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points. Those which are not singular, are regular. The regular moving points 
are the union of disjoint annuli; the singular moving points are what is left of 
the moving points. The description of the flow then is given in terms of the 
regular moving points, where it can be completely described in terms of 
simple "patches"-certain standard annular flows; the fixed points-where it is, 
of course, fixed; and the singular moving points-where life gets complicated. 

To develop the theory for singular moving points, the author first considers 
a very special case: the case of flows in a multiply-connected region of the 
plane where every orbit is aperiodic and has all its endpoints in the boundary. 
These he calls Kaplan-Mar kus flows, after the two who first began develop
ment of the theory of such flows. Complete success in describing such flows 
has eluded the author and his coworkers except, to some extent, where the set 
of singular fixed points has only finitely many components. The later is, 
however, basic, and so for many cases, another patch in the quilt yields to 
description. After this, the author explores various ways to combine such 
flows with regular flows and develop further theory. 

Flows without stagnation points can be described rather completely. For 
flows with a finite number of stagnation points, or whose set of stagnation 
points has countable closure, a considerable amount is known, though the 
information is not as complete as for the no stagnation point case. In all cases 
where a description is possible, it is the set of regular moving points that 
supplies the main body of information. However, the author and his 
coworkers have developed a great deal of information about the singular 
moving points, forming therewith organs of the flow, which in turn are 
decomposed into tissues and gametes, and these in their turn are decomposed 
into cells. These "cells," "gametes," and "tissues" are pretty well char
acterized, and even the "organs" are subject to a good deal of description. 

Some additional concepts have been studied, such as the algebra of flows 
introduced by J. and M. Lewin. One could say that, as of 1975, it is the 
complete book about flows in the plane. It is accessible to anyone with a 
minimal background in analysis and point set topology-provided one sticks 
to it sufficiently to keep track of all the terminology and notation peculiar to 
the book. It is light reading (except for that)-yet builds a substantial theory. It 
is well written and enjoyable. 
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Gaussian measures in Banach spaces, by Hui-Hsiung Kuo, Lecture Notes in 
Math., no. 463, Springer-Verlag, Berlin, Heidelberg, New York, 1975, 
vi + 224 pp., $9.90. 

There are difficulties in constructing measures on infinite dimensional 
spaces. Even in a separable infinite dimensional Hubert space the unit ball is 
not compact. Therefore a countably additive measure on such a space cannot 
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be rotationally invariant . Already, in this simple space, the most natural and 
desirable property of Lebesgue measure has to be abandoned. 

A Gaussian measure on Rn can be defined by requiring that the linear 
functionals on Rn are normally distributed. If/, a linear functional on Rn, is 
normally distributed with mean zero and variance |/ |2, where | | is the 
ordinary Euclidean norm on Rn* = Rn, the measure induced on Rn is the 
standard, or canonical, rotationally invariant normal distribution on Rn. This 
approach cannot extend directly to Banach spaces; nevertheless it plays an 
important role in constructing Gaussian measures on Banach spaces. 

Let L be a locally convex linear topological space and L* its topological 
dual. A weak distribution on L is an equivalence class of linear maps F from 
L* to the linear space of random variables on some probability space. Two 
maps Fx and F2 are equivalent if for any finite set yv . . . , yn E L* the joint 
distribution of Fj(y{), . . . , Fj(yn) is the same for j = 1, 2. If L = H is a 
separable Hilbert space, a weak distribution F is called a canonical normal 
distribution on H if to each h E H* the real valued random variable F(h) is 
normally distributed with mean 0 and variance \\h\\2. (\\h\\ denotes the 
7/*-norm.) 

We will give an example which shows the relationship between a Gaussian 
measure on H and a canonical normal distribution on a certain subset of H. 
We begin with the construction of a specific, natural, Gaussian measure on 
/ / . Let x = 2<x, en}en where {en} is a complete orthonormal set in the 
separable Hilbert space { ƒ / , < , > } . We define a measure /x on the cylinder 
sets of H in terms of the joint distributions of the elements of H*. Let 
2 a2 = 1 and 

*«„ . . . , * = {xŒH:«x9eni\...9<x,e^»eBniX • • • X B^} 

for B„, . . . , B„ Borel sets in R; then 

/ = i V27T an,
 JBni 

The measure /x can be uniquely extended to a countably additive Gaussian 
probability measure on H. Clearly JU is not rotationally invariant on H. Let 

7/0 is a Hilbert space under the inner product 

<*>.y>o = 2* 5 • 

Let (7 be a bounded linear operator on H and £/0 = U\ H . Suppose that (70 is 
a unitary operator on {H0, < , >0). Then one can show that \iU~x = ii, that is, 
\x is rotationally invariant with respect to rotations of H0. In fact a canonical 
normal distribution defined on H0 can be used to construct tt on H. 

Let F be a canonical normal distribution on {H0, ( , >0). Let (£l5 . . . , £J 
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be an orthonormal set in HQ = H0. F determines a measure on the cylinder 
sets of H0> 

Hx: «*> £*>» • • • > <*> * * » e Ani x • • • x ^ ) 

(2> = ÏÏ — L r f e x p ( - W
2 / 2 ) ^ . 

