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so far have been of limited applicability. This notwithstanding, they are the 
methods used in SL2(R). The simplest starts from the Poisson summation 
formula and has, in various guises, been with us for a long time. It works well 
for subgroups of SL(2, Z), and perhaps for subgroups of SL(AZ, Z) too. Its 
limitations are recognized, and Lang employs it only for the sake of a quick 
introduction. 

The other method is newer and appeared only after the problem of the 
analytic continuation of Eisenstein series had been solved for general groups. 
It has exercised a strange attraction on a number of mathematicians, Lang 
among them, and acquired somehow a reputation of being more analytic. It is 
in fact not unrelated to Selberg's method, but this flows easily along a natural 
course, while that moves through a channel cut by the machinery of perturba
tion or, more precisely, scattering theory. Scattering theory, to which Faddeev 
has written an enlightening introduction (translated in J. Mathematical Phys., 
1963), is important for its own sake, and may be a useful weapon for the 
number-theorist, and the rest of us too; if not for use against the Eisenstein 
series which have, after all, already surrendered, then against stronger, more 
stubborn foes; so we can be grateful to Lang for pressing it into our hands. 
Moreover, since it has been easy to forget that, like everything else, Selberg's 
method had antecedents, it is instructive to place it alongside the methods 
arising from scattering theory and to note the fraternal likeness. But this is of 
interest only to the initiated. The beginner should be shown an easy path, free 
of red herring and leading to some outstanding problems, which for the 
Eisenstein series are usually in higher dimensions and primarily arithmetic, 
concerned not with the analytic continuation which is known but with the 
location of the poles contributing to the spectrum. Their solution probably 
demands a better understanding of the Euler products associated to auto
morphic forms and of the intertwining operators and their normalizations. 

But we should not forget the purpose of the book, which was not intended 
to teach the reader everything about SL(2, R). It is written by an outsider, 
although not to mathematics or to exposition, for outsiders, and in consulting 
his own needs he has probably met theirs. SX2(R), which introduces the 
harmonic analysis through the Plancherel formula and the analytic theory of 
automorphic forms through the Eisenstein series, may take its place alongside 
the author's other books, which for many of us have been the entrance to 
topics that could otherwise have remained inaccessible. 

R. P. LANGLANDS 
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The heat equation, by D. V. Widder, Academic Press, New York, San 
Francisco, and London, 1975, xiv + 267 pp., $22.50. 

The title implies that this is a book about a partial differential equation, 
and so it is; but it is very different from other books about partial differential 
equations. Older books used to concentrate on more or less explicit solutions 
of boundary value problems or, as we are more apt to say nowadays, on 
algorithms for calculating solutions. Modern books are more likely to con-
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centrate on existence and uniqueness theorems in the most general settings 
possible, and on qualitative information about the solutions that can be 
discovered without actually producing them. There is one equation, however, 
that is customarily discussed in a different spirit: the Laplace equation in two 
dimensions. Here we know next to everything about the existence and 
uniqueness of solutions, but we also know a great deal about their special 
properties in special situations. We call the resulting body of theory complex 
analysis and write separate books about it, possibly without mentioning 
Laplace's equation explicitly at all. That complex analysis is an independent 
theory comes about partly because of its many applications besides solving 
Laplace's equation, but also because the theory has turned out to contain 
many results that have the elegance and unexpectedness that are characteris
tic of the best mathematics. 

