 
use the truth functional meaning such as: q is true or p is false, for '/? implies 
q\ The latter meaning happens to have a particularly simple theory. Brouwer 
indicated, and Heyting, the editor of this volume, developed another meaning 
of the logical particles, well adapted for an analysis of (*)-but perhaps even 
further removed from most ordinary reasoning than the truth functional 
meaning in the logic books. The new meaning is well illustrated by the case of 
implication. 

2 A readable account is in Choice sequences, a chapter of intuitionistic mathematics, by A. S. 
Troelstra, to appear in the Oxford Logic Notes (Oxford University Press). The parallel between 
(theories of) sets and choice sequences goes further, (i) The-currently-most successful theories do 
not treat the most general notions involved but rather (the cumulative hierarchy of) those sets 
which are generated from <f> by iterating the power set operation, resp. lawless sequences—and 
there is no evidence that, even if there are such things as the most general' notions, of set or 
choice sequence, they would lend themselves to a rewarding theory, (ii) In fact, our knowledge of 
the cumulative hierarchy and of lawless sequences is-at the present stage-most effective when 
applied to other notions defined in terms of those things: we know more about the so-called 
constructible sets, L, than about the full cumulative hierarchy (used to define L), and have more 
applications of so-called projections of lawless sequences than of the latter.-Incidentally, there is 
a little-known overlap in the interests of Cantor and Brouwer, the founders of the theories of sets 
and choice sequences. Ever since 1877, Dedekind and Cantor speculated that regions of different 
dimension are not in 1-1 bicontinuous correspondence; only Cantor's attempted proof was 
defective [Nachr. Ges. Wiss. Göttingen (1879), 127-135]. 
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First of all, the data determining a proposition, p, are not simply truth values 
(true or false). This would obviously be inappropriate for P(s) when s is 
'incomplete'. Instead, we have a condition, Cp determining what are proofs of 
p (not: whether or not there is a proof of p). Then Cp_+q is built up from Cq 

and Cq as follows: by definition, we require an operation I and an argument, 
say 770 : 

For any TT, Cp{ir) => Cq[I(ir)]JL*) for short, 

and 77Q establishes (*),3 

where IT consists, hereditarily, of operations and arguments.-The reader can 
guess the corresponding explanations for other particles. The new meaning 
satisfies different formal laws from the truth functions, for example, as we have 
seen: -\Vp(p V -^p). Clearly, (*) must be expected to be quite sensitive to the 
domain II of the 77; by restricting II, one restricts the domain on which I must 
satisfy (*), and thus increases the possibilities of proving p -> q; but one also 
restricts the permitted range of /, and thus decreases those possibilities. 
Because of that sensitivity, no one set of formal logical laws can be expected 
to be 'fundamental'-in contrast to ordinary first order logic familiar from 
model theory. As a so-to-speak positive counterpart, the particular formal laws 
first stated by Heyting for the intuitionistic meaning apply also to situations 
only quite vaguely related to constructions in the literal sense (meant by 
Brouwer); for example, they apply to particular 'explicit' definitions in 
axiomatic set theory involved in (weak) forcing or to certain 'uniform' 

3 There is an obvious-though not necessarily vicious! -circularity here, unless =» in (*) is 
different in 'kind' from ->. The usual idea is that the conditions Cp are decidable, and so =» has 
simply its truth functional meaning. For coherence, this then requires that it be decidable, for any 
pair (ƒ, TT0), whether or not TT0 establishes (*) for variable m. All this would not only be pretentious, 
but genuinely dubious if we were realistically thinking of arbitrary proofs and operations. But it 
makes good sense when applied to a wide range of proofs and operations, hereditarily 
formalizable in various 'logic-free* systems. For reference in footnote 7 below: For a given 
(proposition) /?, the range of / must be restricted, corresponding to the quite naive malaise about 
the idea of a totality of all possible proofs (of any one proposition).-Speaking of circularities, the 
notion of a continuous operation F on choice sequences s would also be circular if defined in the 
usual way by 