£=1 V277 * ^ 

We define another norm on H0, <x, x ) = 2a2<.x, £„>Q, which is weaker than 
< , >0. Let Hx be the completion of H0 with respect to this norm and let {en} 
be a complete orthonormal set in Hv Then 2„<x, e„>2 = S<x, a„£„)o- We can 
define a measure on the cylinder sets of Hl as follows: 

ix(x: « x , eWi>, . . . , <*, ^ » G ^ X • • • X BnJ 

= (i(x: (<x, 0 ^ ) 0 , . . . , <x, a ^ > 0 ) E 5n i X • • • X i J 

= II — = — f exp(-u2/2aï)du. 

The last step is just (2). In other words a canonical normal distribution on H0 

induces a countably additive measure on H{; the same measure induced by 

(1). 
In the general theory we will consider Gaussian measures induced on a 

Banach space B by a canonical normal distribution F on a separable Hilbert 
space H. A norm or seminorm \\x\\x on H is said to be measurable if for every 
e > 0 there exists a finite dimensional projection Pe on H such that 
ProbdlPxIJ! > e) < e for all finite dimensional projections P±Pe. (The 
measure which gives the probability is the measure induced by the canonical 
distribution on the cylinder sets of H. Note that {x: \\Px\\Y > e} c H.) 

Given H, F and a measurable norm or seminorm || ||j let B be the Banach 
space which is the completion of H with respect to || \\v Let B* be the dual of 
B\ then B* c H* = H c B. The canonical distribution on H induces a weak 
distribution on B if F is restricted to 5*. Let /x be the cylinder set measure on 
B determined by this weak distribution. Gross' Theorem [2] states: Let || \\x be 
a measurable norm on H and fx the cylinder set measure on B induced by the 
canonical distribution on H. Then fi extends to a countably additive Gaussian 
measure on {B, &(B)), where &(B) is the a-field of Borel sets in B. 

Let i denote the inclusion map of H into B. The triple (/, /ƒ, B) is called an 
abstract Wiener space. The measure induced on B in Gross' Theorem is a 
Gaussian measure. Dudley, Feldman and Le Cam [1] show that if /x is a 
Gaussian measure in a real separable Banach space B then (with an addi
tional removable condition) there exists a real separable Hilbert space H such 
that (/, H, B) is an abstract Wiener space. 

One obtains standard Brownian motion on [0, 1] in the following way. The 
Banach space is C[0, 1] and the Hilbert space H is the space of absolutely 
continuous functions {f(x)\ x G [0, 1], /(O) = 0} with inner product <ƒ, 
g} = fof'g'. Clearly H c C[0, 1], The measurable norm on H is the sup-
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norm on C[0, 1]. In other words H is the reproducing kernel Hubert space of 
the Brownian motion. 

The reproducing kernel Hilbert space of a Gaussian process plays a critical 
role in abstract Wiener measure. Kallianpur [4] has shown the following: Let 
C[0, 1] be the Banach space (with sup-norm || \\x) of all real valued continu
ous functions [0, 1]. Let R be a continuous covariance on [0, 1] X [0, 1]. Then 
the canonical normal distribution on H(R) (the reproducing kernel Hilbert 
space determined by R) extends to a Gaussian probability measure on H(R ), 
the closure of H(R) in C[0, 1], if and only if || ||j is a measurable norm on 
H(R). Therefore given a continuous Gaussian process on [0, 1] the process 
can be realized as an abstract Wiener space (/, H, B) where H is the 
reproducing kernel Hilbert space determined by the covariance of the pro
cess. 

The first half of Professor Kuo's book deals with abstract Wiener space. 
There are many steps in a proper development of this theory and in these 
lecture notes, prepared for a course at the University of Virginia, Professor 
Kuo goes through them carefully and presents them in a readable fashion. 
The first step is Gaussian measures on Hilbert space. Basic properties of trace 
class and Hilbert-Schmidt operators are given. These lead to the study of 
characteristic functional on H and a theorem of Prohorov which char
acterizes Gaussian measures on H in terms of their characteristic functionals. 

Abstract Wiener space is presented following Gross' original proof. This 
proof is more involved than Kallianpur's [4] and in a later section Kuo also 
gives the proof in [4]. The notes would be improved if the role of H as a 
reproducing kernel Hilbert space was worked into the presentation. This 
section of the book is completed with a proof of the Gross-Sazonov Theorem. 