Widder's book presents (for the first time in book form) the principal 
results of a theory that treats solutions of the heat equation uxx = ut in much 
the same way that a book on complex analysis treats analytic functions. 
Widder presents the theory on its own merits, but near the end of the book 
gives an extensive table of the analogies between analytic functions and 
solutions of the heat equation, analogies that either guided, or could have 
guided, the development of the theory. Analogies between elliptic and para
bolic differential equations have recently served as a guide in much more 
general situations, but here the equation is the special equation for one space 
dimension, the domain in which solutions are considered is usually an 
(x, ^-rectangle (possibly infinite), and the theory corresponds most closely to 
what complex analysis would be if we began with real-analytic functions in 
an interval and considered their extensions to disks in the plane. The special 
nature of the theory is mirrored in the precision and elegance of the results 
that can be established in it. The simplified model of a physical situation that 
gave rise to the heat equation is discussed in an introductory chapter but then 
recedes far into the background, and we can watch the theory of temperature 
functions (solutions of the heat equation) take on a life of its own. It is 
interesting that the author's work on temperature functions seems, according 
to his recollections, to have been originally motivated by analogies with 
harmonic functions rather than by a desire to solve physical problems, 
although he traces his interest in the subject to a course in mathematical 
physics given by Hille. Nevertheless some, at least, of the theory certainly has 
physical content. Widder's integral representation for positive temperature 
functions, first published in 1944, leads to a uniqueness theorem that is 
satisfying on physical grounds (absolute temperatures being inherently non-
negative), but has not yet made its way into very many textbooks (although 
the effect of positivity plays a prominent role in more advanced treatises). 

Analytic functions are represented by Cauchy's formula, which can be 
looked at as convolution with the simplest analytic function with an isolated 
singularity, namely 1/z. Correspondingly, temperature functions can often be 
represented by convolution with the source solution 

k(x, t) = exp ( - j c 2 / ( 4 / ) ) ( 4 T 7 / ) " 1 / 2 , 

as well as by other integral transforms. Instead of the polynomials z"we have 
the heat polynomials vn(x, t) generated by 
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cxp(xz + tz2) — 2 vn(x, t)zn/n\\ 

other series of polynomials are also useful, just as series of polynomials other 
than {zn} are important in complex analysis. Temperature functions possess 
a maximum principle, a reflection principle, and uniqueness theorems show
ing how they are determined by various kinds of data; there is even an 
analogue of Liouville's theorem. For a suitably restricted subclass of tempera
ture functions there is Huygens' principle (which gets its name from a quite 
different analogous theory, optics, i.e. the theory of the wave equation); this 
says that the values of the function for some / can be used as initial data for 
determining the function at later values of /, in much the same way that we 
can take the values of an analytic function on a contour and use them in 
Cauchy's formula to calculate the function inside the contour. (Poisson's 
formula for harmonic functions is perhaps a closer analogue.) The analogy 
between positive temperature functions and positive harmonic functions has 
already been mentioned. One chapter is devoted to the use of Jacobian theta 
functions for solving the heat equation in a finite x-interval; the occurrence 
of these functions is less surprising than one might think, since the theta 
functions are series of functions k(x, t) or kx(x, t); they also occur in the 
construction of the Green's function for an (x, /)-rectangle. One chapter 
indicates some possible generalizations to higher dimensions; another dis
cusses homogeneous temperature functions (u(\x, X2t) = \nu(x, t)). A final 
chapter considers several special topics. 

The book is written in the author's customary polished but condensed style. 
Much of it consists of simplified versions of his own previous work. The 
results seem, generally speaking, to be more difficult than their analogues in 
complex analysis; I do not know whether this is because the latter theory is 
longer established or because problems about the heat equation are inherently 
more difficult than problems for Laplace's equation (as suggested to me by A. 
Friedman). It seems likely, however, that many additional interesting results 
are waiting to be discovered (or invented, depending on our philosophy of 
mathematics). Anyone who wishes to participate in the search should have 
this book at hand. 

R. P. BOAS 
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Continuous flows in the plane, by Anatole Beck, Die Grundlehren der 
Mathematischen Wissenschaften in Einzeldarstellungen, Band 201, 
Springer-Verlag, New York, Heidelberg, Berlin, 1974, x + 462 pp.,$46.80. 

A flow in a space A" is a (continuous) group action of the real line on X; 
that is, a continuous function <p: R X X-* X such that <p(r + s, x) = 
<p(f, q>(s, x)). Behind this simple analytic veil lies, in the case where X is the 
plane R2 (or the two-sphere S2), a beautiful geometric theory. The plane 
becomes a patchwork quilt. The patches come in infinitely varied and 
intriguing patterns, that, nevertheless, admit to a surprising amount of classi
fication. 