VsBnWiiVm < n)[s(m) - s'(m)] -» F(s') « F(s)} 

since, for choice sequences s, the quantifier combination Vs3n is in turn required to be continuous. 
Without stating this issue, Brouwer proposed an independent 'inductive' definition of a notion, 
93, of continuous operation (or rather of an arbitrary operation on choice sequences!): Constant 
operations € 93, and if each Fn e 93 so does F* where F*(s) = F^( s ) and 7(n) = s(n + 1). 
(For the meaning of continuity in ordinary mathematics, 93 is demonstrably the class of 
continuous operations.) In connection with 93, Brouwer introduced the idea of 'fully analyzed', 
possibly infinite proofs; cf. his footnore 9 on p. 394. This idea, developed by Gentzen for formal 
systems-with cut-free replacing fully analyzed-smd extended beyond expressions of the particular 
form V.y3rt, has been very influential in proof theory. 

Putting together the analyses of choice sequences sketched here, one gets a useful elimina
tion theorem. For any formula A containing (possibly) bound, but not free, variables for choice 
sequences there is an Ae not containing any such variables: A <—• Ag. Of course, this result 
does not make choice sequences useless—no more than any other discovery in mathematics of a 
relation between two sets of notions makes one of them useless; cf. footnote 9. 
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definitions in category theory applied to sheaves or Cartesian closed catego
ries. It is fair to say that at least the elementary exposition of such 
'constructions' benefitted from experience with formal intuitionistic logic.4 

So much then for the extension of ordinary mathematics by detailed 
systematic developments of specifically intuitionistic notions. In the reviewer's 
opinion they have substance and some mathematical wit. But it can hardly be 
claimed that they (ought to) have a central place in the 'mainstream'of 
mathematics. As is clear from footnote 1, the vague general ideas which 
preceded those developments have been 'absorbed' in ordinary mathematics 
(without any logic-chopping). Those ideas certainly fired the imagination of 
mathematicians like Poincaré and the young Brouwer. (Contrary to an almost 
universal misunderstanding, Brouwer's work in topology was preceded by his 
interests in constructivity, for example, in his dissertation now available in 
English, and followed by his work on choice sequences.) Those two construc-
tivists are associated with the switch to algebraic topology operating on finite 
'pieces' from set theoretic topology in the style of Schoenflies; for an 
interesting account, by Newman, see Biographical Memoirs of Fellows of the 
Royal Society, vol. 15, The Royal Society, London, 1969, p. 47. But also more 
modern developments in ordinary mathematics are related to vague, general 
preoccupations of constructivists, for example, how objects are 'given' to us: 
elementary category theory points out the consequences of 'giving' a function 
by its graph together with a bound on its range; even though the exact range 
is determined by the graph, the passage involved may require an operation not 
in the category considered. Bishop's book5 illustrates this state of affairs very 
well (in effect if not by intention): leaving aside the introduction, the style is 
perfectly familiar to the modern mathematician. 

4 The sensitivity of (*) to the choice of domain II should be compared to the sensitivity of 
(ordinary) second order logic to the class C of sets involved in the (set theoretically explained) 
meaning of logical formulas. It was a discovery that the validity of first order formulas (which is 
of course also defined set theoretically) is remarkably insensitive to C: once the set of natural 
numbers and so-called Â  subsets are included in C, the validity of first order formulas is stable. 
Without any evidence to the contrary, the patent sensitivity of validity in the case of intuitionistic 
logic suggests that the latter cannot be expected to be often useful (in intuitionistic mathematics). 
Without going into the particular consideration above, Brouwer was certainly skeptical of the rôle 
of logic (tacitly, in his kind of mathematics). Incidentally, he was also skeptical of the logical 
importance of another favorite of present-day logicians: higher types; cf. pp. 462-464, or at least 
the title! Without denying the elegance of the language of higher types, after 20 years of 
experimentation this reviewer shares Brouwer's view. After all, even in set theory, axioms insuring 
the existence of higher types, like the replacement axiom, have little proof power unless combined 
with the power set axiom. 