There is a wealth of material in these one hundred pages. The presentation 
is careful and aside from some changes in notation it is easy to read. There 
are many examples and exercises to guide the reader, however it is hard to get 
an overview of the subject. These notes should have included some of the 
introductory comments of [2] and [4]. Also, I would have appreciated some 
remarks on the relation of this work to that of Dudley, Feldman and Le Cam 

There are other ways to define Borel measures on Banach spaces. The 
reader might wonder why workers have gone to the trouble of constructing 
abstract Wiener spaces. Gross explains this in the introduction of [2]. The 
work of Cameron and Martin (about 1945) on the equivalence of Wiener 
measure under certain types of translation and the computation of the 
relevant Radon-Nykodym derivatives seems to depend not on C[0, 1], the 
space of paths of Brownian motion, but on the Hilbert space H in the triple 
(/, H, C[0, 1]) that determines Brownian motion as an abstract Wiener space. 
The dependence was made apparent by the work of Segal [6], [7]. Abstract 
Wiener space is used by Kuelbs [5] to study the equivalence and singularity of 
Gaussian measures on any real separable Banach space. Kuo's notes follow 
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this route. The next quarter of the book deals with the familiar theorems on 
the equivalence and singularity of Gaussian measures presented from the 
point of view of abstract Wiener spaces. The machinary developed leads to a 
simple proof of the equivalence of Wiener measure under translation and to 
the Feldman-Hajek Theorem on the equivalence and orthogonality of Gaus
sian measures on a real separable Hilbert space. Also, the Radon-Nykodym 
derivatives are easily computed. Kakutani's Theorem is stated without proof 
but Shepp's Theorem is proved. Results of Gross on the equivalence and 
orthogonality of abstract Wiener measures are also presented. 

The last chapter begins with the result of Fernique (it is also due to Landau 
and Shepp) on the integrability of exp(a||Ar||2), for some a > 0, for continu
ous Gaussian processes. (|| || indicates the sup-norm, integration is expecta
tion on the measure space of the process.) Kuo also gives a proof of this result 
due to Skorohod. Skorohod's result appears weaker than Fernique's, but a 
simple argument (which was shown to me by S. R. S. Varadhan and is 
repeated in [3]) shows that they are equivalent. The idea behind Skorohod's 
proof is intriguing and should have other interesting applications. 

The second part of the final chapter launches into analysis on abstract 
Wiener spaces. The role of Brownian motion in potential theory on Rn has an 
analogue in the Wiener process with values in a Banach space and a potential 
theory on infinite dimensional spaces. Results of Gross on a potential theory 
on Hilbert space are presented. A generalized Laplacian can be defined on H 
and a Dirichlet problem defined and solved. Similarly there is a theory of 
stochastic integrals and an analogue of Ito's Lemma. Thus, finally, Kuo gets 
to his own work and the work of other students of Gross. A more elaborate 
treatment of this work would be the next step if these Springer Notes are to 
be made into a book. 

The stated purpose of the Lecture Notes in Mathematics is to quickly bring 
new material to a wide circle of readers. This is worthwhile and Kuo's notes 
are very useful. They are not a book. As a book the approach is too narrow. 
He fails to give sufficient attention to other works which have an important 
bearing on the subject. Also, at certain points, the reader is referred to a 
journal article in order to complete an argument. There is a widespread 
interest in the topics of these notes, in Gaussian processes and in probability 
limit theorems on Banach spaces. In each of these fields workers have their 
own ways of looking at things. It would be very useful to have a book that 
related these subjects, which, if it could not unify them, at least would clearly 
show what the interrelationships are. 
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Markov chains, by D. Revuz, North-Holland Mathematical Library, vol. 11, 
North-Holland, Amsterdam; American Elsevier, New York, 1975, x + 336 
pp., $35.50. 

The theory of Markov processes can be considered in a great variety of 
settings. In the work under review the word "chain" is used to indicate 
discrete time (a convincing argument for this usage is made), the state space is 
a general measurable space, and the transition probabilities are assumed to be 
stationary. This context then determines the problems to be considered. 

The most immediate problem, and historically the first to be pursued, 
concerns the asymptotic behavior of the «-step transition probabilities 
Pn(x, A). In case the state space consists of a finite number of states only, 
this reduces to studying the asymptotic behavior of the nth power of a 
Markov matrix, and much early work was devoted to this situation. The case 
of general state space is of course much more complicated, and the pioneer
ing work here is due to Doeblin. Between these two levels of generality lies 
that of denumerable state space, definitively treated by Kolmogorov, and 
alternatively by Feller. 

In the ergodic theory of Markov chains one generally distinguishes between 
the recurrent and the transient case. Roughly, in the recurrent situation, a 
subset A of the state space will be visited infinitely often by the Markov chain 
started at x, for all (or most) starting points x, provided only that A is not too 
small (in a suitable sense). The parenthetical expressions can be made precise 
in various ways, leading to very different concepts of recurrence. In the 
denumerable case one may take "most" to mean all, and "small" to mean 
void. Following one of Doeblin's approaches for general state space, one can 
take "small" to mean of <p-measure zero, where <p is an auxiliary measure on 
the state space. Then taking "most" to mean all, one obtains the notion of 
(jp-recurrence. A chain that is cp-recurrent for some cp is recurrent in the sense 
of Harris. 

A subset A of the state space is closed if P(x, A) = 1 for all x G A. No 
matter what notion of recurrence is used, the first problem is to show that the 
state space can be broken up into minimal closed sets, and the Markov chain 
restricted to any one of these sets is either recurrent or transient. 

In the recurrent case one hopes to establish that Pn(x, •) is asymptotically 
independent of x (weak ergodicity); one can then expect convergence of 


