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The theory of Markov processes can be considered in a great variety of 
settings. In the work under review the word "chain" is used to indicate 
discrete time (a convincing argument for this usage is made), the state space is 
a general measurable space, and the transition probabilities are assumed to be 
stationary. This context then determines the problems to be considered. 

The most immediate problem, and historically the first to be pursued, 
concerns the asymptotic behavior of the «-step transition probabilities 
Pn(x, A). In case the state space consists of a finite number of states only, 
this reduces to studying the asymptotic behavior of the nth power of a 
Markov matrix, and much early work was devoted to this situation. The case 
of general state space is of course much more complicated, and the pioneer
ing work here is due to Doeblin. Between these two levels of generality lies 
that of denumerable state space, definitively treated by Kolmogorov, and 
alternatively by Feller. 

In the ergodic theory of Markov chains one generally distinguishes between 
the recurrent and the transient case. Roughly, in the recurrent situation, a 
subset A of the state space will be visited infinitely often by the Markov chain 
started at x, for all (or most) starting points x, provided only that A is not too 
small (in a suitable sense). The parenthetical expressions can be made precise 
in various ways, leading to very different concepts of recurrence. In the 
denumerable case one may take "most" to mean all, and "small" to mean 
void. Following one of Doeblin's approaches for general state space, one can 
take "small" to mean of <p-measure zero, where <p is an auxiliary measure on 
the state space. Then taking "most" to mean all, one obtains the notion of 
(jp-recurrence. A chain that is cp-recurrent for some cp is recurrent in the sense 
of Harris. 

A subset A of the state space is closed if P(x, A) = 1 for all x G A. No 
matter what notion of recurrence is used, the first problem is to show that the 
state space can be broken up into minimal closed sets, and the Markov chain 
restricted to any one of these sets is either recurrent or transient. 

In the recurrent case one hopes to establish that Pn(x, •) is asymptotically 
independent of x (weak ergodicity); one can then expect convergence of 
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Pn(x, •) to a limiting measure 77 (strong ergodicity) if and only if there exists 
a probability measure IT satisfying TT = TTP (invariant probability measure). 
One may consider actual convergence as n -> 00, or Cesàro convergence, and 
various notions of convergence are of interest. Suppose, in particular, that 
Pn(x, •) — Pn(y, •) -»0 as n -> 00, for all x andy, the convergence being in 
the sense of total variation. This very strong kind of weak ergodicity is 
equivalent to each of the following two conditions: (i) the Markov chain has a 
trivial tail a-field, (ii) the only bounded solutions to hn(x) = Phn+l(x), n = 0, 
1, . . . , are hn(x) = constant. 

Ergodic problems for Markov chains have given rise to a great variety of 
approaches. Some of the most powerful ones are still inventions by Doeblin. 
Assuming the recurrence condition of Harris, it turns out, one obtains 
essentially all the results that hold in the denumerable recurrent case. The 
principal result asserts that one is, in fact, in the tail trivial situation, or 
reduces to this situation after accounting for a simple periodicity. A full 
development is given in Chapter VI. At the other extreme, under very weak 
recurrence conditions one is in the context of general ergodic theory. The 
basic result here is the Chacon-Ornstein theorem. This theorem has given rise 
to a number of different proofs, two of which are presented in Chapter 4. 
There are, however, many intermediate situations, where more can be said 
than what is provided by the Chacon-Ornstein theorem, but the recurrence 
condition of Harris fails. There have been numerous investigations of such 
problems, but these are not discussed in the book. 

It is well known that the differential generator of Brownian motion is the 
Laplacian, and so the study of Brownian motion is one aspect of potential 
theory. Similarly, each Markov process has an associated potential theory. In 
the Markov chain case (P — I) takes the place of the Laplacian. In the 
transient case G = 'E^QP" is the potential kernel. The ideas of potential 
theory thus become available (Chapter 2). In the transient case the Markov 
chain must escape to infinity: the study of how it does so can be accom
plished by suitably metrizing and completing the state space, obtaining in this 
way the Martin boundary. This is carried through in Chapter 7 for general 
state space, under some supplementary hypotheses. In the recurrent case the 
series defining G diverges. For many purposes one can work instead with the 
resolvent kernel Gx = 2A"P". However it sometimes is desirable to have an 
actual potential operator, that is, an operator which in some sense inverts 
(/ — P). The classical model here is the logarithmic potential associated with 
two dimensional Brownian motion. This topic is discussed in Chapter 8. 

A Markov chain with the real line for state space is a random walk if the 
transition probabilities are translation invariant, so that the transition proba
bility operator is simply convolution with a given probability measure /x. 
Random walks on more general groups are defined analogously. The study of 
random walks on Euclidean ft-space, or the Euclidean lattice is classical. 
Most of these results can be extended to locally compact abelian groups with 
countable basis, whilst partial results exist in the nonabelian case. An exposi
tion is given in Chapter 5. Potential theory for recurrent random walks on 
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abelian groups is developed in Chapter 9. However the assumption that the 
random walks are recurrent in the sense of Harris rules out, for example, 
many random walks on the line which are merely interval recurrent. In the 
exposition of random walks on groups, the author draws in part on his own 
important contributions. In the transient case a principal result is the renewal 
theorem. In the case of the real line, for example, this asserts that if the 
support of /A generates the whole line, then G(x, •) converges to a constant 
c+ (c_) times Lebesgue measure a s x - > o o (x-> —oo) and the constants are 
identified in terms of 11 (e.g. if \i has a mean X > 0 then c+ = X~\ c_ = 0). 
At the heart of the renewal theorem is again the absence of nonconstant 
bounded invariant functions, i.e. if the support of /x generates the line then all 
bounded continuous solutions of Ph = h are constant. 

Two questions should now be asked. First, is the theory now essentially 
complete? Second, has the introduction of the language of potential theory 
really advanced the subject? 

Indications are that the answer to the first question is in the negative: the 
subject still seems to be opening up in new and important directions. To 
mention just two striking examples of very recent progress: the work of Rost, 
Baxter and Chacon, and others, uncovering the connections between 
Skorokhod stopping, potential theory, and filling schemes; the novel type of 
occupation time limit theorems of Donsker and Varadhan. 

As to the use of the language of potential theory, it can be admitted that in 
some instances the contribution is largely semantic. However there are 
numerous situations where the ideas of potential theory have contributed 
incisively to understanding the behavior of Markov chains. This is certainly 
the case in the analysis of the asymptotic behavior of transient Markov chains 
by means of Martin boundaries, in the solution to the Skorokhod stopping 
problem just mentioned, and for many other questions as well. 

The text of Revuz is supplemented by short historical notes. In this 
connection it should be noted that the ergodic theorem for chains recurrent in 
the sense of Harris, which in the text appears credited to the reviewer, was 
first proved in a joint paper with B. Jamison, as correctly stated in the notes. 
In view of the familiar process of historical compression, it may not be 
surprising that Markov's name does not appear in the references; more 
remarkable is the fact that Doeblin also is not cited. As the author remarks in 
his introduction, "We merely indicate the papers we have actually used; as a 
result insufficient tribute is paid to those who have founded the theory of 
chains, such as A. A. Markov, N. Kolmogorov, W. Doeblin, J. L. Doob and 
K. L. Chung." 

Revuz's book is carefully organized, the proofs are well thought through 
and elegant. Many problems supplement the material in the text. A more 
extensive index, and a list of symbols would, however, be desirable. The first 
few chapters provide a good introduction to Markov chains for the novice, 
and most experts will find something new in the latter chapters. 

S. OREY 