5 Foundations of constructive analysis, N.Y., 1967, reviewed in Bull. Amer. Math, Soc. 76 (1970), 
301-323. It will not have escaped the reader's notice that the review compares Bishop's exposition 
to impressions current in the twenties (or to views of those like Fraenkel whose interests turned 
elsewhere at the end of the twenties); that is, before the very significant progress in the thirties by 
Gödel, Gentzen, and others. For example, some 40 years ago Gentzen realized that a great deal 
of mathematical analysis can be formalized by use of quite weak 'existential' axioms; cf. his 
asides on p. 136 and p. 200 of The collected papers of Gerhard Gentzen, M.E. Szabo (editor), North-
Holland, 1969; reviewed J. Philosophy 68 (1971), 238-265.-Indeed, when in the fifties people 
began to look seriously for theorems of ordinary mathematics not derivable from such weak 
axioms, they had to go to such curiosities as the theorem of Cantor-Bendixson.-Formalizations in 
weak (classical) systems provide, automatically, 'constructivizations' by means of functional 
interpretations discussed in footnote 9. 
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Brouwer's foundational critique. As everybody knows, and as the title of this 
volume indicates, Brouwer's own case for the work here collected had little to 
do with extending our ordinary (view on our knowledge of) mathematics, but 
with correcting it. There is wide-spread misunderstanding concerning his 
specific critique, (i) He by no means confined himself io finite objects: in fact, 
the'fully analyzed'proofs mentioned in footnote 3, are infinite, (ii) He was 
not tempted by hackneyed generalized doubts about the legitimacy of abstract 
notions: he studied proofs, that is, thoughts, which he distinguished emphati
cally from the linguistic objects used to represent them; for example-but not 
necessarily-formal derivations of some specific formal system, (iii) Though he 
saw defects in the theory of sets (tacitly: as presented in the first decade of this 
century), the antinomies were not particularly prominent in his critique.6 

What Brouwer did do in his foundational critique was really absolutely 
orthodox-at least since Kant, and particularly in the first quarter of this 
century. According to Brouwer, our ordinary view neglects the role of the 
subject (called 'observer' in physical contexts; it goes without saying that this 
stress on the subject acquiring knowledge got a boost from Einstein's 
singularly successful use of the observer in his special theory of relativity, 
shortly before Brouwer's dissertation). A natural and-in the short run-
effective reaction to the neglect of anything is to make it the sole object of 
study. Brouwer's version of cf. is an instance of this: as described on p. 88 
above, he made proofs, that is, the activity of the subject (also called 'creative 
subject' by Brouwer and 'ideal mathematician' by others, as in 'ideal fluid'), 
part of the meaning of mathematical assertions. Although similar 'subjectivist' 
analyses of scientific knowledge have been proposed in the philosophical 
literature for all sorts of other sciences, nothing in that literature seems as 
imaginative as Brouwer's notions introduced in his attempt at a purely 
subjectivist analysis of mathematics. If the latter has not gone very far, this is 
surely partly due to inherent weaknesses in the scheme itself; but probably 

6 It is perhaps natural that the antinomies are often used-in effect if not by intention-to 
introduce a bit of drama into foundations, a subject by and large devoted to the undramatic 
business of 'analyzing' what (we believe) we know anyway. But it is simply historically false to 
think that the antinomies provide evidence for any failure of the 'logical intuitions' of Cantor, let 
alone of his contemporaries (who were oversuspicious of his notions). Here are the facts. Back in 
1885, in a review (of Frege's Grundlagen) easily accessible in Cantor's Collected works, he objected 
to Frege's: (*)BxVy[y G x «-» P(y)] for the precise reason that precautions are needed to ensure 
that the predicate P has an extension which can be comprehended (as a 'unity*). And Frege 
himself, in the introduction to the Grundgesetze, discussed the possibility that (*) might be-not 
only false for the intended meaning, but-formally contradictory. His own malaise is apparent 
from the thoughtless 'evidence' proposed loc. cit. for (*), namely its wonderful consequences 
(which, at best, provide a reason for our interest in (*), certainly not for its validity or 
consistency). -As this reviewer reads Brouwer's diatribes against set theory, for example, in his 
dissertation, the main source of his 'gut reaction' seems to have been less the topic of (infinite) 
sets than the extraordinarily pretentious claim for set-theoretic foundations in Russell's Principles 
of mathematics, as providing the true analysis of all mathematical concepts (and that the formal 
deductions in axiomatic set theory analyze all mathematical reasoning). Brouwer surely had a 
point. Though even today, set theory is better known as a 'general framework' for mathematics 
than as a branch of mathematics (which, after a long period of stagnation, has made remarkable 
progress in the last 15 years), the value of this or any other 'general framework' is dubious: 
axioms are given in the first chapter of a text, but hardly ever has one occasion to refer to them 
later (in any detail). 
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even more because he was preoccupied with hackneyed traditional questions 
such as: Is mathematics about an external reality or about our own 'free' 
constructions? (Those questions are so banal that we ask and understand them 
when-onto genetically or phylogenetically speaking-we know next to nothing 
(about mathematics); reflecting only, as somebody said, wie sich der kleine 
Moritz die Dinge und das Denken vorstellt.1) More specifically, Brouwer 
remained hung up on the validity of (principles of) proofs, neglecting more 
'structural' relations between proofs, and between proofs and other things. 

The famous dispute between Brouwer and Hubert. To put first things first, 
Brouwer and Hubert were in the same camp, accepting only constructive 
principles as prima facie legitimate. The difference was elsewhere. Brouwer's 
principal concern was to develop constructive mathematics, without the 
distraction of studying metamathematically (by constructive means) the 
principles of ordinary mathematics. Hilbert wanted to 'justify' the latter by 
using (i) formalizations <5 of valid principles for then-current mathematical 
concepts and (ii) proving the consistency of 5"(tacitly, constructively): he was 
convinced that (ii) did not need any development of constructive mathematics 
because he thought that so-called finitist methods (of which proofs in 

7 Of course, for this very reason the questions have a perennial pedagogic interest (at least, for 
the untamed spirits among us).-If the reference above to the business about external reality and 
our own constructions (discovery and invention) appears irreverent, the reader should stop to give 
second thoughts to the favorite implications attributed to this matter, for example, concerning 
certainty (of mathematical knowledge): we are supposed to be peculiarly certain of our own-
mental, presumably not necessarily also of our physical-productions. Is the idea already 
mentioned in footnote 3 of all possible proofs of any one theorem (or all possible definitions of 
any one object, say the empty set) as clear, let alone clearer than the idea of the collection of all 
subsets of say w? A second favorite is the would-be dramatic 'conflict' between external reality 
and our free constructions. Getting knowledge of any (external) reality requires activity or 
constructions on the part of the subject; the bit about their being 'free' is particularly 
unconvincing since they are certainly not made by consciously arbitrary choices, no more so than 
constructions of material tools (which are limited by the properties of the material available, quite 
apart from the intended purpose).Besides,why expect a conflict between our own possibilities and 
the external reality in which we have evolved? -To avoid misunderstanding: all this pretentious
ness does not discredit, by itself, all foundational questions like those that excited Brouwer; early 
speculations on the question: What is matter (made of)?-which used to be considered philosoph-
ical-were pretentious too, and spiced with such 'conflicts' as: Matter is atomic versus All is flux. 
(Even using hindsight we would be hard put to find the 'conflict' in what Born called: the restless 
universe of aXoms)-Historical note: It hardly seems an accident that the great interest in-set 
theoretic or constructive-foundations in the first quarter of this century coincided with the huge 
success of the atomic theory: if the physical world can be built up from a few basic elements, why 
not mathematical concepts (Whitehead-Russell) or proofs (from a few basic intuitions; Brouwer)? 
But mathematical foundational schemes lack some of the most obviously essential features of 
modern atomic theory (not: of early generalities about atoms), (i) The basic foundational 
elements, such as sets, are really quite close to objects of ordinary mathematical experience: do 
they even look fundamental enough for analyzing in any depth the great diversity of mathematics? 
(ii) Where are the analogues to geometric relations and binding forces between atoms so essential 
for refining (crude chemical) atomic theory? (iii) On the 'phenomenological' level, foundations 
lack the analogues to such prerequisites of the atomic theory as the isolation of chemically pure 
substances, let alone the periodic table.-One wonders whether our experience of mathematics is 
at a comparable stage to that of physics and chemistry which was, patently, needed for progress 
on the structure of matter. 
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'elementary number theory' are typical) would be enough.8 

Brouwer was in any case dubious about the adequacy of any formaliza-
tions-without, however, getting anywhere near the precise incompleteness 
results established by Gödel. (Why all the fuss about a consistency proof for-
a necessarily-incomplete f if tomorrow we can think of stronger principles f+ 

which are also valid?) More importantly, Brouwer objected strongly to 
consistency as a sufficient condition on % quite apart from the secondary 
matter of the methods used in a consistency proof. And he surely had a point. 

What does consistency of f insure (for <5 of the kind considered in Gödel's 
incompleteness theorem)? Suppose A is an 'elementary' proposition, for 
which, by work of Matyasevic, (\/n{ E co) • • • (\fn9 G co) (p ¥* 0) is typical, 
where p is a polynomial in 9 variables with integral coefficients. If (the 
translation in ?Fof) A is derivable in-or even only formally independent of!-^ 
then the diophantine equation p — 0 has no solutions. For if it had, a 
counterexample to A could be computed, and so -\A would be formally 
derivable in & But this is all, in the following precise sense. If such an A is not 
derivable in (a necessarily consistent) % then 3F U {-\A} is also consistent, 
though, as we have just seen, -i A is false. Thus consistency by itself does not 
even insure the truth of (formally derived) purely existential arithmetic theorems, 

Hubert's pious rhetoric, as saviour of classical analysis against Brouwer's 
Bolshevic revolution, has a hollow ring. All that is 'saved' is-as Hubert put 
it—a formal game, % with symbols (where f is one of the formalizations of 
analysis developed in the first quarter of the century). Except for elementary 
propositions, by no means the whole content of (the ordinary interpretation 
of) ordinary analysis, the latter is not 'saved'by the consistency of f. Actually 
Brouwer's attack, by way of 'contradictions' with ordinary mathematics, was 
hardly disturbing since he got them by changing the meaning of the logical 
operations and the domain of variables, for example, replacing sequences in 
the sense of ordinary mathematics by choice sequences (naturally, supple
mented by grand foundational doubts about our ordinary notions, doubts 
which, by footnote 7, are generally more dubious than the notions themselves). 

Ironically, if, after recognizing the inadequacy of the consistency criterion, 
one actually looks at consistency proofs one finds that, properly formulated, 
they do 'save' a remarkable amount of ordinary mathematics (for use in 
constructive mathematics). In fact, progress over the last 25 years allows a 
precise formulation of the issue whether (i) the methods developed in work on 

8 Up-to-date and quite readable accounts of Hubert's (consistency) program are to be found in 
the articles on Hilbert's second and tenth problems in Proc. Sympos. Pure Math., Vol. 28 (to 
appear). Conditions on systems 3Fto which Gödel's incompleteness theorem applies are stated, in 
particular, that numerical computations can be mimicked in % so if a diophantine equation 
p(xx,..., x9) — 0 has a solution (nx,..., /i9), p(nx,..., n9) = 0 can be verified by computation, 
a fact used in the next paragraph but one. It is to be stressed that the general conclusions are 
independent of any precise analysis of the notion of finitist proof. Besides, there is no evidence 
for any particular reliability of finitist methods (Hilbert's principal claim for them)-tacitly, at the 
present time; of course, 100 years ago mathematicians had to treat nonfinitist, logically compound 
expressions quite gingerly, such as the negation of uniform convergence! On the contrary, 
inasmuch as nonfinitist proofs are often simpler than finitist ones (of the same theorem), and the 
nonfinitist principles equally reliable, the actual probability of error in a finitist proof is likely to 
be higher. This is borne out by the literature on finitist consistency proofs which contains 
remarkably many oversights. No other compelling virtue of finitist methods has turned up either 
(except the fact that they were one of the first that occurred to us). 
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Hubert's consistency program or (ii) those developed from Brouwer's ideas on 
choice sequences are more effective for this purpose.9 

Writings on the philosophy of life and politics. The editor has included 
excerpts from Leven, Kunst en Mystiek (1905, translated as: Life, art and 
mysticism), and given reasons for omitting others, for example, on p. 565: 'In 
many places Brouwer runs on inconsiderately, for instance, on the position of 
women in society.' Some of the omissions are translated in the dissertation of 
Dr. van Stigt, for example, one expressing Brouwer's view that every woman 
is more like a lioness than a twin is like his brother. Curiously, neither Brouwer 
nor Hey ting points out the relevance of some of the mystical business to the 
'main stream' of foundations, which assumes that we must be capable of 
making the grounds for our knowledge conscious to ourselves, and that this 
would be rewarding to boot. In sober terms, the 'mystical' alternative would 
be that we have a lot of knowledge, also in mathematics, which is simply more 
convincing than any proposed analysis-of our actual grounds for this knowl
edge, let alone of possible grounds. 

On pp. 465-471, there is a kind of political manifesto, published (1946) soon 
after the war, apparently designed to improve the world by distinguishing 
between 5 levels of language (and their logical connections, bottom of p. 466). 
It concludes, on pp. 470-471, with an unorthodox combination of concrete 
proposals: (i) the protection of private property by the state, (ii) far reaching 
socialization of means of production and heavy taxes, and, above all, (iii) the 
free circulation of gold. It is not said whether Brouwer himself helped carry out 
any of these proposals, for example (iii).—At about the same period the 
reviewer knew some high-minded mathematicians who wanted to destroy the 
capitalist system by means of (iii): they bought gold in England and took it to 
France where the price was usually > 30% higher (and converted back to 
sterling in England at the controlled rate of exchange). 

G. KREISEL 
9 The standard scheme for extending Hubert's consistency program goes by the name of 

(functional) interpretation, generally of the following form: To each formula A of 3Fis associated 
a sequence Ax ,A2, . . . such that (i) if A is derivable in % some At is derivable constructively, (ii) 
judged by our ordinary interpretation, the content of A is 'saved', that is, formally A is 
(classically) derivable from each Ai (but not generally conversely). The interpretations are called 
'functional' because even if A is number theoretic, the At will generally contain variables for 
functions (or choice sequences). One of the simplest examples is the so-called no-counterexample-
interpretation, illustrated by A of the form 3n\fmA0(n,m). (We may have proved A without 
knowing an 'explicit' n\ take for A0(nfm): P(n)Vn P(m) and for P, say: 2/i is not the sum of 2 
primes). A is replaced by Vf3nA0[«,ƒ(«)] where ƒ ranges over number theoretic functions. Then, 
given % we find a class of (continuous) functionalFx, F2, . . . and take for At: A0[Fiff(F^)] where 
Ft = Fj(f). More interestingly, consider Brouwer's fixed point theorem (FPT); suppose <p is a 
topological mapping, <p: S2 \-+ S2. Let { range over S2 and $(£,«) be a neighborhood or 
'approximating'function of <p, that is |$(£,«)| < n~l and <p(£) E $(£,«). Then (FPT) asserts: 
3£ V«[{ € $(£, «)], the expression inside [] being elementary for point generators £ (in the sense of 
(ii) in footnote 1). The no-counter example-interpretation ensures a constructive proof of 
ViV3£[£ E $(£,ÏV)] for functional N: S2 H> W, where N = N(£). The interpretation applies since 
(FPT) can obviously be proved in the kind of weak system mentioned in footnote 5. (For 
continuous AT, this reduces to the triviality V«3£[{ E $(£, «)] unless generators £ are used.)-The 
open issue mentioned in the text arises for relatively many A, though not for (FPT) itself, as 
follows: A is formally derivable both classically and for choice sequences, but not for narrower 
classes of constructive functions, for example, recursive ones. By the elimination result at the end 
of footnote 3, we have Ae (valid for such narrower classes), and can compare Ae with the At. 


